搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

静态强磁场对临近空间飞行器中天线辐射性能的影响

张天成 成爱强 包华广 丁大志

引用本文:
Citation:

静态强磁场对临近空间飞行器中天线辐射性能的影响

张天成, 成爱强, 包华广, 丁大志

Influence of static strong magnetic field on antenna radiation in hypersonic vehicle

Zhang Tian-Cheng, Cheng Ai-Qiang, Bao Hua-Guang, Ding Da-Zhi
PDF
HTML
导出引用
  • 为了增强临近空间超高声速飞行器中的北斗天线的辐射性能, 采用了施加静态强磁场削弱特定区域等离子体电子密度的方案, 开展多物理场时域建模分析方法研究. 首先利用具有谱精度的时域谱元(SETD)法对静态强磁场作用下等离子鞘套中北斗天线周围电子浓度的削减程度进行分析, 再利用共形时域有限差分(CFDTD)方法对临近空间高超声速飞行器的北斗天线辐射特性进行建模仿真分析. 本文所提方法预测了真实流场空间中静态强磁场对飞行器中北斗天线辐射性能的影响. 仿真结果表明, 施加静态强磁场能够对电子浓度起到“吹散”作用, 从而提升等离子鞘套中北斗天线的辐射性能, 为减弱等离子鞘套对临近空间高超声速飞行器中北斗天线辐射性能的影响提供理论指导.
    To enhance the radiation performance of the Beidou antenna in the near-space hypersonic vehicle, the static strong magnetic field is used to weaken the electron density in plasma surrounding the antenna. In order to demonstrate the effect of this program, a time-domain multi-physical method is proposed. In the proposed method, what is first analyzed is the reduction of electron concentration in plasma sheath by static strong magnetic field with the spectral element time domain (SETD) method, which has spectral accuracy. Then, the electron density after mitigation is extracted to replace the original electron concentration around the antenna. Hence, the distribution of the manipulated plasma sheath can be obtained. Finally, the radiation characteristics of BeiDou antenna installed in the vehicle are analyzed by the conformal finite difference time domain (CFDTD) method. The simulation results exhibit radiation patterns under different conditions. With the plasma sheath, the radiated electromagnetic waves are greatly attenuated, which will significantly affect the transmission of communication signals. Importantly, the radiation patterns are effectively improved with the external static magnetic field, confirming that it provides an effective tool to mitigate the influence of plasma sheath on the radiation performance of antenna in hypersonic vehicle.
      通信作者: 包华广, hgbao@njust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62025109, 62001231, 61931021)、电磁环境效应国家重点实验室基金(批准号: JCKYS2019DC4)、中国空间技术研究院重点实验室基金(批准号: 2020SSFNKLSMT-12)和江苏省自然科学基金(批准号: BK20200467)资助的课题
      Corresponding author: Bao Hua-Guang, hgbao@njust.edu.cn
    • Funds: Project supported by the Natural Science Foundation of China (Grant Nos. 62025109, 62001231, 61931021), the National Key Laboratory on Electromagnetic Environment Effects, China (Grant No. JCKYS2019DC4), the National Key Laboratory of Science and Technology on Space Microwave, China (Grant No. 2020SSFNKLSMT-12), and the Jiangsu Province Natural Science Foundation, China (Grant No. BK20200467).
    [1]

    Rybak J P, Churchill R J 1971 IEEE Trans. Aerosp. Electron. Syst. 7 879

    [2]

    Bai B, Li X P, Xu J, Liu Y M 2015 IEEE Trans. Plasma Sci. 43 2588Google Scholar

    [3]

    Xu J, Bai B, Dong C X, Zhu Y T, Dong Y Y, Zhao G Q 2017 IEEE Antennas Wirel. Propag. Lett. 16 1056Google Scholar

    [4]

    杨敏, 李小平, 刘彦明, 石磊, 谢楷 2014 物理学报 63 085201Google Scholar

    Yang M, Li X P, Liu Y M, Shi L, Xie K 2014 Acta Phys. Sin. 63 085201Google Scholar

    [5]

