搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性调频信号激励下非线性系统的最优共振响应

宫涛 杨建华 单振 王志乐 刘后广

引用本文:
Citation:

非线性调频信号激励下非线性系统的最优共振响应

宫涛, 杨建华, 单振, 王志乐, 刘后广

Optimal resonance response of nonlinear system excited by nonlinear frequency modulation signal

Gong Tao, Yang Jian-Hua, Shan Zhen, Wang Zhi-Le, Liu Hou-Guang
PDF
HTML
导出引用
  • 非线性调频(NLFM)信号在雷达、通信、信号处理中应用广泛, 该类信号所激励下的非线性系统响应有着丰富的信息, 通过共振来增强NLFM信号具有一定实际意义与价值. 本文主要研究了受到不同类型NLFM信号所激励的非线性系统共振现象, 提出了实时尺度变换方法来处理高频NLFM信号, 克服人为选择造成信号输出响应较差的缺点. 同时, 提出实时谱放大因子作为共振评价指标, 准确评价NLFM信号激励下的系统共振响应, 讨论系统参数对系统最优共振响应的影响, 参数选择在合理的区间内即可实现最优共振响应, 不仅实现信号特征的大幅增强, 还保持信号时频特征的连续性. 最后, 将实时尺度变换方法和固定尺度变换方法进行对比, 说明所提方法处理NLFM信号的优越性.
    Nonlinear frequency modulation (NLFM) signal is widely used in radar, communication and signal processing. The response of nonlinear system excited by this kind of signal has rich information. At the same time, enhancing different types of signals by resonance phenomenon has unique advantages in the field of signal processing. Compared with other signal processing methods, such as empirical mode decomposition, variational mode decomposition, wavelet transform, signal filtering, etc., this kind of method can not only enhance the signal, but also effectively suppress the interference noise. Therefore, it has certain significance to study the nonlinear system optimal response excited by different NLFM signals and enhance the NLFM signal through resonance phenomenon. In this paper, what is mainly studied is the nonlinear system resonance phenomenon excited by different NLFM signals, which is different from in previous studies. Firstly, a real-time scale transformation method is proposed to process the NLFM signals, and its basic principle is to match different NLFM signals by real-time scale coefficients and system parameters. The signal frequency at each time corresponds to the coefficients with different scales and system parameters, thereby realizing the optimal resonance response at each time. In order to describe the optimal resonance response excited by the NLFM signal more accurately, unlike the traditional spectral amplification factor, the real-time spectral amplification factor is introduced as an evaluation index. Then, the influence of system parameters on the optimal system resonance response is discussed, and the optimal resonance region is obtained, which means that the optimal resonance response can be achieved by selecting the parameters in a reasonable range. This method not only greatly enhances the signal characteristics, but also maintains the continuity of signal time-frequency characteristics. Finally, the real-time scale transformation method is compared with the general scale transformation method, showing the superiority of the proposed method in processing NLFM signal. The method and the results of this paper show some potential in dealing with complex NLFM, which provides a reference for NLFM signal enhancement and detection, and has a certain practical significance in signal enhancement. Furthermore, the relevant influence law of the system optimal response excited by the NLFM signal is given, which has a certain reference value for studying the system dynamic behavior under different signal excitations.
      通信作者: 杨建华, jianhuayang@cumt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12072362)和江苏高校优势学科建设工程资助的课题.
      Corresponding author: Yang Jian-Hua, jianhuayang@cumt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12072362) and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
    [1]

    Gammaitoni L, Hänggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 223Google Scholar

    [2]

    Landa P S, McClintock P V E 2000 J. Phys. A Math. Theor. 33 L433

    [3]

    Benzi R, Sutera A, Vulpiani A 1981 J. Phys. A Math. Theor. 14 L453

    [4]

    王珊, 王辅忠 2018 物理学报 67 160502Google Scholar

    Wang S, Wang F Z 2018 Acta Phys. Sin. 67 160502Google Scholar

    [5]

    Qiao Z, Lei Y, Li N 2019 Mech. Syst. Signal. Process. 122 502Google Scholar

    [6]

