搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低能电子在玻璃管中的稳定传输

李鹏飞 袁华 程紫东 钱立冰 刘中林 靳博 哈帅 万城亮 崔莹 马越 杨治虎 路迪 ReinholdSchuch 黎明 张红强 陈熙萌

引用本文:
Citation:

低能电子在玻璃管中的稳定传输

李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 万城亮, 崔莹, 马越, 杨治虎, 路迪, ReinholdSchuch, 黎明, 张红强, 陈熙萌

Stable transmission of low energy electrons in glass tube with outer surface grounded conductively shielding

Li Peng-Fei, Yuan Hua, Cheng Zi-Dong, Qian Li-Bing, Liu Zhong-Lin, Jin Bo, Ha Shuai, Wan Cheng-Liang, Cui Ying, Ma Yue, Yang Zhi-Hu, Lu Di, Reinhold Schuch, Li Ming, Zhang Hong-Qiang, Chen Xi-Meng
PDF
HTML
导出引用
  • 分别对裸的直玻璃管和外壁与出入口两端面涂导电银胶的直玻璃管进行了低能电子穿透实验. 穿透电子的倾角分布显示, 穿透电子强度随倾角增大而减少, 并且穿透倾角不会超过玻璃管的几何张角. 还测量了玻璃管在倾角为–0.2°时的充电过程. 对于裸玻璃管, 在充电过程中, 穿透率和角分布有显著的振荡现象. 整体来看, 穿透率随时间先下降后上升, 最后在某个平均值附近振荡; 角分布随穿透率变化同步变化, 先向正角度移动再向负角度移动, 最后在玻璃管的倾角附近振荡. 对于涂导电胶的玻璃管, 在充电过程中, 穿透率和角分布稳定变化. 穿透率随时间先下降后上升最后平稳, 角分布随时间先向负角度移动再向正角度移动, 最后在玻璃管倾角附近稳定. 通过模拟电子与SiO2材料的碰撞过程, 提出了电子在裸玻璃管和涂导电胶玻璃管中的充电过程的物理图像. 该物理图像能很好地解释电子在裸玻璃管和涂导电胶的玻璃管中充电过程的实验结果. 最后, 依据实验结果和物理图像给出了低能电子在玻璃毛细管中稳定输运的条件.
    The electron microbeam is useful for modifying certain fragments of biomolecule. It is successful to apply the guiding effect to making the microbeam of positively charged particles by using single glass capillary. However, the mechanism for the electron transport through insulating capillaries is unclear. Meanwhile, previous researches show that there are oscillations of the transmission intensity of electrons with time in the glass capillaries with outer serface having no grounded conductive shielding, So, the application of glass capillary to making the microbeam of electrons is limited.In this paper, the transmission of 1.5 and 0.9 keV electrons through the glass capillary without/with the grounded conductive-coated outer surface are investigated, respectively. This study aims to understand the mechanism for low energy electron transport in the glass capillaries, and find the conditions for the steady transport of the electrons. Two-dimensional angular distribution of the transported electrons and its time evolution are measured. It is found that the intensity of the transported electrons with the incident energy through the glass capillaries for the glass capillaries without and with the grounded conductive-coated outer surface show the typical geometrical transmission characteristics. The time evolution of the 1.5- keV electron transport presents an extremely complex variation for the glass capillary without the grounded conductive-coated outer surface. The intensity first falls, then rises and finally oscillates around a certain mean value. Correspondingly, the angular distribution center experiences moving towards positive-negative-settlement. In comparison, the charge-up process of the 0.9 keV electron transport through the glass capillary with the grounded conductive-coated outer surface shows a relatively simple behavior. At first, the intensity declines rapidly with time. Then, it slowly rises till a certain value and stays steady subsequently. The angular distribution of transported electrons follows the intensity distribution in general, but with some delay. It quickly moves to negative direction then comes back to positive direction. Finally, it regresses extremely slowly and ends up around the tilt angle. To better understand the physics behind the observed phenomena, the simulation for the interaction of the electrons with SiO2 material is performed to obtain the possible deposited charge distribution by the CASINO code. Based on the analysis of the experimental results and the simulated charge deposition, the conditions for stabilizing the electron transport through glass capillary arepresented.
      通信作者: 张红强, zhanghq@lzu.edu.cn ; 陈熙萌, chenxm@lzu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: U1732269, 11805169)、中央高校基本科研业务费专项资金 (批准号: lzujbky-2021-sp41)、瑞典科研与教育国际合作基金 (STINT) (批准号: IB2018-8071) 和国家外国专家局重点项目资助的课题.
      Corresponding author: Zhang Hong-Qiang, zhanghq@lzu.edu.cn ; Chen Xi-Meng, chenxm@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1732269, 11805169), the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2021-sp41), the Swedish Foundation for International Cooperation in Research and Higher Education (Grant No. IB2018-8071), and the Key Program of the State Administration of Foreign Experts, China.
    [1]

