搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

形貌可控的CsPbBr3钙钛矿纳米晶的制备及其形成动力学的原位光致发光研究

陈雪莲 巨博 焦琥珀 李燕 钟玉洁

引用本文:
Citation:

形貌可控的CsPbBr3钙钛矿纳米晶的制备及其形成动力学的原位光致发光研究

陈雪莲, 巨博, 焦琥珀, 李燕, 钟玉洁

Preparation of CsPbBr3 perovskite nanocrystals with controllable morphology and in-situ photoluminescence of formation kinetics

Chen Xue-Lian, Ju Bo, Jiao Hu-Po, Li Yan, Zhong Yu-Jie
PDF
HTML
导出引用
  • 通过添加不同比例的十二烷二酸(DDDA)配体, 在室温下采用配体辅助再沉淀法制备CsPbBr3钙钛矿纳米晶. 利用X射线衍射仪、透射电子显微镜、紫外分光光度计、荧光光谱仪等对纳米晶的相结构、微结构和光学性质进行了表征. 结果显示: 所有纳米晶产物均为立方相结构; 而纳米晶形貌会随着DDDA浓度的增加从纳米立方块逐渐转变为厚度均一的纳米片, 同时光致发光光谱从绿光区移至蓝光区. 结合实验室搭建的具有超高时间分辨率(约100 ms)的原位光致发光装置, 实时监测了不同形貌纳米晶在形成过程中光致发光光谱的演变. 结果表明: 未使用DDDA时前驱体经历了快速成核和尺寸分布聚焦生长后生成纳米立方块; DDDA的出现促进了纳米晶在形成早期生成各向异性的纳米片, 然而随着反应时间的延长, 具有不对称结构的纳米片会通过溶解-再结晶方式转变为热力学稳定的纳米立方块. 本工作对形貌可控的钙钛矿纳米晶的精准合成具有一定参考价值.
    Cesium-lead halide perovskite nanocrystals (CsPbX3 (X = Br, Cl, I) PNCs) have become ideal luminescent materials for wide color gamut display devices, white LED lighting and high-efficiency solar cells, due to adjustable energy band gap, high fluorescence quantum yield, narrow fluorescence emission peak, and ultra-high defect tolerance. The preparation of CsPbX3 PNCs with controllable size and morphology is a prerequisite for obtaining efficient and stable photovoltaic/photovoltaic devices. In this report, the CsPbBr3 PNCs with different shapes are prepared by adding different concentrations of dodecanedioic acid (DDDA) ligands at room temperature through using ligand-assisted reprecipitation method. Utilizing the X-ray diffractometer, transmission electron microscopy, ultraviolet spectrophotometer, fluorescence spectrometers (PL), the phase structure, microstructure and optical properties of the nanocrystals are investigated. The results show that the presence of DDDA ligands have no influence on the phase structure of nanocrystal products, they all present a cubic phase structure. Surprisingly, the morphology of the nanocrystals gradually transforms from nanocubes into nanoplatelets with ~5 layers in thickness as the concentration of DDDA increases. In addition, the PL spectrum shows a significant blue shift from 509 nm to 478 nm. By using the in-situ homemade PL device with ultra-high time resolution (~100 ms), the real-time monitoring PL spectra of nanocrystals in the formation process are measured. The results demonstrate that nanocrystals undergo rapid nucleation and focusing of size distribution growth to generate nanocubes in the absence of DDDA ligand. When the DDDA ligand is present, nanocrystals are mainly nanoplatelets in the early growth stage due to the decelerated reaction. As the reaction proceeds, nanocubes can emerge and grow gradually while the nanoplatelets disappear when the concentrations of DDDA ligands are 25% and 50%. As the concentration is further increased to 75%, almost nanoplatelets could be formed after the nucleation stage and growth stage. Unexpectedly, preformed nanoplatelets are unstable for the prolonged reaction time as a result of the high surface energy, and they will eventually transform into isotropic nanocubes through dissolution-recrystallization pathway, indicating that the process in the later stage is controlled mainly by thermodynamics. Our findings offer an efficient strategy to synthesize the perovskite nanocrystals with controllable size and morphology.
      通信作者: 陈雪莲, chenxl@xsyu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62104191)、陕西省重点研发计划(批准号: 2021GY-133)、西安交通大学金属材料强度国家重点实验室和西安石油大学研究生创新与实践能力培养计划(批准号: YCS19212058)资助的课题.
      Corresponding author: Chen Xue-Lian, chenxl@xsyu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62104191), the Key Research Foundation of Shanxi Province, China (Grant No. 2021GY-133), the State Key Laboratory of Metal Material Strength of Xi’an Jiaotong University, China, and the Postgraduate Innovation and Practical Ability Training Program of Xi’an Shiyou University, China (Grant No. YCS19212058).
    [1]