    Lu S, He Q, Wang J 2019 Mech. Syst. Signal. Process. 116 230Google Scholar

    [7]

    冷永刚, 王太勇 2003 物理学报 52 2432Google Scholar

    Leng Y G, Wang T Y 2003 Acta Phys. Sin. 52 2432Google Scholar

    [8]

    Tan J, Chen X, Wang J, Chen H, Cao H, Zi Y, He Z 2009 Mech. Syst. Signal. Process. 23 811Google Scholar

    [9]

    Hu N, Chen M, Qin G, Xia L, Pan Z, Feng Z 2009 Front. Mech. Eng. 4 450Google Scholar

    [10]

    Huang D, Yang J, Zhang J, Liu H 2018 Int. J. Mod. Phys. B 32 1850185Google Scholar

    [11]

    Wu C, Yang J, Huang D, Liu H, Hu E 2019 Meas. Sci. Technol. 30 035004Google Scholar

    [12]

    Alsalah A, Holloway D, Mousavi M, Lavroff J 2021 Mech. Syst. Signal. Process. 151 107385Google Scholar

    [13]

    Kumar A, Zhou Y, Xiang J 2021 Measurement 168 108402Google Scholar

    [14]

    Sakar C O, Serbes G, Gunduz A, Tunc H C, Nizam H, Sakar B E, Apaydin H 2019 Appl. Soft Comput. 74 255Google Scholar

    [15]

    Wang G, Peng B, Feng Z, Yang X, Deng J, Wang N 2021 Signal Process. 179 107836Google Scholar

    [16]

    Li Z, Chen B, Sun H, Liu G, Zhu S 2021 Chin. Phys. B 30 080502Google Scholar

    [17]

    Chizhevsky V N, Giacomelli G 2008 Phys. Rev. E 77 051126Google Scholar

    [18]

    Zeng L, Li J, Shi J 2012 Chaos Solitons Fract. 45 378Google Scholar

    [19]

    彭皓, 钟苏川, 屠浙, 马洪 2013 物理学报 62 080501Google Scholar

    Peng H, Zhong S C, Tu Z, Ma H 2013 Acta Phys. Sin. 62 080501Google Scholar

    [20]

    Yang J, Zhang S, Sanjuán M A F, Liu H 2020 Commun. Nonlinear Sci. Numer. Simul. 85 105258Google Scholar

    [21]

    屈奎, 张荣福, 肖鹏程 2021 物理学报 70 198402Google Scholar

    Qu K, Zhang R F, Xiao P C 2021 Acta Phys. Sin. 70 198402Google Scholar

    [22]

    Daskalakis S N, Kimionis J, Collado A, Goussetis G, Tentzeris M M, Georgiadis A 2017 IEEE Trans. Microw. Theory Tech. 65 5251Google Scholar

    [23]

    Zhu D, Gao Q, Lu Y, Sun D 2020 Digit. Signal Process. 107 102860Google Scholar

    [24]

    Alphonse S, Williamson G A 2021 IEEE T. Aero. Elec. Sys. 57 1793Google Scholar

    [25]

    Song J, Gao Y, Gao D 2015 J. Commun. 10 976

    [26]

    Vizitiu I C 2014 Prog. Electromagn. Res. C 47 119

    [27]

    Kim Y, Park J, Na K, Yuan H, Youn B D, Kang C S 2020 Mech. Syst. Signal Process. 138 106544Google Scholar

    [28]

    Li Y, Xu F 2021 Struct. Health. Monit. 14759217211033627

    [29]

    Iatsenko D, McClintock P V E, Stefanovska A 2016 Signal Process. 125 290Google Scholar

  • 图 1  输入的NLFM信号 (a)时域波形图; (b) STFT频谱图 (仿真参数A = 0.1, f0 = 0, γ = 50, $\phi $= 0, t1 = 3, t2 = 10)

    Fig. 1.  The input NLFM signal: (a) The time domain waveform; (b) the STFT spectrum. The simulation parameters are A = 0.1, f0 = 0, γ = 50, $\phi $= 0, t1 = 3, t2 = 10.