    王仁寿 1995 遥测遥控 5 10

    Wang R S 1995 J. Telemetry, Tracking Command 5 10

    [6]

    王家胜, 杨显强, 经姚翔, 游晟 2014 航天器工程 23 6Google Scholar

    Wang J S, Yang X Q, Jing Y X, You S 2014 Spacecr. Eng. 23 6Google Scholar

    [7]

    张凤友 1986 宇航材料工艺 5 47

    Zhang F Y 1986 Aerosp. Mater. Technol. 5 47

    [8]

    陈伟, 郭立新, 李江挺, 淡荔 2017 物理学报 66 084102Google Scholar

    Chen W, Guo L X, Li J T, Dan L 2017 Acta Phys. Sin. 66 084102Google Scholar

    [9]

    Chen K, Xu D G, Li J N, Zhong K, Yao J Q 2021 Results Phys. 24 104109Google Scholar

    [10]

    Podolsky V, Semnani A, Macheret S O, 2020 IEEE Trans. Plasma Sci. 48 3524Google Scholar

    [11]

    Liu J F, Ma H Y, Jiao Z H, Bai G H, Xi X 2020 IEEE Trans. Plasma Sci. 48 2706Google Scholar

    [12]

    Lemmer K M, Gallimore A D, Smith T B, Davis C N, Peterson P 2009 J. Spacecr. Rockets 46 1100Google Scholar

    [13]

    Sun Y F, Dang F C, Yuan C W, He J T, Zhang Q, Zhao X H 2020 IEEE Trans. Antennas Propag. 68 7580Google Scholar

    [14]

    Kim M, Boyd I D 2010 J. Spacecr. Rockets 47 29Google Scholar

    [15]

    邹秀 2006 物理学报 55 1907Google Scholar

    Zou X 2006 Acta Phys. Sin. 55 1907Google Scholar

    [16]

    Cao Y, Fatemi V, Fang S A, Watanabe K J, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [17]

    Qian C, Ding D Z, Fan Z H, Chen R S 2015 Phys. Plasmas 22 032111Google Scholar

    [18]

    Yan S, Greenwood A D, Jin J M 2018 IEEE Trans. Antennas Propag. 66 1882Google Scholar

    [19]

    刘东林 2015 博士学位论文 (西安: 西安电子科技大学)

    Liu D L 2015 Ph. D. Dissertation (Xi’an: Xidian Univeristy) (in Chinese)

    [20]

    Liu Q H, Cheng C, Massoud H Z 2004 IEEE T COMPUT AID D 23 1200Google Scholar

    [21]

    Bao H G, Ding D Z, Chen R S 2017 IEEE Antennas Wirel. Propag. Lett. 16 2244Google Scholar

    [22]

    丁大志, 成爱强, 王林, 张天成, 陈如山 2020 电波科学学报“计算电磁学”专刊邀稿 35 93

    Ding D Z, Cheng A Q, Wang L, Zhang T C, Chen R S 2020 Chin. J. Radio Sci. 35 93

    [23]

    Wang L, Ding D Z, Chen R S, Cui W Z, Wang R 2020 IEEE Trans. Antennas Propag. 68 4894Google Scholar

    [24]

    Zhang T C, Bao H G, Ding D Z, Chen R S 2021 Phys. Plasmas 28 083504Google Scholar

    [25]

    Wang L, Bao H G, Ding D Z, Chen R S 2021 Phys. Plasmas 28 093512Google Scholar

    [26]

    葛德彪, 闫玉波 2005 电磁波时域有限差分方法 (第二版) (西安: 西电电子科技大学出版社) 第14页

    Gei D B, Yan Y B 2005 Finite-Difference Time-Domain Method for Electromagnetic Waves (Vol. 2) (Xi’an: Xidian University Press) p14 (in Chinese)

    [27]

    Sarkar D, Srivastava K V 2018 IEEE Trans. Antennas Propag. 66 3798Google Scholar

    [28]

    Bao H G, Chen R S 2017 IEEE Trans. Antennas Propag. 65 1490Google Scholar

    [29]

    Cox S M, Matthews P C 2002 J. Comput. Phys. 176 430Google Scholar

    [30]

    张兵, 韩景龙 2011 航空学报 32 400

    Zhang B, Han J L 2011 Acta Aeronaut. et Astronaut. Sin. 32 400

    [31]

    Wu S Q, Liu S B, Guo Z 2010 2010 International Conference on Microwave and Millimeter Wave Technology Chengdu, China, May 8–11, 2020 p8

  • 图 1  静态强磁场对带电粒子作用示意

    Fig. 1.  The effect of static magnetic field on charged particles.

