搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度对马氏体和铁素体晶格常数影响规律

齐海东 王晶 陈中军 吴忠华 宋西平

引用本文:
Citation:

温度对马氏体和铁素体晶格常数影响规律

齐海东, 王晶, 陈中军, 吴忠华, 宋西平

Influence of temperature on lattice constants of martensite and ferrite

Qi Hai-Dong, Wang Jing, Chen Zhong-Jun, Wu Zhong-Hua, Song Xi-Ping
PDF
HTML
导出引用
  • 采用同步辐射技术研究了温度对马氏体和铁素体晶格常数的影响规律. 研究结果表明, 马氏体和铁素体的晶格常数均随着温度的升高而逐渐增大, 但马氏体的衍射峰有分峰现象, 而铁素体的衍射峰没有分峰现象. 对马氏体的{110}和{200}衍射峰进行分峰处理, 得到马氏体晶格常数ac随温度升高逐渐增大, 但晶格常数a的增大速度要大于c的速度, 即马氏体的正方度逐渐降低. 当温度升至500 ℃时, 马氏体正方度c/a = 1. 铁素体的晶格常数随温度的变化规律与马氏体晶格常数a的基本相同, 而与马氏体晶格常数c的明显不同, 表明了温度对马氏体晶格常数的影响本质. 除此以外, 通过对同步辐射数据的分析, 建立了马氏体和铁素体晶格常数随温度变化的数值方程.
    The effect of temperature on the lattice constants of martensite and ferrite are studied by the synchrotron radiation technique. The results show that the lattice constants of martensite and ferrite increase gradually with the increase of temperature, but diffraction peaks of martensite show a peak splitting phenomenon, while the diffraction peaks of ferrite do not. From the fitting of the {110} and {200} diffraction peaks of martensite, it is found that the lattice constants a and c of martensite gradually increase with the temperature rising, but the increasing rate of lattice constant a is faster than that of c, that is, the squareness of martensite gradually decreases. When the temperature increases to 500 ℃, the squareness (c/a) of martensite is equal to 1. The variation of lattice constant of ferrite with temperature is basically the same as that of lattice constant a of martensite, but different from that of lattice constant c of martensite, showing the nature influence of temperature on the lattice constants of martensite. Besides, based on the analysis of synchrotron radiation data, the quantitative equations of lattice constants of martensite and ferrite varying with temperature are established.
      通信作者: 宋西平, xpsong@skl.ustb.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 21171018, 51271021)和新金属国家重点实验室基金(批准号: 2019-ZD06, 2021Z-18)资助的课题
      Corresponding author: Song Xi-Ping, xpsong@skl.ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21171018, 51271021) and the Foundation of State Key Laboratory for Advanced Metals and Materials, China (Grant Nos. 2019-ZD06, 2021Z-18)
    [1]

    Osmond M F 1895 Bull. Soc. Encour. Ind. Nat. 10 465

    [2]

    袁书强, 沈正祥, 周春华, 刘峰涛, 王芳, 杨晖, 陈炯 2014 物理学报 63 030702Google Scholar

    Yuan S Q, Shen Z X, Zhou C H, Liu F T, Wang F, Yang H, Chen J 2014 Acta Phys. Sin. 63 030702Google Scholar

    [3]

    Oleg D S, Jeffrey W, Donald R L, Chol K S 2008 Mater. Trans. 49 2016Google Scholar

    [4]

    José R C G, Paulo R R 2018 J. Mater. Res. Technol. 7 499Google Scholar

    [5]

    徐祖耀 1980 马氏体相变与马氏体 (北京: 科学出版社) 第88页

    Xu Z Y 1980 Martensitic Transformation and Martensite (Beijing: Science Press) p88 (in Chinese)

    [6]

    张瑞林, 余瑞璜 1984 金属学报 20 279

    Zhang R L, Yu R H 1984 Acta Metall. Sina. 20 279

    [7]

    Lu Y, Yu H X, Richard D S J 2017 Mater. Sci. Eng. A 700 592Google Scholar

    [8]

    Tanaka T, Maruyama N, Nakamura N, Wilkinson A J 2020 Acta Mater. 195 728Google Scholar

    [9]

    Kurdjumov G, Kaminsky E 1928 Nature 122 475Google Scholar

    [10]

    Kurdjumov G 1976 Metall. Trans. A 7 999Google Scholar

    [11]

    Cheng L, Böttger A, Keijser T 1990 Scripta Mater. 24 509Google Scholar

    [12]