    图 2  不同尺度系数β = β0 × 10, β0 × 75, β0 × 150, β = β0 ×f1(t)下的系统参数a1与实时谱放大因子η的关系图 (仿真参数为b1 = 1, β0 = 100, m = 2)

    Fig. 2.  Curves of η-a1 are obtained under different scale coefficient β = β0 × 10, β0 × 75, β0 × 150, β = β0 ×f1(t). The simulation parameters are b1 = 1, β0 = 100, m = 2.

    图 3  实时谱放大因子η与系统参数a1, b1的关系图 (仿真参数为m = 2, β0 = 100)

    Fig. 3.  Contour plot of the real time spectral amplification factor η in the a1 - b1 plane. The simulation parameters are m = 2, β0 = 100.

    图 4  b1 = 1时系统的共振输出结果 (a) 时域波形图; (b) STFT频谱图(仿真参数为m = 2, β0 = 100)

    Fig. 4.  The output response of system resonance when b1 = 1: (a) The time domain waveform; (b) the STFT spectrum. The simulation parameters are m = 2, β0 = 100.

    图 5  不同的固定尺度系数β下的系统共振输出结果 (a) β = β0 × 10下系统输出STFT谱图; (b) β = β0 ×10下系统输出时域波形图; (c) β = β0 × 75下系统输出STFT谱图; (d) β = β0 × 75下时域波形图; (e) β = β0 ×150下系统输出STFT谱图; (f) β = β0 ×150下时域波形图 (仿真参数为β0 = 100)

    Fig. 5.  The output response of system resonance under different fixed scale coefficients β: (a) The output STFT spectrum under β = β0 × 10; (b) the output time domain waveform under β = β0 × 10; (c) the output STFT spectrum under β = β0 × 75; (d) the output time domain waveform under β = β0 × 75; (e) the output STFT spectrum under β = β0 × 150; (f) the output time domain waveform under β = β0 × 150. The simulation parameters are β0 = 100

    图 6  输入的NLFM信号 (a) 时域波形图; (b) STFT时频图

    Fig. 6.  The input NLFM signal: (a) The time domain waveform; (b) the STFT spectrum.

    图 7  不同尺度系数下的实时谱放大因子η与系统参数b1关系图 (仿真参数为a1 = 0.01, m = 5, β0 = 1000)

    Fig. 7.  Curves of η-b1 are obtained under different scale coefficients. The simulation parameters are a1 = 0.01, m = 5, β0 = 1000.

    图 8  时变尺度系数下最优共振输出结果 (a) 时域波形图; (b) STFT频谱图 (仿真参数为m = 5, β0 = 1000)

    Fig. 8.  The output response of optimal resonance: (a) The time domain waveform; (b) the STFT spectrum. The simulation parameters are m = 5, β0 = 1000.

    图 9  不同固定尺度系数β下共振响应 (a) β = β0 × 10下输出STFT谱图; (b) β = β0 × 10下输出时域波形图; (c) β = β0 × 40下输出STFT谱图; (d) β = β0 × 40下输出时域波形图; (e) β = β0 × 75下输出STFT谱图; (f) β = β0 × 75下输出时域波形图

    Fig. 9.  The resonance response under different fixed scale coefficient β: (a) The output STFT spectrum under β = β0 × 10; (b) the output time domain waveform under β = β0 × 10; (c) the output STFT spectrum under β = β0 × 40; (d) the output time domain waveform under β = β0 × 40; (e) the output STFT spectrum under β = β0 × 75; (f) the output time domain waveform under β = β0 × 75.

  • [1]

    Gammaitoni L, Hänggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 223Google Scholar

    [2]

    Landa P S, McClintock P V E 2000 J. Phys. A Math. Theor. 33 L433

    [3]

    Benzi R, Sutera A, Vulpiani A 1981 J. Phys. A Math. Theor. 14 L453

    [4]

    王珊, 王辅忠 2018 物理学报 67 160502Google Scholar

    Wang S, Wang F Z 2018 Acta Phys. Sin. 67 160502Google Scholar

    [5]

    Qiao Z, Lei Y, Li N 2019 Mech. Syst. Signal. Process. 122 502Google Scholar

    [6]

    Lu S, He Q, Wang J 2019 Mech. Syst. Signal. Process. 116 230Google Scholar

    [7]