    Shamsi J, Urban A S, Imran M, De Trizio L, Manna L 2019 Chem. Rev. 119 3296Google Scholar

    [2]

    Akkerman Q A, D’Innocenzo V, Accornero S, Scarpellini A, Petrozza A, Prato M, Manna L 2015 J. Am. Chem. Soc. 137 10276Google Scholar

    [3]

    Kovalenko M V, Protesescu L, Bodnarchuk M I 2017 Science 358 745Google Scholar

    [4]

    Schmidt L, Pertegás A, Gonzalez-Carrero S, et al. 2014 J. Am. Chem. Soc. 136 850Google Scholar

    [5]

    Travis W, Glover E N K, Bronstein H, Scanlon D O, Palgrave R G 2016 Chem. Sci. 7 4548Google Scholar

    [6]

    Shi Z F, Li S, Li Y, et al. 2018 ACS Nano 12 1462Google Scholar

    [7]

    林月明, 巨博, 李燕, 陈雪莲 2021 物理学报 70 128803Google Scholar

    Lin M Y, Ju B, Li Y, Chen X L 2021 Acta Phys. Sin. 70 128803Google Scholar

    [8]

    Xu L M, Yuan S C, Zeng H B, Song J Z 2019 Mater. Today Nano 6 100036Google Scholar

    [9]

    Protesescu L, Yakunin S, Bodnarchuk M I, et al. 2015 Nano Lett. 15 3692Google Scholar

    [10]

    Li X M, Wu Y, Zhang S L, Cai B, Gu Y, Song J Z, Zeng H B 2016 Adv. Funct. Mater. 26 2435Google Scholar

    [11]

    De Roo J, Ibáñez M, Geiregat P, et al. 2016 ACS Nano 10 2071Google Scholar

    [12]

    Zhu F, Men L, Guo Y J, et al. 2015 ACS Nano 9 2948Google Scholar

    [13]

    Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V 2015 Nano Lett. 15 5635Google Scholar

    [14]

    Sun S B, Yuan D, Xu Y, Wang A F, Deng Z T 2016 ACS Nano 10 3648Google Scholar

    [15]

    Pan A Z, He B, Fan X Y, Liu Z K, Urban J J, Alivisatos A P, He L, Liu Y 2016 ACS Nano 10 7943Google Scholar

    [16]

    Shamsi J, Dang Z Y, Bianchini P, et al. 2016 J. Am. Chem. Soc. 138 7240Google Scholar

    [17]

    Bekenstein Y, Koscher B A, Eaton S W, Yang P D, Alivisatos A P 2015 J. Am. Chem. Soc. 137 16008Google Scholar

    [18]

    Akkerman Q A, Motti S G, Kandada A R S, et al. 2016 J. Am. Chem. Soc. 138 1010Google Scholar

    [19]

    Chen X L, Wei M, Jiang S, Förster S 2019 Langmuir 35 12130Google Scholar

    [20]

    Chen X L, Wang J G, Pan R J, Roth S, Förster S 2021 J. Phys. Chem. C 125 1087Google Scholar

    [21]

    Ng C K, Wang C, Jasieniak J J 2019 Langmuir 35 11609Google Scholar

    [22]

    Zhao J Y, Cao S N, Li Z, Ma N 2018 Chem. Mater. 30 6737Google Scholar

    [23]

    Sichert J A, Tong Y, Mutz N, et al. 2015 Nano Lett. 15 6521Google Scholar

    [24]

    Wang Y, Li X M, Sreejith S, Cao F, Wang Z, Stuparu M C, Zeng H B, Sun H D 2016 Adv. Mater. 28 10637Google Scholar

    [25]

    Huang H, Li Y X, Tong Y, et al. 2019 Angew. Chem. Int. Edit. 58 16558Google Scholar

    [26]

    Peng X G, Wickham J, Alivisatos A P 1998 J. Am. Chem. Soc. 120 5343Google Scholar

    [27]

    Qu L H, Yu W W, Peng X G 2004 Nano Lett. 4 465Google Scholar

    [28]

    Koolyk M, Amgar D, Aharon S, Etgar L 2016 Nanoscale 8 6403Google Scholar

    [29]

    Burlakov V M, Hassan Y, Danaie M, Snaith H J, Goriely A 2020 J. Phys. Chem. Lett. 11 6535Google Scholar

    [30]

    Ng C K, Deng H, Li H C, Yin W P, Alan T, Jasieniak J J 2021 J. Mater. Chem. C 9 313Google Scholar

    [31]

    Peng L C, Dutta A, Xie R G, Yang W S, Pradhan N 2018 ACS Energy Lett. 3 2014Google Scholar

  • 图 1  (a) DDDA的分子结构式; (b) 实验室搭建的原位光致发光(PL)装置图

    Fig. 1.  (a) Chemical structure of DDDA; (b) lab-based in-situ photoluminescence (PL) device.