    刘晓, 康沫狂 2000 金属热处理学报 21 68Google Scholar

    Liu X, Kang M K 2000 Transactions of Metal Heat Treatment 21 68Google Scholar

    [13]

    Becquart C S, Raulot J M, Bencteux G, Domain C, Perez M, Garruchet S, Nguyen H 2007 Comp. Mater. Sci. 40 119Google Scholar

    [14]

    Chentouf S, Cazottes S, Danoix F, Goune M, Zapolsky H, Maugis P 2017 Intermetallics 89 92Google Scholar

    [15]

    Chen P C, Winchell P G 1980 Metall. Trans. A 11 1333

    [16]

    Rammo N N, Abdulah O G 2006 J. Alloy Compd. 420 117Google Scholar

    [17]

    Wang Y X, Tomota Y, Ohmura T, Morooka S, Gong W 2020 Acta Mater. 184 30Google Scholar

    [18]

    Arman M M, Imam N G, Portales R L, El-Dek S I 2020 J. Magn. Magn. Mater. 513 167097Google Scholar

    [19]

    Mo K, Miao Y B, Xu R Q, Yao T K, Lian J, Jamison L M, Yacout A M 2020 J. Nucl. Mater. 529 151943Google Scholar

    [20]

    Jacobsen S D, Hinrichs R, Baumvol I J R, Castellano G, Vasconcellos M A Z 2015 Surf. Coat Tech. 270 266Google Scholar

    [21]

    Ballot C, Lamesle P, Delagnes D 2013 Acta. Metall. Sin. 26 553Google Scholar

    [22]

    Luo Q S 2016 J. Mater. Eng. Perform. 25 2170Google Scholar

    [23]

    Chen Y L, Liu Q, Xiao W L, Ping D H, Wang Y Z, Zhao X Q 2018 Mater. Lett. 227 213Google Scholar

    [24]

    Bharambe S S, Trimukhe A, Bhatia P 2020 Mater. Today: Proceedings 23 373Google Scholar

    [25]

    Speich G R, Leslie W C 1972 Metall. Trans. 3 1043Google Scholar

    [26]

    Maruyama N, Tabata S 2021 Mater. Trans. A 52 2576Google Scholar

  • 图 1  同步辐射衍射试样尺寸图

    Fig. 1.  Dimension of samples for synchrotron radiation diffraction.

    图 2  不同温度下马氏体{110}和{200}晶面的衍射谱 (a) {110}晶面; (b) {200}晶面

    Fig. 2.  Diffraction patterns of {110} and {200} crystal planes of martensite at different temperatures: (a) {110} crystal planes; (b) {200} crystal planes.

    图 3  400 ℃时马氏体{110}和{200}晶面衍射峰分峰处理图 (a) {110}晶面; (b) {200}晶面

    Fig. 3.  Splitting process of {110} and {200} diffraction peaks of martensite at 400 ℃: (a) {110} crystal planes; (b) {200} crystal planes.

    图 4  不同温度下马氏体的晶格常数 (a) {110}晶面; (b) {200}晶面

    Fig. 4.  Lattice constants of martensite at different temperatures: (a) {110} crystal planes; (b) {200} crystal planes.

    图 5  400 ℃时淬火态和回火态钢{200}晶面的衍射谱

    Fig. 5.  Diffraction patterns of (200) crystal plane in quenched and tempered steel at 400 ℃.

    图 6  不同温度下回火态钢的衍射谱

    Fig. 6.  Diffraction patterns of tempered steel at different temperatures

    图 7  回火态钢中晶格常数随温度的变化 (a) aF-f(θ)外推曲线; (b) aA-f(θ)外推曲线; (c)不同温度下回火态钢的晶格常数

    Fig. 7.  Variation of lattice constant in tempered steel with temperatures (a) aF-f(θ) extrapolation curve; (b) aA-f(θ) extrapolation curve; (c) lattice constants of tempered steel at different temperatures.

    图 8  马氏体和铁素体晶格常数随温度的变化趋势

    Fig. 8.  Variation of lattice parameters of martensite and ferrite with temperature.

    表 1  不同温度下马氏体的晶格常数和正方度

    Table 1.  Lattice constant and squareness of martensite at different temperatures.

    晶格常数温度/℃
    25200400500600650700
    {110}a12.87622.88772.8932
    c12.88442.89422.8957
    a32.89812.90232.90632.9071
    c/a1.00291.00231.00091111
    {200}a22.87912.89062.8933
    c22.89242.89822.9002
    a42.89842.90222.90562.9074
    c/a1.00461.00261.00241111
    下载: 导出CSV

    表 2  不同温度下回火态钢的晶格常数

    Table 2.  Lattice constants of tempered steel at different temperatures.