    Kumar A, Becker D, Adhikary A, Sevilla M D 2019 Int. J. Mol. Sci. 20 3998Google Scholar

    [2]

    Baccarelli I, Bald I, Gianturco F A, Illenberger E, Kopyra J 2011 Phys. Rep. 508 1Google Scholar

    [3]

    Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl. Phys. Lett. 92 023509Google Scholar

    [4]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201Google Scholar

    [5]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901Google Scholar

    [6]

    Skog P, Zhang H, Schuch R 2008 Phys. Rev. Lett. 101 223202Google Scholar

    [7]

    Juhász Z, Sulik B, Rácz R, Biri S, Bereczky R, Tőkési K, Kövér Á, Pálinkás J, Stolterfoht N 2010 Phys. Rev. A 82 062903Google Scholar

    [8]

    Hellhammer R, Pešic Z, Sobocinski P, Fink D, Bundesmann J, Stolterfoht N 2005 Nucl. Instrum. Methods Phys. Res. , Sect. B 233 213Google Scholar

    [9]

    Skog P, Soroka I L, Johansson A, Schuch R 2007 Nucl. Instrum. Metods Phys. Res., Sect. B 258 145Google Scholar

    [10]

    Chen Y F, C X M, Lou F J, Xu J Z, Shao J X, Sun G Z, Wang J, Xi F Y, Yin Y Z, Wang X A, Xu J K, Cui Y, Ding B W 2009 Chin. Phys. B 18 2739Google Scholar

    [11]

    Juhász Z, Sulik B, Biri S, Iván I, Tőkési K, Fekete É, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Víkor G, Takács E 2009 Nucl. Instrum. Methods Phys. Res. , Sect. B 267 321Google Scholar

    [12]

    Sahana M, Skog P, Vikor G, Kumar R R, Schuch R 2006 Phys. Rev. A 73 040901Google Scholar

    [13]

    Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev. A 83 062901Google Scholar

    [14]

    Juhász Z, Kovács S, Herczku P, Rácz R, Biri S, Rajta I, Gál G, Szilasi S, Pálinkás J, Sulik B 2012 Nucl. Instrum. Methods Phys. Res. , Sect. B 279 177Google Scholar

    [15]

    Zhang H, Akram N, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. A 86 022901Google Scholar

    [16]

    Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202Google Scholar

    [17]

    Zhang H, Akram N, Schuch R 2016 Phys. Rev. A 94 032704Google Scholar

    [18]

    Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502Google Scholar

    [19]

    Cassimi A, Maunoury L, Muranaka T, Huber B, Dey K R, Lebius H, Lelièvre D, Ramillon J M, Been T, Ikeda T 2009 Nucl. Instrum. Methods Phys. Res., Sect. B 267 674Google Scholar

    [20]