    图 2  不同DDDA比例下所得CsPbBr3 PNCs的X射线衍射图

    Fig. 2.  X-ray diffraction patterns of CsPbBr3 PNCs synthesized with varying DDDA loadings.

    图 3  不同DDDA比例下所得CsPbBr3 PNCs的表面形貌表征结果和晶粒尺寸统计结果 (a) 0%; (b) 25%; (c) 50%; (d) 75%

    Fig. 3.  TEM images and the corresponding histograms of CsPbBr3 PNCs synthesized with varying DDDA loadings: (a) 0%; (b) 25%; (c) 50%; (d) 75%.

    图 4  不同DDDA比例下所得CsPbBr3 PNCs的吸收光谱(实线)和荧光光谱(虚线)(插图为365 nm紫外光照射下的纳米晶溶液照片)

    Fig. 4.  Absorption spectra (solid curves) and fluorescence spectra (dotted curves) of CsPbBr3 PNCs synthesized with varying DDDA loadings (Inserts are the photographs of PNCs solutions under 365 nm ultraviolet light illumination)

    图 5  不同DDDA比例下CsPbBr3 PNCs在20 s内的原位PL图(插图为其在21—2400 s间的离线PL图) (a) 0%; (b) 25%; (c) 50%; (d) 75%

    Fig. 5.  In-situ PL measurements of CsPbBr3 PNCs synthesized within 20 s under different DDDA loadings, where the inset is the offline PL image during 21–2400 s: (a) 0%; (b) 25%; (c) 50%; (d) 75%.

    图 6  不同DDDA比例下CsPbBr3 PNCs的PL峰位、FWHM和峰强随反应时间的变化 (a), (d), (g), (j) 峰位; (b), (e), (h), (k) FWHM; (c), (f), (i), (l) 峰强

    Fig. 6.  Changes in PL peak position, FWHM, peak intensity of CsPbBr3 PNCs synthesized with varying DDDA loadings as a function of reaction time: (a), (d), (g), (j) Peak position; (b), (e), (h), (k) FWHM; (c), (f), (i), (l) peak intensity.

    图 7  CsPbBr3钙钛矿纳米晶的生长机理示意图

    Fig. 7.  Schematic presentation of growth mechanisms of CsPbBr3 PNCs.

  • [1]

    Shamsi J, Urban A S, Imran M, De Trizio L, Manna L 2019 Chem. Rev. 119 3296Google Scholar

    [2]

    Akkerman Q A, D’Innocenzo V, Accornero S, Scarpellini A, Petrozza A, Prato M, Manna L 2015 J. Am. Chem. Soc. 137 10276Google Scholar

    [3]

    Kovalenko M V, Protesescu L, Bodnarchuk M I 2017 Science 358 745Google Scholar

    [4]

    Schmidt L, Pertegás A, Gonzalez-Carrero S, et al. 2014 J. Am. Chem. Soc. 136 850Google Scholar

    [5]

    Travis W, Glover E N K, Bronstein H, Scanlon D O, Palgrave R G 2016 Chem. Sci. 7 4548Google Scholar

    [6]

    Shi Z F, Li S, Li Y, et al. 2018 ACS Nano 12 1462Google Scholar

    [7]

    林月明, 巨博, 李燕, 陈雪莲 2021 物理学报 70 128803Google Scholar

    Lin M Y, Ju B, Li Y, Chen X L 2021 Acta Phys. Sin. 70 128803Google Scholar

    [8]

    Xu L M, Yuan S C, Zeng H B, Song J Z 2019 Mater. Today Nano 6 100036Google Scholar

    [9]

    Protesescu L, Yakunin S, Bodnarchuk M I, et al. 2015 Nano Lett. 15 3692Google Scholar

    [10]

    Li X M, Wu Y, Zhang S L, Cai B, Gu Y, Song J Z, Zeng H B 2016 Adv. Funct. Mater. 26 2435Google Scholar

    [11]

    De Roo J, Ibáñez M, Geiregat P, et al. 2016 ACS Nano 10 2071Google Scholar

    [12]

    Zhu F, Men L, Guo Y J, et al. 2015 ACS Nano 9 2948Google Scholar

    [13]

    Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V 2015 Nano Lett. 15 5635Google Scholar

    [14]

    Sun S B, Yuan D, Xu Y, Wang A F, Deng Z T 2016 ACS Nano 10 3648Google Scholar

    [15]

    Pan A Z, He B, Fan X Y, Liu Z K, Urban J J, Alivisatos A P, He L, Liu Y 2016 ACS Nano 10 7943Google Scholar

    [16]

