-
L12-Al3Sc纳米析出相的热稳定性对于Al-Sc合金的耐热性意义重大. 不同溶质原子在L12-Al3Sc界面的偏析行为可能对Al-Sc合金中L12-Al3Sc析出相的热稳定性造成影响. 本文针对过渡族微合金化元素Cu和Ti的L12-Al3Sc/Al界面偏析, 开展第一性原理能量学计算研究. 结果表明, Cu和 Ti均倾向于以替换方式偏析在界面Al侧, 但偏析驱动力和偏析占位有明显差异. 在给定温度下, 基体浓度对界面偏析量也有重要影响. 基体浓度越高, 偏析驱动力越大, 界面平衡偏析量或最大界面覆盖率越大. 温度为600 K、基体原子浓度为1%时, Ti对偏析界面的最大覆盖率可达80% (0.8 单原子层), 而Cu不超过4% (0.04 单原子层).Thermal stabilities of L12-Al3Sc nano-precipitates are critical for the thermotolerance of Al-Sc based alloys. Previous experiments have suggested that different alloying elements may have different segregation behaviors at the L12-Al3Sc/Al interface, which can exert different influences on the thermal stability of L12-Al3Sc nano-precipitates. To clarify the responsible mechanism from a quantitative approach, first-principles calculations of energetics are performed in this work, to investigate the segregation behaviors of transition-metal elements Cu and Ti at the L12-Al3Sc/Al interface. The results suggest that both Cu and Ti can segregate to the interface, and substitute Al or Sc sites on its Al side with different thermodynamic driving forces. Given a temperature, segregation amount is largely determined by the initial elemental concentration in the Al matrix. The higher the segregation driving force and the initial matrix concentration are, the higher the equilibrium segregation amount (or the maximum interfacial coverage) could be. With an initial matrix atomic concentration of 1%, the maximum interfacial coverage of Ti can reach up to 80% (0.8 monolayer layer (ML)) while that of Cu is less than 4% (0.04 ML) at T = 600 K.
-
Keywords:
- Al-Sc alloy /
- alloying elements /
- Al3Sc /
- interface segregation /
- first-principles
[1] Royset J, Ryum N 2005 Mater. Sci. Eng., A 396 409Google Scholar
[2] Kanresky R A, Dunand D C, Seidman D N 2009 Acta Mater. 57 4022Google Scholar
[3] Krug M E, Dunand D C, Seidman D N 2011 Acta Mater. 59 1700Google Scholar
[4] Fuller C B, Seidman D N 2005 Acta Mater. 53 5415Google Scholar
[5] Yoon K E, Noebe R D, Seidman D N 2007 Acta Mater. 55 1159Google Scholar
[6] Deschamps A, Lae L, Guyot P 2007 Acta Mater. 55 2775Google Scholar
[7] Jia Q, Rometsch P, Cao S, et al. 2018 Scr. Mater. 151 42Google Scholar
[8] Booth-Morrison C, Mao Z, Diaz M, et al. 2012 Acta Mater. 60 4740Google Scholar
[9] Vo N Q, Dunand D C, Seidman D N 2014 Acta Mater. 63 73Google Scholar
[10] Zhang C M, Xie P, Jiang Y, Zhan S, Ming W Q, Chen J H, Song K X, Zhang H 2021 Acta Metall. Sinica-Eng. Lett. 34 1277Google Scholar
[11] Zhang C M, Jiang Y, Cao F, Hu T, Wang Y, Yin D 2019 J. Mater. Sci. Technol. 35 930Google Scholar
[12] Marsha E D, David N, Seidman D N, David C D 2008 Acta Mater. 56 4369Google Scholar
[13] Van Dalen M E, Dunand D C, Seidman D N 2005 Acta Mater. 53 4225Google Scholar
[14] Gao Y H, Cao L F, Kuang J, Zhang J Y, Liu G, Sun J 2020 J. Mater. Sci. Technol. 37 38Google Scholar
[15] Dong W, Kresse G, Furthmüller J, et al. 1996 Phys. Rev. B 54 2157Google Scholar
[16] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[17] Leese J, Lord A E 1968 J. Appl. Phys. 39 3986Google Scholar
[18] Clouet E, Sanchez J M, Sigli C 2002 Phys. Rev. B 65 094105Google Scholar
[19] Jiang Y, Smith J R, Evans A G 2008 Appl. Phys. Lett. 92 141918Google Scholar
[20] Jiang Y, Xu C H, Lan G Q 2013 Trans. Nonferrous Met. Soc. China 23 180Google Scholar
[21] Chen Z G, Ringer S P, Zheng Z Q, Zhong J 2007 Mater. Sci. Forum. 546-549 629Google Scholar
[22] Kairy S K, Rouxel B, Dumbre J, Lamb J, Langan T J, Dorin T, Birbilis N 2019 Corrs. Sci. 158 108095Google Scholar
[23] McLean D 1957 Grain Boundaries in Metals (London: Oxford University Press) p116
-
图 2 基于实验位向关系, 弛豫计算确定的L12-Al3Sc/Al界面的能量最低结构. 其中红色虚线标记界面位置. 俯视图显示界面两侧最近邻原子层的配位关系为on-hollow型. 实心与空心球分别代表不同层(z = 0, 0.5)上的原子
Fig. 2. The lowest energy structure of L12-Al3Sc/Al obtained by relaxation calculation using the experimental interfacial orientation relation. Dashed red lines locate the interface. The on-hollow type of interfacial coordination is manifested in the top view. The solid and open balls denote atoms at different layers z = 0 , 0.5, respectively.
