搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光子计数激光雷达的自适应门控抑噪及三维重建算法

陈松懋 苏秀琴 郝伟 张振扬 汪书潮 朱文华 王杰

引用本文:
Citation:

基于光子计数激光雷达的自适应门控抑噪及三维重建算法

陈松懋, 苏秀琴, 郝伟, 张振扬, 汪书潮, 朱文华, 王杰

Noise reduction and 3D image restoration of single photon counting LiDAR using adaptive gating

Chen Song-Mao, Su Xiu-Qin, Hao Wei, Zhang Zhen-Yang, Wang Shu-Chao, Zhu Wen-Hua, Wang Jie
PDF
HTML
导出引用
  • 光子计数激光雷达技术具有极高的探测灵敏度与时间分辨率, 是极端条件下高精度目标信息获取的重要手段. 由于该技术通过探测单光子级的回波能量实现对目标信息的三维重建, 因此极易受噪声干扰, 导致成像质量严重降低. 基于高速电子门控的距离选通技术虽然可以有效抑制噪声, 但存在参数设计依靠经验、目标检测区间窄等问题. 本文提出一种在宽目标检测区间条件下的目标信息提取及三维重建方法, 首先通过对三维回波信息的获取机理及其概率模型进行分析, 获取目标信息分布范围并通过算法门控提取有效信息; 再采用高效的图像重建算法进一步提升三维重建的质量, 从而具有比基于纯硬件的去噪方法更强的抑噪能力. 实验结果显示, 在平均像素光子数仅为3.020, 且信号噪声比仅为0.106的极端条件下, 本文提出的目标信息提取方法可将信号噪声比提升19.330倍; 再配合高效的图像重建算法, 距离图像的重建信噪比相比于传统的互相关算法提升了33.520 dB, 大幅提升了强噪声环境下高精度目标信息获取的能力.
    Single photon LiDAR is considered as one of the most important tools in acquiring target information with high accuracy under extreme imaging conditions, as it offers single photon sensitivity and picosecond timing resolution. However, such technique sense the scene with the photons reflected by the target, thus resulting in severe degradation of image in presence of strong noise. Range gating with high-speed electronics is an effective way to suppress the noise, unfortunately, such technique suffers from manually selecting the parameters and limited gating width. This paper presents a target information extracting and image restoration method under large observation window, which first obtain the depth distribution of the target and extract the information within the range by analyzing the model of signal and noise, then further improve the image quality by adopting advanced image restoration algorithm and henceforth shows better results than those denoising method that purely relying on hardware. In the experiment, photon-per-pixel (PPP) was as low as 3.020 and signal-to-background ratio (SBR) was as low as 0.106, the proposed method is able to improve SBR with a factor of 19.330. Compared to classical algorithm named cross correlation, the reconstruction signal to noise ratio (RSNR) increased 33.520dB by further cooperating with advanced image restoration algorithm, thus improved the ability of sensing accurate target information under extreme cases.
      通信作者: 郝伟, hwei@opt.ac.cn
    • 基金项目: 中国博士后科学基金(批准号: 2020M683600)、中国科学院战略高技术创新基金(批准号: GQRC-19-19)、中国科学院西安光学精密机械研究所青年创新促进会、青岛海洋科学与技术试点国家实验室自主部署项目资助的课题
      Corresponding author: Hao Wei, hwei@opt.ac.cn
    • Funds: Project supported by the China Postdoctoral Science Foundation (Grant No. 2020M683600), the Strategic High Technology Innovation Project of the Chinese Academy of Sciences (Grant No. GQRC-19-19), the Youth Innovation Promotion Association XIOPM-CAS, and the self determined project of Pilot national laboratory for marine science and technology (Qingdao)
    [1]

    Li Z P, Ye J T, Huang X, Jiang P Y, Cao Y, Hong Y, Yu C, Zhang J, Zhang Q, Peng C Z, Xu F, Pan J W 2021 Optica 8 344Google Scholar

    [2]

    Maccarone A, Rocca F M D, Mccarthy A, Henderson R, Buller G S 2019 Opt. Express 27 28437Google Scholar

    [3]