    Nakayama R, Tona M, Nakamura N, Watanabe H, Yoshiyasu N, Yamada C, Yamazaki A, Ohtani S, Sakurai M 2009 Nucl. Instrum. Methods Phys. Res., Sect. B 267 2381Google Scholar

    [21]

    Giglio E, Guillous S, Cassimi A, Zhang H, Nagy G, Töőkési K 2017 Phys. Rev. A 95 030702Google Scholar

    [22]

    Giglio E, Guillous S, Cassimi A 2018 Phys. Rev. A 98 052704Google Scholar

    [23]

    Lemell C, Burgdörfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237Google Scholar

    [24]

    Stolterfoht N, Yamazaki Y 2016 Phys. Rep. 629 1Google Scholar

    [25]

    Stolterfoht N, Tanis J 2018 Nucl. Instrum. Methods Phys. Res. , Sect. B 421 32Google Scholar

    [26]

    Milosavljević A, Víkor G, Pešić Z, Kolarž P, Šević D, Marinković B, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901Google Scholar

    [27]

    Milosavljević A, Schiessl K, Lemell C, Tőkési K, Mátéfi-Tempfli M, Mátéfi-Tempfli S, Marinković B, Burgdörfer J 2012 Nucl. Instrum. Methods Phys. Res. , Sect. B 279 190Google Scholar

    [28]

    Das S, Dassanayake B, Winkworth M, Baran J, Stolterfoht N, Tanis J 2007 Phys. Rev. A 76 042716Google Scholar

    [29]

    Dassanayake B, Keerthisinghe D, Wickramarachchi S, Ayyad A, Das S, Stolterfoht N, Tanis J 2013 Nucl. Instrum. Methods. Phys. Res. , Sect. B 298 1Google Scholar

    [30]

    Keerthisinghe D, Dassanayake B, Wickramarachchi S, Stolterfoht N, Tanis J 2013 Nucl. Instrum. Methods Phys. Res. , Sect. B 317 105Google Scholar

    [31]

    Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201Google Scholar

    [32]

    Dassanayake B, Das S, Bereczky R, Tőkési K, Tanis J 2010 Phys. Rev. A 81 020701Google Scholar

    [33]

    Dassanayake B, Bereczky R, Das S, Ayyad A, Tökési K, Tanis J 2011 Phys. Rev. A 83 012707Google Scholar

    [34]

    Wickramarachchi S, Ikeda T, Dassanayake B, Keerthisinghe D, Tanis J 2016 Phys. Rev. A 94 022701Google Scholar

    [35]

    Wickramarachchi S, Ikeda T, Dassanayake B, Keerthisinghe D, Tanis J 2016 Nucl. Instrum. Methods Phys. Res., Sect. B 382 60Google Scholar

    [36]

    万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高 志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 物理学报 65 204103Google Scholar

    Wan C L, Li P F, Qian L B, Jin B, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Reinhold S, Zhang H Q, Chen M 2016 Acta Phys. Sin. 65 204103Google Scholar

    [37]

    钱立冰, 李鹏飞, 靳博, 靳定坤, 宋光银, 张琦, 魏龙, 牛犇, 万成亮, 周春林, Arnold Milenko Mscrir, Max Dobeli, 宋张勇, 杨治虎, Reinhold Schuch, 张红强, 陈熙萌 2017 物理学报 66 124101Google Scholar

    Qian L B, Li P F, Jin B, Jin D K, Song G Y, Zhang Q, Wei L, Niu B, Wan C L, Zhou C L, Arnold Milenko M, Max D, Song Z Y, Yang Z H, Reinhold S, Zhang H Q, Chen X M 2017 Acta Phys. Sin. 66 124101Google Scholar

    [38]

    Drouin D, Couture A R, Gauvin R, Hovington P, Horny P, Demers H 2016 Computer Code CASINO, Version 3.3, https://www.gel.usherbrooke.ca/casino/index.html

    [39]

    Yang L, Da B, Tokesi K, Ding Z J 2021 Sci. Rep. 11 5954Google Scholar

  • 图 1  (a)实验设备示意图; (b)裸玻璃管和涂导电胶玻璃管的示意图

    Fig. 1.  (a) Schematic drawing of the experimental setup. The tilt angle α between the axis of the glass capillary and the electron beam, the observation angles φ and θ relative to the direction of the electron beam are indicated; (b) schematic drawing of the glass capillary, bare (above), silver conductive paint brushed (below).