    冷永刚, 王太勇 2003 物理学报 52 2432Google Scholar

    Leng Y G, Wang T Y 2003 Acta Phys. Sin. 52 2432Google Scholar

    [8]

    Tan J, Chen X, Wang J, Chen H, Cao H, Zi Y, He Z 2009 Mech. Syst. Signal. Process. 23 811Google Scholar

    [9]

    Hu N, Chen M, Qin G, Xia L, Pan Z, Feng Z 2009 Front. Mech. Eng. 4 450Google Scholar

    [10]

    Huang D, Yang J, Zhang J, Liu H 2018 Int. J. Mod. Phys. B 32 1850185Google Scholar

    [11]

    Wu C, Yang J, Huang D, Liu H, Hu E 2019 Meas. Sci. Technol. 30 035004Google Scholar

    [12]

    Alsalah A, Holloway D, Mousavi M, Lavroff J 2021 Mech. Syst. Signal. Process. 151 107385Google Scholar

    [13]

    Kumar A, Zhou Y, Xiang J 2021 Measurement 168 108402Google Scholar

    [14]

    Sakar C O, Serbes G, Gunduz A, Tunc H C, Nizam H, Sakar B E, Apaydin H 2019 Appl. Soft Comput. 74 255Google Scholar

    [15]

    Wang G, Peng B, Feng Z, Yang X, Deng J, Wang N 2021 Signal Process. 179 107836Google Scholar

    [16]

    Li Z, Chen B, Sun H, Liu G, Zhu S 2021 Chin. Phys. B 30 080502Google Scholar

    [17]

    Chizhevsky V N, Giacomelli G 2008 Phys. Rev. E 77 051126Google Scholar

    [18]

    Zeng L, Li J, Shi J 2012 Chaos Solitons Fract. 45 378Google Scholar

    [19]

    彭皓, 钟苏川, 屠浙, 马洪 2013 物理学报 62 080501Google Scholar

    Peng H, Zhong S C, Tu Z, Ma H 2013 Acta Phys. Sin. 62 080501Google Scholar

    [20]

    Yang J, Zhang S, Sanjuán M A F, Liu H 2020 Commun. Nonlinear Sci. Numer. Simul. 85 105258Google Scholar

    [21]

    屈奎, 张荣福, 肖鹏程 2021 物理学报 70 198402Google Scholar

    Qu K, Zhang R F, Xiao P C 2021 Acta Phys. Sin. 70 198402Google Scholar

    [22]

    Daskalakis S N, Kimionis J, Collado A, Goussetis G, Tentzeris M M, Georgiadis A 2017 IEEE Trans. Microw. Theory Tech. 65 5251Google Scholar

    [23]

    Zhu D, Gao Q, Lu Y, Sun D 2020 Digit. Signal Process. 107 102860Google Scholar

    [24]

    Alphonse S, Williamson G A 2021 IEEE T. Aero. Elec. Sys. 57 1793Google Scholar

    [25]

    Song J, Gao Y, Gao D 2015 J. Commun. 10 976

    [26]

    Vizitiu I C 2014 Prog. Electromagn. Res. C 47 119

    [27]

    Kim Y, Park J, Na K, Yuan H, Youn B D, Kang C S 2020 Mech. Syst. Signal Process. 138 106544Google Scholar

    [28]

    Li Y, Xu F 2021 Struct. Health. Monit. 14759217211033627

    [29]

    Iatsenko D, McClintock P V E, Stefanovska A 2016 Signal Process. 125 290Google Scholar