    Becker W 著 (屈军乐 译) 2009 高级时间相关单光子计数技术 (北京: 科学出版社) 第19—41 页

    Becker W (translated by Qu J L) 2009 Advanced Time-Correlated Single Photon Counting Techniques (Beijing: Science Press) pp19–41 (in Chinese)

    [4]

    Wallace A M, Halimi A, Buller G S 2020 IEEE Trans. Veh. Technol. 69 7064Google Scholar

    [5]

    Pawlikowska A M, Halimi A, Lamb R A, Gerald S B 2017 Opt. Express 25 11919Google Scholar

    [6]

    Tobin R, Halimi A, Mccarthy A, Laurenzis M, Christnacher F, Buller G S 2019 Opt. Express 27 4590Google Scholar

    [7]

    Tobin R, Halimi A, Mccarthy A, Soan P J, Buller G S 2021 Sci. Rep. 11 11236Google Scholar

    [8]

    Li Z P, Xin H, Cao Y, Wang B, Li Y H, Jin W, Yu C, Zhang J, Zhang Q, Peng C Z, Xu F, Pan J W 2020 Photonics Res. 8 1532Google Scholar

    [9]

    汪书潮, 苏秀琴, 朱文华, 陈松懋, 张振扬, 徐伟豪, 王定杰 2021 物理学报 70 174304Google Scholar

    Wang S C, Su X Q, Zhu W H, Chen S M, Zhang Z Y, Xu W H, Wang D J 2021 Acta Phys. Sin. 70 174304Google Scholar

    [10]

    Halimi A, Tobin R, Mccarthy A, Bioucas-Dias J, McLaughlin S, Buller G S 2020 IEEE Trans. Comput. Imag. 6 138Google Scholar

    [11]

    Tachella J, Altmann Y, Ren X, Mccarthy A, Buller G S 2019 SIAM J. Imag. Sci. 12 521Google Scholar

    [12]

    Rapp J, Goyal V K 2017 IEEE Trans. Comput. Imag. 3 445Google Scholar

    [13]

    Rapp J, Dawson R M A, Goyal V K 2020 Opt. Express 28 35143Google Scholar

    [14]

    Greeley A P, Neumann T A, Kurtz N T, Markus T, Martino A J 2019 IEEE Trans. Geosci. Remote Sens. 57 6542Google Scholar

    [15]

    Tobing P L, Wu Y C, Hayashi T, Kobayashi K, Toda T 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) Barcelona, Spain, May 4–8, 2020, pp7204–7208.

    [16]

    Jiang S, Zhi X, Zhang W, Wang D, Hu J, Chen W 2021 Opt. Laser Eng. 136 106311Google Scholar

    [17]

    Lindell D B, Mattew O, Gordon W 2018 ACM Trans. Graph. 113 12

    [18]

    Chen S, Halimi A, Ren X, Mccarthy A, Su X, McLaughlin S, Buller G S 2020 IEEE Trans. Imag. Process. 29 3119Google Scholar

    [19]

    Hirschmuller H, Scharstein D 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) Minneapolis, Minnesota, USA, June 17–22, 2007, pp1–8.

    [20]

    Scharstein D, Hirschmuller H, Kitajima Y, Krathwohl G, Nesic N, Wang X, Westling P 2014 German Conference on Pattern Recognition (GCPR) Munster, Germany, September 3–5, 2014, pp31–42.

    [21]

    Ruget A, McLaughlin S, Henderson R K, Gyongy I, Halimi A, Leach J 2021 Opt. Express 29 11917Google Scholar

  • 图 1  光子计数激光雷达原理图 (a) 成像系统示意图; (b) 三维回波示意图

    Fig. 1.  The schematic diagram of photon counting LiDAR: (a) Description of the imaging system; (b) description of the three dimensional echo.

    图 2  自适应信息提取过程示意图 (a) 空域求和示意图, 其中$ \oplus $表示求和; (b) 特征参数示意图; (c) 目标信息的分布范围

    Fig. 2.  The schematic diagram of adaptive information extracting: (a) Schematic diagram of the summing process on the spatial domain, where $ \oplus $ stands for summing operation; (b) description of the feature parameters; (c) the distribution interval of the target

    图 3  仿真场景参考图. 左图为Recycle场景参考图, 右图为Art场景参考图

    Fig. 3.  The reference image of the simulation scene. The reference image of Recycle scene and Art scene is shown in left and right respectively.