    图 2  1.5和0.9 keV电子分别穿越裸玻璃毛细管(a)和涂导电胶玻璃毛细管(b)的穿透率随倾角变化的分布曲线. 图中, 虚线之间的角度代表几何穿透角. 图(b)中, 红线是高斯拟合线

    Fig. 2.  The steady-state values of the transmission rate as a function of the tilt angle for 1.5 keV electrons through bare glass capillary (a) and 0.9 keV electrons through conductive-coated glass capillary (b). The dash lines indicate the geometric transmission angle of 1.68º spread angle. The red solid line is a Gaussian fit curve of the measured 0.9 keV data.

    图 3  对倾角为–0.2°的裸玻璃毛细管(a), (b), (c)和涂导电胶的玻璃毛细管(d), (e), (f)的充电过程的测量. 图(a)和图(d)分别为1.5和0.9 keV电子的穿透率随时间演化曲线; 图(b)和图(e)分别为1.5和0.9 keV能量下的穿透电子在φ平面的投影中心随时间的演化曲线; 图(c)和图(f)为充电过程中选取的穿透电子的二维角分布图像; 每个图像分别对应图(a)和图(c)中画红圈的位置

    Fig. 3.  Measurements of the charge-up process in the glass capillary at certain tilt angle (α = –0.2°). Investigations conducted with both electron energies of 1.5 and 0.9 keV. (a) and (d) show the measured time evolution of the transmission rates. (b) and (e) show the projection of the transmitted electron angular distribution on the φ-plane. (c) and (f) show the 2 D images of electron angular distribution at different stages during the charge-up process. Each image in Figure (c) and Figure (f) corresponds to a red circle as marked in Figure (a) and Figure (d), respectively.

    图 4  0.9 keV电子在入射角为7.1°时造成的空穴深度分布(a)和电子沉积深度分布(b); 1.5 keV的电子在入射角为5.5°时造成的空穴深度分布(c)和电子沉积深度分布(d). X 方向为毛细管轴向方向, X正向方向为入射电子具有最大动量的方向, (0, 0)位置为碰撞点

    Fig. 4.  The holes distribution (a), (c) and deposited electrons distribution (b), (d) in depth for 0.9 keV electrons at tilt angle 7.1°(a), (b) and 1.5 keV electrons at tilt angle 5.5°(c), (d). The impact occurred at the (0, 0) point.

    图 5  无导电层(a)和有导电层(b)时, SiO2表面电场场强的演化示意图. 图中的数字代表演化的先后顺序

    Fig. 5.  The evolution of the electronic field on the surface for the bare SiO2 (a) and conductive-coated SiO2 (b). The numbers in the figure stand for evolution sequences.

    图 6  充电过程中, 裸玻璃管((a)—(c))的和涂导电胶的玻璃管((d)—(f))的穿透电子在玻璃管内的轨迹示意图. 红色箭头线为电子轨迹

    Fig. 6.  The diagrams for the trajectories of the transmitted electrons through the bare glass capillary ((a)–(c)) and the conductive-coated glass capillary ((d)–(f)) in the charging up process.

