-
Laser-driven flyer has been studied for decades as it promises to possess many applications such as in measuring the equation of state (EOS) under ultrahigh pressure, investigating the material dynamic properties under high strain rate, simulating the high-speed impact for aircraft protection, and igniting explosives. However, the planarity and integrity of flyers are determined by indirect velocity lnterferometer system for any reflector (VISAR) or witness slab results due to its high speed and small dimension. For further and wide applications, it is very important to obtain direct experimental proof of the flyer gesture and configuration. Thus, the acceleration and gesture investigation of aluminum flyer driven by laser plasma are studied on Xingguang-III laser facility. The X-ray radiography is achieved by a picosecond laser irradiating the copper wire target. The shadowgraph of flyer and plasma are realized by the incidence of a bunch of infrared laser through the flyer flight path. In additon, photon Doppler velocimetry is employed to measure the flyer velocity simultaneously. The radiography, shadowgraph and velocity of typical small aluminum flyer are obtained. By optimizing the thickness of both CH ablation layer and vacuum gap, the flyer is slowly accelerated via consecutive stress wave produced by plasma colliding. The aluminum flyer has a thickness of 20 μm and diameter of about 500 μm. The whole flyer remains the integrated shape after a great angle of rotation due to uneven plasma loading. The flight distance is about 400 μm, giving an average velocity of 2.2 km/s. The planarity of the flyer is good except a little bend on the two sides due to side rarefaction of plasma. The study verifies that the laser plasma collision can generate a sub-millimeter-diameter metal flyer with integrated shape and a velocity of several kilo-meters per second, showing that it possesses the promising applications in measuring the EOS and igniting explosive .
-
Keywords:
- laser-driven flyer /
- plasma jet /
- quasi-isentropic loading /
- high-energy X-ray backlight radiography
[1] Edwards J, Lorenz K T, Remington B A, Pollaine S, Colvin J, Braun D, Lasinski B F, Reisman D, McNaney J M, Greenough J A, Wallace R, Louis H, Kalantar D 2004 Phys. Rev. Lett. 92 075002Google Scholar
[2] O'Keefe J D, Ahrens T J 1993 J Geophys. Res. 98 17011Google Scholar
[3] Smith R F, Eggert J H, Saculla M D, Jankowski A F, Bastea M, Hicks D G, Collins G W 2008 Phys. Rev. Lett. 101 065701Google Scholar
[4] Smith R F, Eggert J H, Swift D C, Wang J, Duffy T S, Braun D G, Rudd R E, Reisman D B, Davis J P, Knudson M D, Collins G W 2013 J. Appl. Phys. 114 223507Google Scholar
[5] Eggert J H, Bastea M, Braun D, Fujino D, Rygg R, Smith R, Hawreliak J, Hicks D G, Collins G 2010 Laser-induced Ramp Compression of Tantalum and Iron to Over 300 GPa: EOS and X-ray Diffraction (Livermore: Lawrence Livermore National Laboratory) LLNL-CONF-425256