    图 4  实测场景参考图及实物图. 左图为调节支座场景参考图, 右图为调节支座场景实物图

    Fig. 4.  The reference image and the physical map of the measured scene (i.e. supporting rod scene). The left image is the reference image of the supporting rod scene, and the right image is the physical map of the supporting rod scene

    图 5  Recycle场景重建结果对比图

    Fig. 5.  The comparison of the restoration result of different algorithms under Recycle scene

    图 6  Art场景重建结果对比图

    Fig. 6.  The comparison of the restoration result of different algorithms under Art scene

    图 7  调节支座场景重建结果对比图

    Fig. 7.  The comparison of the result of different algorithms under supporting rod scene

    Algorithm 1 基于自适应门控的噪声抑制(AGNR)算法
    1: 输入: $ \widehat{{\boldsymbol Y}} $, γ, ω, σ
    2: 初始化$ T_N $, N, λ, Λ, PPP, SBR, $\varepsilon$, $ i = 1 $
    3: $\theta=\lambda \times N+(\varLambda-\lambda \times N) \times \frac{\omega}{\gamma}{\rm{e}}^{(-\frac{{\rm{SBR}}}{\gamma})}$
    4: while $ i = 1 $ do
    5: $ \{{\boldsymbol{\zeta}} = [T_a, T_b]\} \leftarrow (\widehat{{\boldsymbol Y}} > \theta) $
    6: $E=|\sum_{i = T_a}^{T_b}\widehat{ {\boldsymbol Y} }-[{\rm{PPP}}+\lambda \times (T_b-T_a)] \times N|$
    7: $T_{\rm{c} }= \Big\lceil \dfrac{E}{ \langle (\gamma/T) \times{\rm{ PPP} }, \lambda \rangle } \Big\rceil,$
    8: $(\theta_1, \theta_2) \leftarrow [(\underrightarrow{\zeta})_{T_{\rm{c}}}, (\underleftarrow{\bar{\zeta} })_{T_{\rm{c}}}]$
    9: 根据(7)式与(8)式计算$ E_1 $与$ E_2 $
    10: $ \theta=(\theta_1, \theta_2) \leftarrow \lfloor E_1, E_2 \rfloor $
    11: if $ E < \epsilon $ then
    12: $ i = 0 $
    13: end if
    14: end while
    15: $ ({\boldsymbol{\zeta}} > \gamma) \leftarrow 0 $
    16: $ {\boldsymbol{\zeta}} \leftarrow \{[{\boldsymbol{\zeta}}-\sigma] \cup [{\boldsymbol{\zeta}}+\sigma\} $
    下载: 导出CSV

    表 1  不同场景下AGNR算法的抑噪性能对比

    Table 1.  The noise reduction performance of AGNR algorithm under different scenarios

    场景 Recycle Art 调节支座
    Recycle1 Recycle2 Recycle3 Art1 Art2 Art3 调节支座1 调节支座2 调节支座3
    PPP 0.951 6.226 12.727 0.833 4.664 11.553 3.020 30.044 150.144
    SBR 0.581 0.127 0.031 0.013 0.114 0.014 0.106 0.104 0.104
    $\textrm{SBR}^{’}$ 6.435 1.431 0.363 0.222 1.931 0.250 2.049 2.050 2.029
    NRR ${11.076}$ ${11.268}$ ${11.710}$ ${17.077}$ ${16.939}$ ${17.857}$ ${19.330}$ ${19.712}$ ${19.510}$
    下载: 导出CSV

    表 2  不同重建算法在不同场景下RSNR对比(单位: dB)

    Table 2.  The RSNR of different reconstruction algorithms under different scenarios (in dB)