    图 2  等离子体流场仿真边界条件设置

    Fig. 2.  Boundary condition of flow field.

    图 3  施加强磁场的临近空间高超声速飞行器示意图

    Fig. 3.  Schematic diagram of the hypersonic vehicle with static magnetic field.

    图 4  施加0.1 T静磁场后稳定的电子密度分布情况

    Fig. 4.  Distribution of electron density with static magnetic field of 0.1 T.

    图 5  飞行器加载北斗天线模型示意

    Fig. 5.  Schematic diagram of vehicle with Beidou antenna.

    图 6  2.492 GHz的辐射方向图比较 (a) E面; (b) H

    Fig. 6.  Comparisons of radiation patterns of 2.492 GHz: (a) E plane; (b) H plane.

    图 7  施加0.5 T磁场前后的电子浓度分布 (a) 30 km, 10Ma; (b) 30 km, 12Ma; (c) 35 km, 10Ma

    Fig. 7.  Distribution of electron density with or without magnetic field of 0.5 T in different situations: (a) 30 km, 10Ma; (b) 30 km, 12Ma; (c) 35 km, 10Ma. .

    图 8  不同情况下的辐射方向图比较 (a) 30 km, 10Ma; (b) 30 km, 12Ma; (c) 35 km, 10Ma

    Fig. 8.  Comparisons of radiation patterns in different situations: (a) 30 km, 10Ma; (b) 30 km, 12Ma; (c) 35 km, 10Ma.

  • [1]

    Rybak J P, Churchill R J 1971 IEEE Trans. Aerosp. Electron. Syst. 7 879

    [2]

    Bai B, Li X P, Xu J, Liu Y M 2015 IEEE Trans. Plasma Sci. 43 2588Google Scholar

    [3]

    Xu J, Bai B, Dong C X, Zhu Y T, Dong Y Y, Zhao G Q 2017 IEEE Antennas Wirel. Propag. Lett. 16 1056Google Scholar

    [4]

    杨敏, 李小平, 刘彦明, 石磊, 谢楷 2014 物理学报 63 085201Google Scholar

    Yang M, Li X P, Liu Y M, Shi L, Xie K 2014 Acta Phys. Sin. 63 085201Google Scholar

    [5]

    王仁寿 1995 遥测遥控 5 10

    Wang R S 1995 J. Telemetry, Tracking Command 5 10

    [6]

    王家胜, 杨显强, 经姚翔, 游晟 2014 航天器工程 23 6Google Scholar

    Wang J S, Yang X Q, Jing Y X, You S 2014 Spacecr. Eng. 23 6Google Scholar

    [7]

    张凤友 1986 宇航材料工艺 5 47

    Zhang F Y 1986 Aerosp. Mater. Technol. 5 47

    [8]

    陈伟, 郭立新, 李江挺, 淡荔 2017 物理学报 66 084102Google Scholar

    Chen W, Guo L X, Li J T, Dan L 2017 Acta Phys. Sin. 66 084102Google Scholar

    [9]

    Chen K, Xu D G, Li J N, Zhong K, Yao J Q 2021 Results Phys. 24 104109Google Scholar

    [10]

    Podolsky V, Semnani A, Macheret S O, 2020 IEEE Trans. Plasma Sci. 48 3524Google Scholar

    [11]

    Liu J F, Ma H Y, Jiao Z H, Bai G H, Xi X 2020 IEEE Trans. Plasma Sci. 48 2706Google Scholar

    [12]