[6] Fratanduono D E, Smith R F, Boehly T R, Eggert J H, Braun D G, Collins G W 2012 Rev. Sci. Instrum. 83 073504Google Scholar
[7] Shu H, Huang X, Ye J, Jia G, Wu J, Fu S 2017 Laser Part. Beams 35 145Google Scholar
[8] 税敏, 储根柏, 席涛, 赵永强, 范伟, 何卫华, 单连强, 朱斌, 辛建婷, 谷渝秋 2017 物理学报 66 064703Google Scholar
Shui M, Chu G B, Xi T, Zhao Y Q, Fan W, He W H, Shan L Q, Zhu B, Xin J T, Gu Y Q 2017 Acta Phys. Sin. 66 064703Google Scholar
[9] Watson S, Field J E 2000 J Appl. Phys. 88 3859Google Scholar
[10] Gu Z W, Sun C W, Zhao J H, Zhang N 2004 J Appl. Phys. 96 344Google Scholar
[11] Cogan S, Shirman E, Haas Y 2005 J Appl. Phys. 97 113508Google Scholar
[12] Paisley D L, Luo S N, Greenfield S R, Koskelo A C 2008 Rev. Sci. Instrum. 79 023902Google Scholar
[13] Curtis A D, Banishev A A, Shaw W L, Dlott D D 2014 Rev. Sci. Instrum. 85 043908Google Scholar
[14] 谷卓伟, 张兴卫, 孙承纬 2008 高压物理学报 22 103Google Scholar
Gu Z W, Zhang X W, Sun C W 2008 Chin. J. High Pressure Phys. 22 103Google Scholar
[15] 周维民, 于明海, 张天奎, 田超, 单连强, 吴玉迟, 张锋, 毕碧, 储根柏, 税敏, 辛建婷, 曹磊峰, 谷渝秋, 朱少平, 景峰, 张保汉 2020 中国激光 47 0500010Google Scholar
Zhou W M, Yu M H, Zhang T K, Tian C, Shan L Q, Wu Y C, Zhang F, Bi B, Chu G B, Shui M, Xin J T, Cao L F, Gu Y Q, Zhu S P, Jing F, Zhang B H 2020 Chin. J. Lasers 47 0500010Google Scholar
[16] Chu G B, Xi T, Yu M H, Fan W, Zhao Y Q, Shui M, He W H, Zhang T K, Zhang B, Wu Y C, Zhou W M, Cao L F, Xin J T, Gu Y Q 2018 Rev. Sci. Instrum. 89 115106Google Scholar
[17] Xin J T, He A M, Liu W B, Chu G B, Yu M H, Fan W, Wu Y C, Xi T, Shui M, Zhao Y Q, Wang P, Gu Y Q, He W H 2019 J Micromech. Microeng. 29 095011Google Scholar
[18] 储根柏, 于明海, 税敏, 范伟, 席涛, 景龙飞, 赵永强, 吴玉迟, 辛建婷, 周维民 2020 物理学报 69 026201Google Scholar
Chu G B, Yu M H, Shui M, Fan W, Xi Tao, Jing L F, Zhao Y Q, Wu Y C, Xin J T, Zhou W M 2020 Acta Phys. Sin. 69 026201Google Scholar
[19] 税敏, 于明海, 储根柏, 席涛, 范伟, 赵永强, 辛建婷, 何卫华, 谷渝秋 2019 物理学报 68 076201Google Scholar
Shui M, Yu M H, Chu G B, Xi T, Fan W, Zhao Y Q, Xin J T, He W H, Gu Y Q 2019 Acta Phys. Sin. 68 076201Google Scholar
[20] Xi T, Chu G B, Zhu B, Shui M, Zhao Y Q, Fan W, Gu Y Q, Xin J T, He W H 2019 AIP adv. 9 075220Google Scholar
[21] 单连强, 高宇林, 辛建婷, 王峰, 彭晓世, 徐涛, 周维民, 赵宗清, 曹磊峰, 吴玉迟, 朱斌, 刘红杰, 刘东晓, 税敏, 何颖玲, 詹夏宇, 谷渝秋 2012 物理学报 61 135204Google Scholar
Shan L Q, Gao Y L, Xin J T, Wang F, Peng X S, Xu T, Zhou W M, Zhao Z Q, Cao L F, Wu Y C, Zhu B, Liu H J, Liu D X, Shui M, He Y L, Zhan X Y, Gu Y Q 2012 Acta Phys. Sin. 61 135204Google Scholar
-
表 1 实验结果统计
Table 1. Experimental parameter above the shocked melting point.
序号 发次号 实验内容 激光能量 ps束照相延时/ns 1 20210524123 静态照相标定 ps: 92 J — 2 20200902010 铝飞片产生及姿态诊断 ns: 50 J, ps: 46 J, 346 3 20210524125 铝飞片产生及姿态诊断 ns: 46 J, ps: 93 J, 350 4 20210527134 铝飞片产生及姿态诊断 ns: 47 J, ps: 37 J 350 -
[1] Edwards J, Lorenz K T, Remington B A, Pollaine S, Colvin J, Braun D, Lasinski B F, Reisman D, McNaney J M, Greenough J A, Wallace R, Louis H, Kalantar D 2004 Phys. Rev. Lett. 92 075002Google Scholar
[2] O'Keefe J D, Ahrens T J 1993 J Geophys. Res. 98 17011Google Scholar