    场景 评价对象 Recycle Art 调节支座
    Recycle1 Recycle2 Recycle3 Art1 Art2 Art3 调节支座1 调节支座2 调节支座3
    互相关 距离图 $-9.743$ $-8.533$ $-8.231$ $-15.597$ $-10.482$ $-10.848$ $-4.932$ $-3.023$ $-1.338$
    反射率图 $-4.101$ $-0.908$ $-3.691$ $-21.453$ $-3.504$ $-8.024$ $4.533$ $4.687$ $4.698$
    AGCC 距离图 $11.524$ $17.961$ $17.577$ $12.862$ $19.789$ $19.633$ $22.352$ $24.751$ $26.369$
    反射率图 $0.114$ $6.433$ $6.062$ $-7.806$ $4.175$ $3.457$ $5.324$ $7.504$ $7.731$
    中值滤波 距离图 $13.954$ ${22.304}$ ${21.881}$ $18.552$ $27.340$ $26.903$ $24.389$ $25.909$ $26.788 $
    反射率图 $5.844$ $12.608$ $12.284$ $2.316$ ${10.584}$ $10.261$ $8.383$ $9.500$ $9.571$
    UA 距离图 ${20.768}$ $21.318$ $21.321$ $20.519$ $24.761$ $24.764$ ${28.588}$ ${28.741}$ ${29.199}$
    反射率图 $3.304$ ${16.755}$ ${18.760}$ $5.513$ $10.034$ ${11.122}$ ${7.926}$ ${9.677}$ ${9.890}$
    OPN3DR 距离图 $20.075$ $21.430$ $21.172$ ${22.767}$ ${27.453}$ ${27.397}$ $25.726$ $26.801$ $28.298$
    反射率图 ${11.093}$ $15.812$ $15.380$ ${8.910}$ $10.448$ $10.255$ $7.915$ $8.979$ $9.004$
    下载: 导出CSV

    表 3  不同重建算法的运行时间(单位: 秒)

    Table 3.  The processing time of different reconstruction algorithms (in seconds)

    场景 Recycle Art 调节支座
    ${\rm{Recycle1}}$ ${\rm{Recycle2}}$ ${\rm{ Recycle3}}$ ${\rm{Art1}}$ ${\rm{ Art2 }}$ ${\rm{Art3}}$ 调节支座1 调节支座2 调节支座3
    互相关 0.679 0.690 0.711 2.663 2.693 2.720 0.273 0.260 0.286
    AGCC 0.085 0.085 0.085 0.220 0.224 0.218 0.023 0.024 0.024
    中值滤波 0.095 0.096 0.096 0.235 0.239 0.234 0.035 0.035 0.036
    UA 6.290 7.759 10.787 20.335 13.517 19.832 4.320 5.073 8.711
    OPN3DR 1.422 1.344 1.986 5.464 5.518 5.228 0.145 0.228 0.724
    下载: 导出CSV

    表 4  滤波方式与成像性能对比

    Table 4.  The comparison of the performance and the way of filtering.

    场景 评价对象 距离图RSNR 反射率图RSNR 运行
    时间/s
    调节支座1 多尺度滤波 ${27.441}$ $0.125$ $0.785$
    最大尺度滤波 $25.726$ ${7.915}$ ${0.145}$
    调节支座2 多尺度滤波 ${29.273}$ $1.218$ $0.772$
    最大尺度滤波 $26.801$ ${8.979}$ ${0.228}$
    调节支座3 多尺度滤波 ${30.552}$ $7.030$ $0.781$
    最大尺度滤波 $28.298$ ${9.004}$ ${0.724}$
    下载: 导出CSV
  • [1]

    Li Z P, Ye J T, Huang X, Jiang P Y, Cao Y, Hong Y, Yu C, Zhang J, Zhang Q, Peng C Z, Xu F, Pan J W 2021 Optica 8 344Google Scholar

    [2]

    Maccarone A, Rocca F M D, Mccarthy A, Henderson R, Buller G S 2019 Opt. Express 27 28437Google Scholar

    [3]

    Becker W 著 (屈军乐 译) 2009 高级时间相关单光子计数技术 (北京: 科学出版社) 第19—41 页

    Becker W (translated by Qu J L) 2009 Advanced Time-Correlated Single Photon Counting Techniques (Beijing: Science Press) pp19–41 (in Chinese)