    Lemmer K M, Gallimore A D, Smith T B, Davis C N, Peterson P 2009 J. Spacecr. Rockets 46 1100Google Scholar

    [13]

    Sun Y F, Dang F C, Yuan C W, He J T, Zhang Q, Zhao X H 2020 IEEE Trans. Antennas Propag. 68 7580Google Scholar

    [14]

    Kim M, Boyd I D 2010 J. Spacecr. Rockets 47 29Google Scholar

    [15]

    邹秀 2006 物理学报 55 1907Google Scholar

    Zou X 2006 Acta Phys. Sin. 55 1907Google Scholar

    [16]

    Cao Y, Fatemi V, Fang S A, Watanabe K J, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [17]

    Qian C, Ding D Z, Fan Z H, Chen R S 2015 Phys. Plasmas 22 032111Google Scholar

    [18]

    Yan S, Greenwood A D, Jin J M 2018 IEEE Trans. Antennas Propag. 66 1882Google Scholar

    [19]

    刘东林 2015 博士学位论文 (西安: 西安电子科技大学)

    Liu D L 2015 Ph. D. Dissertation (Xi’an: Xidian Univeristy) (in Chinese)

    [20]

    Liu Q H, Cheng C, Massoud H Z 2004 IEEE T COMPUT AID D 23 1200Google Scholar

    [21]

    Bao H G, Ding D Z, Chen R S 2017 IEEE Antennas Wirel. Propag. Lett. 16 2244Google Scholar

    [22]

    丁大志, 成爱强, 王林, 张天成, 陈如山 2020 电波科学学报“计算电磁学”专刊邀稿 35 93

    Ding D Z, Cheng A Q, Wang L, Zhang T C, Chen R S 2020 Chin. J. Radio Sci. 35 93

    [23]

    Wang L, Ding D Z, Chen R S, Cui W Z, Wang R 2020 IEEE Trans. Antennas Propag. 68 4894Google Scholar

    [24]

    Zhang T C, Bao H G, Ding D Z, Chen R S 2021 Phys. Plasmas 28 083504Google Scholar

    [25]

    Wang L, Bao H G, Ding D Z, Chen R S 2021 Phys. Plasmas 28 093512Google Scholar

    [26]

    葛德彪, 闫玉波 2005 电磁波时域有限差分方法 (第二版) (西安: 西电电子科技大学出版社) 第14页

    Gei D B, Yan Y B 2005 Finite-Difference Time-Domain Method for Electromagnetic Waves (Vol. 2) (Xi’an: Xidian University Press) p14 (in Chinese)

    [27]

    Sarkar D, Srivastava K V 2018 IEEE Trans. Antennas Propag. 66 3798Google Scholar

    [28]

    Bao H G, Chen R S 2017 IEEE Trans. Antennas Propag. 65 1490Google Scholar

    [29]

    Cox S M, Matthews P C 2002 J. Comput. Phys. 176 430Google Scholar

    [30]

    张兵, 韩景龙 2011 航空学报 32 400

    Zhang B, Han J L 2011 Acta Aeronaut. et Astronaut. Sin. 32 400

    [31]

    Wu S Q, Liu S B, Guo Z 2010 2010 International Conference on Microwave and Millimeter Wave Technology Chengdu, China, May 8–11, 2020 p8