  • [1]

    Kumar A, Becker D, Adhikary A, Sevilla M D 2019 Int. J. Mol. Sci. 20 3998Google Scholar

    [2]

    Baccarelli I, Bald I, Gianturco F A, Illenberger E, Kopyra J 2011 Phys. Rep. 508 1Google Scholar

    [3]

    Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl. Phys. Lett. 92 023509Google Scholar

    [4]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201Google Scholar

    [5]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901Google Scholar

    [6]

    Skog P, Zhang H, Schuch R 2008 Phys. Rev. Lett. 101 223202Google Scholar

    [7]

    Juhász Z, Sulik B, Rácz R, Biri S, Bereczky R, Tőkési K, Kövér Á, Pálinkás J, Stolterfoht N 2010 Phys. Rev. A 82 062903Google Scholar

    [8]

    Hellhammer R, Pešic Z, Sobocinski P, Fink D, Bundesmann J, Stolterfoht N 2005 Nucl. Instrum. Methods Phys. Res. , Sect. B 233 213Google Scholar

    [9]

    Skog P, Soroka I L, Johansson A, Schuch R 2007 Nucl. Instrum. Metods Phys. Res., Sect. B 258 145Google Scholar

    [10]

    Chen Y F, C X M, Lou F J, Xu J Z, Shao J X, Sun G Z, Wang J, Xi F Y, Yin Y Z, Wang X A, Xu J K, Cui Y, Ding B W 2009 Chin. Phys. B 18 2739Google Scholar

    [11]

    Juhász Z, Sulik B, Biri S, Iván I, Tőkési K, Fekete É, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Víkor G, Takács E 2009 Nucl. Instrum. Methods Phys. Res. , Sect. B 267 321Google Scholar

    [12]

    Sahana M, Skog P, Vikor G, Kumar R R, Schuch R 2006 Phys. Rev. A 73 040901Google Scholar

    [13]

    Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev. A 83 062901Google Scholar

    [14]

    Juhász Z, Kovács S, Herczku P, Rácz R, Biri S, Rajta I, Gál G, Szilasi S, Pálinkás J, Sulik B 2012 Nucl. Instrum. Methods Phys. Res. , Sect. B 279 177Google Scholar

    [15]

    Zhang H, Akram N, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. A 86 022901Google Scholar

    [16]

    Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202Google Scholar

    [17]

    Zhang H, Akram N, Schuch R 2016 Phys. Rev. A 94 032704Google Scholar

    [18]

    Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502Google Scholar

    [19]

    Cassimi A, Maunoury L, Muranaka T, Huber B, Dey K R, Lebius H, Lelièvre D, Ramillon J M, Been T, Ikeda T 2009 Nucl. Instrum. Methods Phys. Res., Sect. B 267 674Google Scholar

    [20]

    Nakayama R, Tona M, Nakamura N, Watanabe H, Yoshiyasu N, Yamada C, Yamazaki A, Ohtani S, Sakurai M 2009 Nucl. Instrum. Methods Phys. Res., Sect. B 267 2381Google Scholar

    [21]

    Giglio E, Guillous S, Cassimi A, Zhang H, Nagy G, Töőkési K 2017 Phys. Rev. A 95 030702Google Scholar

    [22]

    Giglio E, Guillous S, Cassimi A 2018 Phys. Rev. A 98 052704Google Scholar

    [23]

    Lemell C, Burgdörfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237Google Scholar

    [24]

    Stolterfoht N, Yamazaki Y 2016 Phys. Rep. 629 1Google Scholar

    [25]

    Stolterfoht N, Tanis J 2018 Nucl. Instrum. Methods Phys. Res. , Sect. B 421 32Google Scholar

    [26]

    Milosavljević A, Víkor G, Pešić Z, Kolarž P, Šević D, Marinković B, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901Google Scholar

    [27]

    Milosavljević A, Schiessl K, Lemell C, Tőkési K, Mátéfi-Tempfli M, Mátéfi-Tempfli S, Marinković B, Burgdörfer J 2012 Nucl. Instrum. Methods Phys. Res. , Sect. B 279 190Google Scholar

    [28]

    Das S, Dassanayake B, Winkworth M, Baran J, Stolterfoht N, Tanis J 2007 Phys. Rev. A 76 042716Google Scholar