    [4]

    Wallace A M, Halimi A, Buller G S 2020 IEEE Trans. Veh. Technol. 69 7064Google Scholar

    [5]

    Pawlikowska A M, Halimi A, Lamb R A, Gerald S B 2017 Opt. Express 25 11919Google Scholar

    [6]

    Tobin R, Halimi A, Mccarthy A, Laurenzis M, Christnacher F, Buller G S 2019 Opt. Express 27 4590Google Scholar

    [7]

    Tobin R, Halimi A, Mccarthy A, Soan P J, Buller G S 2021 Sci. Rep. 11 11236Google Scholar

    [8]

    Li Z P, Xin H, Cao Y, Wang B, Li Y H, Jin W, Yu C, Zhang J, Zhang Q, Peng C Z, Xu F, Pan J W 2020 Photonics Res. 8 1532Google Scholar

    [9]

    汪书潮, 苏秀琴, 朱文华, 陈松懋, 张振扬, 徐伟豪, 王定杰 2021 物理学报 70 174304Google Scholar

    Wang S C, Su X Q, Zhu W H, Chen S M, Zhang Z Y, Xu W H, Wang D J 2021 Acta Phys. Sin. 70 174304Google Scholar

    [10]

    Halimi A, Tobin R, Mccarthy A, Bioucas-Dias J, McLaughlin S, Buller G S 2020 IEEE Trans. Comput. Imag. 6 138Google Scholar

    [11]

    Tachella J, Altmann Y, Ren X, Mccarthy A, Buller G S 2019 SIAM J. Imag. Sci. 12 521Google Scholar

    [12]

    Rapp J, Goyal V K 2017 IEEE Trans. Comput. Imag. 3 445Google Scholar

    [13]

    Rapp J, Dawson R M A, Goyal V K 2020 Opt. Express 28 35143Google Scholar

    [14]

    Greeley A P, Neumann T A, Kurtz N T, Markus T, Martino A J 2019 IEEE Trans. Geosci. Remote Sens. 57 6542Google Scholar

    [15]

    Tobing P L, Wu Y C, Hayashi T, Kobayashi K, Toda T 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) Barcelona, Spain, May 4–8, 2020, pp7204–7208.

    [16]

    Jiang S, Zhi X, Zhang W, Wang D, Hu J, Chen W 2021 Opt. Laser Eng. 136 106311Google Scholar

    [17]

    Lindell D B, Mattew O, Gordon W 2018 ACM Trans. Graph. 113 12

    [18]

    Chen S, Halimi A, Ren X, Mccarthy A, Su X, McLaughlin S, Buller G S 2020 IEEE Trans. Imag. Process. 29 3119Google Scholar

    [19]

    Hirschmuller H, Scharstein D 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) Minneapolis, Minnesota, USA, June 17–22, 2007, pp1–8.

    [20]

    Scharstein D, Hirschmuller H, Kitajima Y, Krathwohl G, Nesic N, Wang X, Westling P 2014 German Conference on Pattern Recognition (GCPR) Munster, Germany, September 3–5, 2014, pp31–42.

    [21]

    Ruget A, McLaughlin S, Henderson R K, Gyongy I, Halimi A, Leach J 2021 Opt. Express 29 11917Google Scholar