  • [1] 陈龙, 檀聪琦, 崔作君, 段萍, 安宇豪, 陈俊宇, 周丽娜. 电子非广延分布的多离子磁化等离子体鞘层特性. 物理学报, 2024, 73(5): 055201. doi: 10.7498/aps.73.20231452
    [2] 张东荷雨, 刘金宝, 付洋洋. 激光维持等离子体多物理场耦合模型与仿真. 物理学报, 2024, 73(2): 025201. doi: 10.7498/aps.73.20231056
    [3] 徐子原, 周辉, 刘光翰, 高中亮, 丁丽, 雷凡. 三维行波磁场对等离子体鞘套密度的调控作用. 物理学报, 2024, 73(17): 175201. doi: 10.7498/aps.73.20240877
    [4] 杨敏, 王佳明, 齐凯旋, 李小平, 谢楷, 张琼杰, 刘浩岩, 董鹏. 等离子体鞘套宽带微波反射诊断方法. 物理学报, 2022, 71(23): 235201. doi: 10.7498/aps.71.20221179
    [5] 赵佳羿, 胡鹏, 王雨林, 王金灿, 唐桧波, 胡广月. 用于激光等离子体中脉冲强磁场产生的电感耦合线圈. 物理学报, 2021, 70(16): 165202. doi: 10.7498/aps.70.20210441
    [6] 崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长. 外扩型电磁场控制筒形阴极内等离子体放电输运特性的仿真研究. 物理学报, 2019, 68(19): 195204. doi: 10.7498/aps.68.20190583
    [7] 吕春静, 韩一平. 湍流等离子体鞘套中高斯光束的传播特性分析. 物理学报, 2019, 68(9): 094201. doi: 10.7498/aps.68.20182169
    [8] 陈伟, 郭立新, 李江挺, 淡荔. 时空非均匀等离子体鞘套中太赫兹波的传播特性. 物理学报, 2017, 66(8): 084102. doi: 10.7498/aps.66.084102
    [9] 薄勇, 赵青, 罗先刚, 刘颖, 陈禹旭, 刘建卫. 电磁波在非均匀磁化的等离子体鞘套中传输特性研究. 物理学报, 2016, 65(3): 035201. doi: 10.7498/aps.65.035201
    [10] 李佳佳, 吴莹, 独盟盟, 刘伟明. 电磁辐射诱发神经元放电节律转迁的动力学行为研究. 物理学报, 2015, 64(3): 030503. doi: 10.7498/aps.64.030503
    [11] 刘智惟, 包为民, 李小平, 刘东林. 一种考虑电磁波驱动效应的等离子碰撞频率分段计算方法. 物理学报, 2014, 63(23): 235201. doi: 10.7498/aps.63.235201
    [12] 邱明辉, 刘惠平, 邹秀. 斜磁场作用下碰撞电负性等离子体鞘层的玻姆判据. 物理学报, 2012, 61(15): 155204. doi: 10.7498/aps.61.155204
    [13] 邹秀, 籍延坤, 邹滨雁. 斜磁场中碰撞等离子体鞘层的玻姆判据. 物理学报, 2010, 59(3): 1902-1906. doi: 10.7498/aps.59.1902
    [14] 邹 秀. 斜磁场作用下的射频等离子体平板鞘层结构. 物理学报, 2006, 55(4): 1907-1913. doi: 10.7498/aps.55.1907
    [15] 邹 秀, 刘金远, 王正汹, 宫 野, 刘 悦, 王晓钢. 磁场中等离子体鞘层的结构. 物理学报, 2004, 53(10): 3409-3412. doi: 10.7498/aps.53.3409
    [16] 陈 莹, 邱锡钧. 细胞骨架微管中水的电偶极集体辐射. 物理学报, 2003, 52(6): 1554-1560. doi: 10.7498/aps.52.1554
    [17] 唐昌建, 钱尚介. 离子通道回旋电子注受激辐射非线性理论. 物理学报, 2002, 51(6): 1256-1261. doi: 10.7498/aps.51.1256
    [18] 韩谷昌, 韩汉民, 王智河, 王顺喜, 刘小宁, 刘智民, 奚正平, 周廉. 银包套Bi(2223)带材临界电流密度的低温强磁场特性. 物理学报, 1995, 44(8): 1274-1278. doi: 10.7498/aps.44.1274
    [19] 胡希伟, 霍裕平, 陈正雄, 张澄. 等离子体在均匀强磁场中的横向输运系数. 物理学报, 1981, 30(3): 315-324. doi: 10.7498/aps.30.315
    [20] 王之江. 电磁辐射的相干性. 物理学报, 1963, 19(5): 320-335. doi: 10.7498/aps.19.320
计量
  • 文章访问数:  4139
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-04
  • 修回日期:  2021-12-29
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-20

/

返回文章
返回