    [29]

    Dassanayake B, Keerthisinghe D, Wickramarachchi S, Ayyad A, Das S, Stolterfoht N, Tanis J 2013 Nucl. Instrum. Methods. Phys. Res. , Sect. B 298 1Google Scholar

    [30]

    Keerthisinghe D, Dassanayake B, Wickramarachchi S, Stolterfoht N, Tanis J 2013 Nucl. Instrum. Methods Phys. Res. , Sect. B 317 105Google Scholar

    [31]

    Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201Google Scholar

    [32]

    Dassanayake B, Das S, Bereczky R, Tőkési K, Tanis J 2010 Phys. Rev. A 81 020701Google Scholar

    [33]

    Dassanayake B, Bereczky R, Das S, Ayyad A, Tökési K, Tanis J 2011 Phys. Rev. A 83 012707Google Scholar

    [34]

    Wickramarachchi S, Ikeda T, Dassanayake B, Keerthisinghe D, Tanis J 2016 Phys. Rev. A 94 022701Google Scholar

    [35]

    Wickramarachchi S, Ikeda T, Dassanayake B, Keerthisinghe D, Tanis J 2016 Nucl. Instrum. Methods Phys. Res., Sect. B 382 60Google Scholar

    [36]

    万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高 志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 物理学报 65 204103Google Scholar

    Wan C L, Li P F, Qian L B, Jin B, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Reinhold S, Zhang H Q, Chen M 2016 Acta Phys. Sin. 65 204103Google Scholar

    [37]

    钱立冰, 李鹏飞, 靳博, 靳定坤, 宋光银, 张琦, 魏龙, 牛犇, 万成亮, 周春林, Arnold Milenko Mscrir, Max Dobeli, 宋张勇, 杨治虎, Reinhold Schuch, 张红强, 陈熙萌 2017 物理学报 66 124101Google Scholar

    Qian L B, Li P F, Jin B, Jin D K, Song G Y, Zhang Q, Wei L, Niu B, Wan C L, Zhou C L, Arnold Milenko M, Max D, Song Z Y, Yang Z H, Reinhold S, Zhang H Q, Chen X M 2017 Acta Phys. Sin. 66 124101Google Scholar

    [38]

    Drouin D, Couture A R, Gauvin R, Hovington P, Horny P, Demers H 2016 Computer Code CASINO, Version 3.3, https://www.gel.usherbrooke.ca/casino/index.html

    [39]