  • [1] 施岳, 欧攀, 郑明, 邰含旭, 王玉红, 段若楠, 吴坚. 基于轻量残差复合增强收敛神经网络的粒子场计算层析成像伪影噪声抑制. 物理学报, 2024, 73(10): 104202. doi: 10.7498/aps.73.20231902
    [2] 沈姗姗, 顾国华, 陈钱, 何睿清, 曹青青. 时空域联合编码扩频单光子计数成像方法. 物理学报, 2023, 72(2): 024202. doi: 10.7498/aps.72.20221438
    [3] 曹若琳, 彭清轩, 王金东, 陈勇杰, 黄云飞, 於亚飞, 魏正军, 张智明. 基于单光子计数反馈的低噪声光纤信道波分复用实时偏振补偿系统. 物理学报, 2022, 71(13): 130306. doi: 10.7498/aps.71.20220120
    [4] 陈洁, 周昕, 白星, 李聪, 徐昭, 倪洋. 强散射过程与双随机相位加密过程的等价性分析. 物理学报, 2021, 70(13): 134201. doi: 10.7498/aps.70.20201903
    [5] 孙世峰. 基于可分离编码的高分辨X射线荧光成像技术研究. 物理学报, 2020, 69(19): 198701. doi: 10.7498/aps.69.20200674
    [6] 乔志伟. 总变差约束的数据分离最小图像重建模型及其Chambolle-Pock求解算法. 物理学报, 2018, 67(19): 198701. doi: 10.7498/aps.67.20180839
    [7] 陈越, 刘雄英, 吴中堂, 范艺, 任子良, 冯久超. 受污染混沌信号的协同滤波降噪. 物理学报, 2017, 66(21): 210501. doi: 10.7498/aps.66.210501
    [8] 张雷雷, 唐立金, 张慕阳, 梁艳梅. 对称照明在傅里叶叠层成像中的应用. 物理学报, 2017, 66(22): 224201. doi: 10.7498/aps.66.224201
    [9] 韩玉, 李磊, 闫镔, 席晓琦, 胡国恩. 一种基于Radon逆变换的半覆盖螺旋锥束CT重建算法. 物理学报, 2015, 64(5): 058704. doi: 10.7498/aps.64.058704
    [10] 何林阳, 刘晶红, 李刚. 基于多相组重建的航空图像超分辨率算法. 物理学报, 2015, 64(11): 114208. doi: 10.7498/aps.64.114208
    [11] 杜劲松, 高扬, 毕欣, 齐伟智, 黄林, 荣健. S波段微波热致超声成像系统研究. 物理学报, 2015, 64(3): 034301. doi: 10.7498/aps.64.034301
    [12] 吕善翔, 冯久超. 一种混沌映射的相空间去噪方法. 物理学报, 2013, 62(23): 230503. doi: 10.7498/aps.62.230503
    [13] 周树波, 袁艳, 苏丽娟. 基于双阈值Huber范数估计的图像正则化超分辨率算法. 物理学报, 2013, 62(20): 200701. doi: 10.7498/aps.62.200701
    [14] 汪先超, 闫镔, 刘宏奎, 李磊, 魏星, 胡国恩. 一种圆轨迹锥束CT中截断投影数据的高效重建算法. 物理学报, 2013, 62(9): 098702. doi: 10.7498/aps.62.098702
    [15] 王胜, 邹宇斌, 温伟伟, 李航, 刘树全, 王浒, 陆元荣, 唐国有, 郭之虞. 基于小型加速器的编码中子源成像研究. 物理学报, 2013, 62(12): 122801. doi: 10.7498/aps.62.122801
    [16] 宁方立, 何碧静, 韦娟. 基于lp范数的压缩感知图像重建算法研究. 物理学报, 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [17] 刘明, 张树林, 李华, 邱阳, 曾佳, 张国峰, 王永良, 孔祥燕, 谢晓明. 一种应用于心磁噪声抑制的选择性平均方法研究. 物理学报, 2013, 62(9): 098501. doi: 10.7498/aps.62.098501
    [18] 杨昆, 刘新新, 李晓苇. 数据插值对正电子发射断层成像设备的图像重建影响的研究. 物理学报, 2013, 62(14): 147802. doi: 10.7498/aps.62.147802
    [19] 张兴华, 赵宝升, 缪震华, 朱香平, 刘永安, 邹 玮. 紫外单光子成像系统的研究. 物理学报, 2008, 57(7): 4238-4243. doi: 10.7498/aps.57.4238
    [20] 万 雄, 于盛林, 王长坤, 乐淑萍, 李冰颖, 何兴道. 多目标优化发射层析算法在等离子体场光谱诊断中的应用. 物理学报, 2004, 53(9): 3104-3113. doi: 10.7498/aps.53.3104
计量
  • 文章访问数:  5394
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-12
  • 修回日期:  2021-12-27
  • 上网日期:  2022-02-21
  • 刊出日期:  2022-05-20

/

返回文章
返回