    晶格
    常数
    温度/℃
    25200400500600650700750775
    aF3.87852.89422.89792.90182.90772.9106
    aA3.66123.66403.66723.37013.6706
    下载: 导出CSV
  • [1]

    Osmond M F 1895 Bull. Soc. Encour. Ind. Nat. 10 465

    [2]

    袁书强, 沈正祥, 周春华, 刘峰涛, 王芳, 杨晖, 陈炯 2014 物理学报 63 030702Google Scholar

    Yuan S Q, Shen Z X, Zhou C H, Liu F T, Wang F, Yang H, Chen J 2014 Acta Phys. Sin. 63 030702Google Scholar

    [3]

    Oleg D S, Jeffrey W, Donald R L, Chol K S 2008 Mater. Trans. 49 2016Google Scholar

    [4]

    José R C G, Paulo R R 2018 J. Mater. Res. Technol. 7 499Google Scholar

    [5]

    徐祖耀 1980 马氏体相变与马氏体 (北京: 科学出版社) 第88页

    Xu Z Y 1980 Martensitic Transformation and Martensite (Beijing: Science Press) p88 (in Chinese)

    [6]

    张瑞林, 余瑞璜 1984 金属学报 20 279

    Zhang R L, Yu R H 1984 Acta Metall. Sina. 20 279

    [7]

    Lu Y, Yu H X, Richard D S J 2017 Mater. Sci. Eng. A 700 592Google Scholar

    [8]

    Tanaka T, Maruyama N, Nakamura N, Wilkinson A J 2020 Acta Mater. 195 728Google Scholar

    [9]

    Kurdjumov G, Kaminsky E 1928 Nature 122 475Google Scholar

    [10]

    Kurdjumov G 1976 Metall. Trans. A 7 999Google Scholar

    [11]

    Cheng L, Böttger A, Keijser T 1990 Scripta Mater. 24 509Google Scholar

    [12]

    刘晓, 康沫狂 2000 金属热处理学报 21 68Google Scholar

    Liu X, Kang M K 2000 Transactions of Metal Heat Treatment 21 68Google Scholar

    [13]

    Becquart C S, Raulot J M, Bencteux G, Domain C, Perez M, Garruchet S, Nguyen H 2007 Comp. Mater. Sci. 40 119Google Scholar

    [14]

    Chentouf S, Cazottes S, Danoix F, Goune M, Zapolsky H, Maugis P 2017 Intermetallics 89 92Google Scholar

    [15]

    Chen P C, Winchell P G 1980 Metall. Trans. A 11 1333

    [16]

    Rammo N N, Abdulah O G 2006 J. Alloy Compd. 420 117Google Scholar

    [17]

    Wang Y X, Tomota Y, Ohmura T, Morooka S, Gong W 2020 Acta Mater. 184 30Google Scholar

    [18]

    Arman M M, Imam N G, Portales R L, El-Dek S I 2020 J. Magn. Magn. Mater. 513 167097Google Scholar

    [19]

    Mo K, Miao Y B, Xu R Q, Yao T K, Lian J, Jamison L M, Yacout A M 2020 J. Nucl. Mater. 529 151943Google Scholar

    [20]

    Jacobsen S D, Hinrichs R, Baumvol I J R, Castellano G, Vasconcellos M A Z 2015 Surf. Coat Tech. 270 266Google Scholar

    [21]

    Ballot C, Lamesle P, Delagnes D 2013 Acta. Metall. Sin. 26 553Google Scholar

    [22]

    Luo Q S 2016 J. Mater. Eng. Perform. 25 2170Google Scholar

    [23]

    Chen Y L, Liu Q, Xiao W L, Ping D H, Wang Y Z, Zhao X Q 2018 Mater. Lett. 227 213Google Scholar

    [24]

    Bharambe S S, Trimukhe A, Bhatia P 2020 Mater. Today: Proceedings 23 373Google Scholar

    [25]

    Speich G R, Leslie W C 1972 Metall. Trans. 3 1043Google Scholar

    [26]