表 1 界面偏析前后Cu 和Ti原子的Bader电荷分析(单位: e/atom)
Table 1. The Bader charge analysis of Cu and Ti before and after interface segregation (unit: e/atom)
Inside bulk At interface Cu Ti Cu-Al Cu-Sc Ti-Al Ti-Sc Bader 11.73 3.378 11.773 11.687 3.328 3.288 Net change –0.730 +0.622 –0.773 –0.687 +0.627 +0.712 -
[1] Royset J, Ryum N 2005 Mater. Sci. Eng., A 396 409Google Scholar
[2] Kanresky R A, Dunand D C, Seidman D N 2009 Acta Mater. 57 4022Google Scholar
[3] Krug M E, Dunand D C, Seidman D N 2011 Acta Mater. 59 1700Google Scholar
[4] Fuller C B, Seidman D N 2005 Acta Mater. 53 5415Google Scholar
[5] Yoon K E, Noebe R D, Seidman D N 2007 Acta Mater. 55 1159Google Scholar
[6] Deschamps A, Lae L, Guyot P 2007 Acta Mater. 55 2775Google Scholar
[7] Jia Q, Rometsch P, Cao S, et al. 2018 Scr. Mater. 151 42Google Scholar
[8] Booth-Morrison C, Mao Z, Diaz M, et al. 2012 Acta Mater. 60 4740Google Scholar
[9] Vo N Q, Dunand D C, Seidman D N 2014 Acta Mater. 63 73Google Scholar
[10] Zhang C M, Xie P, Jiang Y, Zhan S, Ming W Q, Chen J H, Song K X, Zhang H 2021 Acta Metall. Sinica-Eng. Lett. 34 1277Google Scholar
[11] Zhang C M, Jiang Y, Cao F, Hu T, Wang Y, Yin D 2019 J. Mater. Sci. Technol. 35 930Google Scholar
[12] Marsha E D, David N, Seidman D N, David C D 2008 Acta Mater. 56 4369Google Scholar
[13] Van Dalen M E, Dunand D C, Seidman D N 2005 Acta Mater. 53 4225Google Scholar
[14] Gao Y H, Cao L F, Kuang J, Zhang J Y, Liu G, Sun J 2020 J. Mater. Sci. Technol. 37 38Google Scholar
[15] Dong W, Kresse G, Furthmüller J, et al. 1996 Phys. Rev. B 54 2157Google Scholar
[16] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[17] Leese J, Lord A E 1968 J. Appl. Phys. 39 3986Google Scholar
[18] Clouet E, Sanchez J M, Sigli C 2002 Phys. Rev. B 65 094105Google Scholar
[19] Jiang Y, Smith J R, Evans A G 2008 Appl. Phys. Lett. 92 141918Google Scholar
[20] Jiang Y, Xu C H, Lan G Q 2013 Trans. Nonferrous Met. Soc. China 23 180Google Scholar
[21] Chen Z G, Ringer S P, Zheng Z Q, Zhong J 2007 Mater. Sci. Forum. 546-549 629Google Scholar
[22] Kairy S K, Rouxel B, Dumbre J, Lamb J, Langan T J, Dorin T, Birbilis N 2019 Corrs. Sci. 158 108095Google Scholar
[23] McLean D 1957 Grain Boundaries in Metals (London: Oxford University Press) p116
计量
- 文章访问数: 4716
- PDF下载量: 93
- 被引次数: 0