  • [1] 李豪, 庞永强, 屈冰玥, 郑江山, 徐卓. 光学透明超表面透镜及其无线通信效率增强. 物理学报, 2024, 73(14): 144104. doi: 10.7498/aps.73.20240464
    [2] 王重秋, 杨建华. 非周期二进制/M进制信号激励下非线性系统的非周期共振研究. 物理学报, 2023, 72(22): 222501. doi: 10.7498/aps.72.20231154
    [3] 周沛, 张仁恒, 朱尖, 李念强. 基于双路光电反馈下光注入半导体激光器的高性能线性调频信号产生. 物理学报, 2022, 71(21): 214204. doi: 10.7498/aps.71.20221308
    [4] 张玫玫, 高凡, 屠娟, 吴意赟, 章东. 非线性超声射频信号熵对乳腺结节良恶性的定征. 物理学报, 2021, 70(8): 084302. doi: 10.7498/aps.70.20201919
    [5] 宫涛, 杨建华, 单振, 王志乐, 刘后广. NLFM信号激励下非线性系统的最优共振响应研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211959
    [6] 刘广凯, 全厚德, 康艳梅, 孙慧贤, 崔佩璋, 韩月明. 一种随机共振增强正弦信号的二次多项式接收方法. 物理学报, 2019, 68(21): 210501. doi: 10.7498/aps.68.20190952
    [7] 成健, 冯晋霞, 李渊骥, 张宽收. 基于量子增强型光纤马赫-曾德尔干涉仪的低频信号测量. 物理学报, 2018, 67(24): 244202. doi: 10.7498/aps.67.20181335
    [8] 路文龙, 谢军伟, 王和明, 盛川. 基于多项式调频Fourier变换的信号分量提取方法. 物理学报, 2016, 65(8): 080202. doi: 10.7498/aps.65.080202
    [9] 张路, 谢天婷, 罗懋康. 双频信号驱动含分数阶内、外阻尼Duffing振子的振动共振. 物理学报, 2014, 63(1): 010506. doi: 10.7498/aps.63.010506
    [10] 彭皓, 钟苏川, 屠浙, 马洪. 线性调频信号激励过阻尼双稳系统的随机共振现象研究. 物理学报, 2013, 62(8): 080501. doi: 10.7498/aps.62.080501
    [11] 蒋飞, 刘中, 胡文, 包伯成. 连续混沌调频信号的动力学设计与分析. 物理学报, 2010, 59(1): 116-122. doi: 10.7498/aps.59.116
    [12] 施建成, 郎秀峰. 乘性噪音和加性噪音效应对脉孢菌生物钟体系内信号随机共振的增强. 物理学报, 2009, 58(6): 4281-4287. doi: 10.7498/aps.58.4281
    [13] 宁丽娟, 徐伟. 信号调制下分段噪声驱动的线性系统的随机共振. 物理学报, 2009, 58(5): 2889-2894. doi: 10.7498/aps.58.2889
    [14] 林 敏, 方利民, 朱若谷. 双频信号作用下耦合双稳系统的双共振特性. 物理学报, 2008, 57(5): 2638-2642. doi: 10.7498/aps.57.2638
    [15] 张良英, 金国祥, 曹 力. 调频信号的单模激光线性模型随机共振. 物理学报, 2008, 57(8): 4706-4711. doi: 10.7498/aps.57.4706
    [16] 杜 丹, 胡响明. 级联三能级介质中非线性光学信号的增强. 物理学报, 2006, 55(10): 5232-5236. doi: 10.7498/aps.55.5232
    [17] 徐 伟, 靳艳飞, 徐 猛, 李 伟. 偏置信号调制下色关联噪声驱动的线性系统的随机共振. 物理学报, 2005, 54(11): 5027-5033. doi: 10.7498/aps.54.5027
    [18] 张家树, 李恒超, 肖先赐. 连续混沌信号的离散余弦变换域二次实时滤波预测. 物理学报, 2004, 53(3): 710-716. doi: 10.7498/aps.53.710
    [19] 周欣, 罗军, 孙献平, 曾锡之, 刘买利, 刘午阳. 流动系统中的激光增强固体和液体129Xe核磁共振信号. 物理学报, 2002, 51(10): 2221-2224. doi: 10.7498/aps.51.2221
    [20] 苗润才, 潘多海, 陈发堂, 张新惠. 卤族离子对银表面-分子系统中的表面增强Raman光谱信号的影响. 物理学报, 1992, 41(9): 1542-1546. doi: 10.7498/aps.41.1542
计量
  • 文章访问数:  5074
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-21
  • 修回日期:  2021-11-14
  • 上网日期:  2022-03-03
  • 刊出日期:  2022-03-05

/

返回文章
返回