[3] Smith R F, Eggert J H, Saculla M D, Jankowski A F, Bastea M, Hicks D G, Collins G W 2008 Phys. Rev. Lett. 101 065701Google Scholar
[4] Smith R F, Eggert J H, Swift D C, Wang J, Duffy T S, Braun D G, Rudd R E, Reisman D B, Davis J P, Knudson M D, Collins G W 2013 J. Appl. Phys. 114 223507Google Scholar
[5] Eggert J H, Bastea M, Braun D, Fujino D, Rygg R, Smith R, Hawreliak J, Hicks D G, Collins G 2010 Laser-induced Ramp Compression of Tantalum and Iron to Over 300 GPa: EOS and X-ray Diffraction (Livermore: Lawrence Livermore National Laboratory) LLNL-CONF-425256
[6] Fratanduono D E, Smith R F, Boehly T R, Eggert J H, Braun D G, Collins G W 2012 Rev. Sci. Instrum. 83 073504Google Scholar
[7] Shu H, Huang X, Ye J, Jia G, Wu J, Fu S 2017 Laser Part. Beams 35 145Google Scholar
[8] 税敏, 储根柏, 席涛, 赵永强, 范伟, 何卫华, 单连强, 朱斌, 辛建婷, 谷渝秋 2017 物理学报 66 064703Google Scholar
Shui M, Chu G B, Xi T, Zhao Y Q, Fan W, He W H, Shan L Q, Zhu B, Xin J T, Gu Y Q 2017 Acta Phys. Sin. 66 064703Google Scholar
[9] Watson S, Field J E 2000 J Appl. Phys. 88 3859Google Scholar
[10] Gu Z W, Sun C W, Zhao J H, Zhang N 2004 J Appl. Phys. 96 344Google Scholar
[11] Cogan S, Shirman E, Haas Y 2005 J Appl. Phys. 97 113508Google Scholar
[12] Paisley D L, Luo S N, Greenfield S R, Koskelo A C 2008 Rev. Sci. Instrum. 79 023902Google Scholar
[13] Curtis A D, Banishev A A, Shaw W L, Dlott D D 2014 Rev. Sci. Instrum. 85 043908Google Scholar
[14] 谷卓伟, 张兴卫, 孙承纬 2008 高压物理学报 22 103Google Scholar
Gu Z W, Zhang X W, Sun C W 2008 Chin. J. High Pressure Phys. 22 103Google Scholar
[15] 周维民, 于明海, 张天奎, 田超, 单连强, 吴玉迟, 张锋, 毕碧, 储根柏, 税敏, 辛建婷, 曹磊峰, 谷渝秋, 朱少平, 景峰, 张保汉 2020 中国激光 47 0500010Google Scholar
Zhou W M, Yu M H, Zhang T K, Tian C, Shan L Q, Wu Y C, Zhang F, Bi B, Chu G B, Shui M, Xin J T, Cao L F, Gu Y Q, Zhu S P, Jing F, Zhang B H 2020 Chin. J. Lasers 47 0500010Google Scholar
[16] Chu G B, Xi T, Yu M H, Fan W, Zhao Y Q, Shui M, He W H, Zhang T K, Zhang B, Wu Y C, Zhou W M, Cao L F, Xin J T, Gu Y Q 2018 Rev. Sci. Instrum. 89 115106Google Scholar
[17] Xin J T, He A M, Liu W B, Chu G B, Yu M H, Fan W, Wu Y C, Xi T, Shui M, Zhao Y Q, Wang P, Gu Y Q, He W H 2019 J Micromech. Microeng. 29 095011Google Scholar
[18] 储根柏, 于明海, 税敏, 范伟, 席涛, 景龙飞, 赵永强, 吴玉迟, 辛建婷, 周维民 2020 物理学报 69 026201Google Scholar
Chu G B, Yu M H, Shui M, Fan W, Xi Tao, Jing L F, Zhao Y Q, Wu Y C, Xin J T, Zhou W M 2020 Acta Phys. Sin. 69 026201Google Scholar
[19] 税敏, 于明海, 储根柏, 席涛, 范伟, 赵永强, 辛建婷, 何卫华, 谷渝秋 2019 物理学报 68 076201Google Scholar
Shui M, Yu M H, Chu G B, Xi T, Fan W, Zhao Y Q, Xin J T, He W H, Gu Y Q 2019 Acta Phys. Sin. 68 076201Google Scholar
[20] Xi T, Chu G B, Zhu B, Shui M, Zhao Y Q, Fan W, Gu Y Q, Xin J T, He W H 2019 AIP adv. 9 075220Google Scholar
[21] 单连强, 高宇林, 辛建婷, 王峰, 彭晓世, 徐涛, 周维民, 赵宗清, 曹磊峰, 吴玉迟, 朱斌, 刘红杰, 刘东晓, 税敏, 何颖玲, 詹夏宇, 谷渝秋 2012 物理学报 61 135204Google Scholar
Shan L Q, Gao Y L, Xin J T, Wang F, Peng X S, Xu T, Zhou W M, Zhao Z Q, Cao L F, Wu Y C, Zhu B, Liu H J, Liu D X, Shui M, He Y L, Zhan X Y, Gu Y Q 2012 Acta Phys. Sin. 61 135204Google Scholar
计量
- 文章访问数: 4329
- PDF下载量: 86
- 被引次数: 0