    Yang L, Da B, Tokesi K, Ding Z J 2021 Sci. Rep. 11 5954Google Scholar

  • [1] 胡笑钏, 刘样溪, 楚坤, 段潮锋. 非晶态碳薄膜对金属二次电子发射的影响. 物理学报, 2024, 73(4): 047901. doi: 10.7498/aps.73.20231604
    [2] 张建威, 牛莹, 闫润圻, 张荣奇, 曹猛, 李永东, 刘纯亮, 张嘉伟. 体空位缺陷对氧化铝二次电子发射特性的影响分析. 物理学报, 2024, 73(15): 157902. doi: 10.7498/aps.73.20240577
    [3] 李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 张浩文, 万城亮, 崔莹, 马越, 杨治虎, 路迪, ReinholdSchuch, 黎明, 张红强, 陈熙萌. 低能电子穿越玻璃直管时倾角依赖的输运动力学. 物理学报, 2022, 71(8): 084104. doi: 10.7498/aps.71.20212335
    [4] 陈龙, 孙少娟, 姜博瑞, 段萍, 安宇豪, 杨叶慧. 电子非麦氏分布的二次电子发射磁化鞘层特性. 物理学报, 2021, 70(24): 245201. doi: 10.7498/aps.70.20211061
    [5] 翁明, 谢少毅, 殷明, 曹猛. 介质材料二次电子发射特性对微波击穿的影响. 物理学报, 2020, 69(8): 087901. doi: 10.7498/aps.69.20200026
    [6] 董烨, 刘庆想, 庞健, 周海京, 董志伟. 材料二次电子产额对腔体双边二次电子倍增的影响. 物理学报, 2018, 67(3): 037901. doi: 10.7498/aps.67.20172119
    [7] 黎宇坤, 陈韬, 李晋, 杨志文, 胡昕, 邓克立, 曹柱荣. CsI光阴极在10100 keV X射线能区的响应灵敏度计算. 物理学报, 2018, 67(8): 085203. doi: 10.7498/aps.67.20180029
    [8] 张战刚, 雷志锋, 岳龙, 刘远, 何玉娟, 彭超, 师谦, 黄云, 恩云飞. 空间高能离子在纳米级SOI SRAM中引起的单粒子翻转特性及物理机理研究. 物理学报, 2017, 66(24): 246102. doi: 10.7498/aps.66.246102
    [9] 万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌. 低能电子穿越玻璃直管和锥管动力学研究. 物理学报, 2016, 65(20): 204103. doi: 10.7498/aps.65.204103
    [10] 李爽, 常超, 王建国, 刘彦升, 朱梦, 郭乐田, 谢佳玲. 横磁模下介质表面二次电子倍增的抑制. 物理学报, 2015, 64(13): 137701. doi: 10.7498/aps.64.137701
    [11] 翁明, 胡天存, 曹猛, 徐伟军. 电子入射角度对聚酰亚胺二次电子发射系数的影响. 物理学报, 2015, 64(15): 157901. doi: 10.7498/aps.64.157901
    [12] 叶鸣, 贺永宁, 王瑞, 胡天存, 张娜, 杨晶, 崔万照, 张忠兵. 基于微陷阱结构的金属二次电子发射系数抑制研究. 物理学报, 2014, 63(14): 147901. doi: 10.7498/aps.63.147901
    [13] 宋庆庆, 王新波, 崔万照, 王志宇, 冉立新. 多载波微放电中二次电子横向扩散的概率分析. 物理学报, 2014, 63(22): 220205. doi: 10.7498/aps.63.220205
    [14] 李永东, 杨文晋, 张娜, 崔万照, 刘纯亮. 一种二次电子发射的复合唯象模型. 物理学报, 2013, 62(7): 077901. doi: 10.7498/aps.62.077901
    [15] 杨文晋, 李永东, 刘纯亮. 高入射能量下的金属二次电子发射模型. 物理学报, 2013, 62(8): 087901. doi: 10.7498/aps.62.087901
    [16] 李鹏, 许州, 黎明, 杨兴繁. 金刚石薄膜中二次电子输运的蒙特卡罗模拟. 物理学报, 2012, 61(7): 078503. doi: 10.7498/aps.61.078503
    [17] 常天海, 郑俊荣. 固体金属二次电子发射的Monte-Carlo模拟. 物理学报, 2012, 61(24): 241401. doi: 10.7498/aps.61.241401
    [18] 段萍, 李肸, 鄂鹏, 卿绍伟. 霍尔推进器中磁化二次电子对鞘层特性的影响. 物理学报, 2011, 60(12): 125203. doi: 10.7498/aps.60.125203
    [19] 张忠兵, 欧阳晓平, 夏海鸿, 陈亮, 王群书, 王兰, 马彦良, 潘洪波, 刘林月. 高能质子束流强度绝对测量的二次电子补偿原理研究. 物理学报, 2010, 59(8): 5369-5373. doi: 10.7498/aps.59.5369
    [20] 于达仁, 张凤奎, 李鸿, 刘辉. 霍尔推进器中振荡鞘层对电子与壁面碰撞频率的影响研究. 物理学报, 2009, 58(3): 1844-1848. doi: 10.7498/aps.58.1844
计量
  • 文章访问数:  4437
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-02
  • 修回日期:  2021-11-27
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-05

/

返回文章
返回