    Maruyama N, Tabata S 2021 Mater. Trans. A 52 2576Google Scholar

  • [1] 李腾, 邱文婷, 龚深. 基于相场方法的多孔合金马氏体相变模拟. 物理学报, 2023, 72(14): 148102. doi: 10.7498/aps.72.20230212
    [2] 王钰豪, 刘建国, 徐亮, 刘文清, 宋庆利, 金岭, 徐寒杨. 不同温度压力对浓度反演精度的定量分析. 物理学报, 2021, 70(7): 073201. doi: 10.7498/aps.70.20201672
    [3] 成应晋, 杨超飞, 薛钢, 王涛, 张磊, 李梅娥. 基于第一性原理的含空位α-Fe和H原子相互作用研究. 物理学报, 2020, 69(5): 053101. doi: 10.7498/aps.69.20191775
    [4] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [5] 罗忠兵, 董慧君, 马志远, 邹龙江, 朱效磊, 林莉. 铸造奥氏体不锈钢中铁素体与奥氏体位向关系及其对声衰减的影响. 物理学报, 2018, 67(23): 238102. doi: 10.7498/aps.67.20181251
    [6] 朱金荣, 范吕超, 苏垣昌, 胡经国. 温度、缺陷对磁畴壁动力学行为的影响. 物理学报, 2016, 65(23): 237501. doi: 10.7498/aps.65.237501
    [7] 徐晖, 田晓波, 步凯, 李清江. 温度改变对钛氧化物忆阻器导电特性的影响. 物理学报, 2014, 63(9): 098402. doi: 10.7498/aps.63.098402
    [8] 袁书强, 沈正祥, 周春华, 刘峰涛, 王芳, 杨辉, 陈炯. 30CrMnSiNi2A晶格参量的测量及回复规律研究. 物理学报, 2014, 63(3): 030702. doi: 10.7498/aps.63.030702
    [9] 蒋中英, 张国梁, 马晶, 朱涛. 磷脂在膜结构间的交换:温度和离子强度的影响. 物理学报, 2013, 62(1): 018701. doi: 10.7498/aps.62.018701
    [10] 郑树文, 范广涵, 章勇, 何苗, 李述体, 张涛. Be和Ca掺杂纤锌矿ZnO的晶格常数与能带特性研究. 物理学报, 2012, 61(22): 227101. doi: 10.7498/aps.61.227101
    [11] 苏少坚, 成步文, 薛春来, 张东亮, 张广泽, 王启明. GeSn合金的晶格常数对Vegard定律的偏离. 物理学报, 2012, 61(17): 176104. doi: 10.7498/aps.61.176104
    [12] 李岩, 傅海威, 邵敏, 李晓莉. 石墨点阵柱状光子晶体共振腔的温度特性. 物理学报, 2011, 60(7): 074219. doi: 10.7498/aps.60.074219
    [13] 尚杰, 张辉, 曹明刚, 张鹏翔. 氧压对Ba0.6Sr0.4TiO3薄膜晶格常数的影响及BaTiO3/Ba0.6Sr0.4TiO3超晶格的制备. 物理学报, 2011, 60(1): 016802. doi: 10.7498/aps.60.016802
    [14] 程正富, 龙晓霞, 郑瑞伦. 温度对光学微腔光子激子系统玻色凝聚的影响. 物理学报, 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [15] 韩茹, 樊晓桠, 杨银堂. n-SiC拉曼散射光谱的温度特性. 物理学报, 2010, 59(6): 4261-4266. doi: 10.7498/aps.59.4261
    [16] 王亚珍, 黄平, 龚中良. 温度对微界面摩擦影响的研究. 物理学报, 2010, 59(8): 5635-5640. doi: 10.7498/aps.59.5635
    [17] 陈丕恒, 敖冰云, 李炬, 李嵘, 申亮. 温度对bcc铁中He行为影响的模拟研究. 物理学报, 2009, 58(4): 2605-2611. doi: 10.7498/aps.58.2605
    [18] 陈国庆, 吴亚敏, 陆兴中. 金属/电介质颗粒复合介质光学双稳的温度效应. 物理学报, 2007, 56(2): 1146-1151. doi: 10.7498/aps.56.1146
    [19] 魏智强, 夏天东, 王 君, 吴志国, 闫鹏勋. 纳米镍粉体的晶格膨胀. 物理学报, 2007, 56(2): 1004-1008. doi: 10.7498/aps.56.1004
    [20] 万见峰, 费燕琼, 王健农. Fe和Co对Ni2MnGa合金(110)马氏体孪晶界面电子结构的影响. 物理学报, 2006, 55(5): 2444-2448. doi: 10.7498/aps.55.2444
计量
  • 文章访问数:  8426
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-20
  • 修回日期:  2022-01-21
  • 上网日期:  2022-01-28
  • 刊出日期:  2022-05-05

/

返回文章
返回