    Shamsi J, Dang Z Y, Bianchini P, et al. 2016 J. Am. Chem. Soc. 138 7240Google Scholar

    [17]

    Bekenstein Y, Koscher B A, Eaton S W, Yang P D, Alivisatos A P 2015 J. Am. Chem. Soc. 137 16008Google Scholar

    [18]

    Akkerman Q A, Motti S G, Kandada A R S, et al. 2016 J. Am. Chem. Soc. 138 1010Google Scholar

    [19]

    Chen X L, Wei M, Jiang S, Förster S 2019 Langmuir 35 12130Google Scholar

    [20]

    Chen X L, Wang J G, Pan R J, Roth S, Förster S 2021 J. Phys. Chem. C 125 1087Google Scholar

    [21]

    Ng C K, Wang C, Jasieniak J J 2019 Langmuir 35 11609Google Scholar

    [22]

    Zhao J Y, Cao S N, Li Z, Ma N 2018 Chem. Mater. 30 6737Google Scholar

    [23]

    Sichert J A, Tong Y, Mutz N, et al. 2015 Nano Lett. 15 6521Google Scholar

    [24]

    Wang Y, Li X M, Sreejith S, Cao F, Wang Z, Stuparu M C, Zeng H B, Sun H D 2016 Adv. Mater. 28 10637Google Scholar

    [25]

    Huang H, Li Y X, Tong Y, et al. 2019 Angew. Chem. Int. Edit. 58 16558Google Scholar

    [26]

    Peng X G, Wickham J, Alivisatos A P 1998 J. Am. Chem. Soc. 120 5343Google Scholar

    [27]

    Qu L H, Yu W W, Peng X G 2004 Nano Lett. 4 465Google Scholar

    [28]

    Koolyk M, Amgar D, Aharon S, Etgar L 2016 Nanoscale 8 6403Google Scholar

    [29]

    Burlakov V M, Hassan Y, Danaie M, Snaith H J, Goriely A 2020 J. Phys. Chem. Lett. 11 6535Google Scholar

    [30]

    Ng C K, Deng H, Li H C, Yin W P, Alan T, Jasieniak J J 2021 J. Mater. Chem. C 9 313Google Scholar

    [31]

    Peng L C, Dutta A, Xie R G, Yang W S, Pradhan N 2018 ACS Energy Lett. 3 2014Google Scholar

  • [1] 南瑞华, 武春燕, 刘腾, 罗家欣, 魏永星, 坚增运. 大尺寸高质量CH3NH3PbCl3钙钛矿单晶的生长机理、相转变与光学性能. 物理学报, 2023, 72(13): 138101. doi: 10.7498/aps.72.20230097
    [2] 陈雪莲, 焦琥珀, 申岩冰, 潘喜强. 高效稳定的CsPbBr3-Cs4PbBr6混合相钙钛矿纳米晶的制备及形成过程. 物理学报, 2023, 72(9): 097801. doi: 10.7498/aps.72.20230066
    [3] 王铄, 王文辉, 吕俊鹏, 倪振华. 化学气相沉积法制备大面积二维材料薄膜: 方法与机制. 物理学报, 2021, 70(2): 026802. doi: 10.7498/aps.70.20201398
    [4] 张晨, 张海玉, 郝会颖, 董敬敬, 邢杰, 刘昊, 石磊, 仲婷婷, 唐坤鹏, 徐翔. 氧化锌纳米棒形貌控制及其在钙钛矿太阳能电池中作为电子传输层的应用. 物理学报, 2020, 69(17): 178101. doi: 10.7498/aps.69.20200555
    [5] 樊钦华, 祖延清, 李璐, 代锦飞, 吴朝新. 发光铅卤钙钛矿纳米晶稳定性的研究进展. 物理学报, 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [6] 于鹏, 曹盛, 曾若生, 邹炳锁, 赵家龙. 金属离子掺杂提高全无机钙钛矿纳米晶发光性质的研究进展. 物理学报, 2020, 69(18): 187801. doi: 10.7498/aps.69.20200795
    [7] 蒋泵, 陈思良, 崔晓磊, 胡紫婷, 李跃, 张笑铮, 吴康敬, 王文贞, 蒋最敏, 洪峰, 马忠权, 赵磊, 徐飞, 徐闰, 詹义强. 混合型碘系钙钛矿薄膜变温光致发光特性的研究. 物理学报, 2019, 68(24): 246801. doi: 10.7498/aps.68.20191238
    [8] 黄伟, 李跃龙, 任慧志, 王鹏阳, 魏长春, 侯国付, 张德坤, 许盛之, 王广才, 赵颖, 袁明鉴, 张晓丹. 基于N型纳米晶硅氧电子注入层的钙钛矿发光二极管. 物理学报, 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [9] 王栋, 朱慧敏, 周忠敏, 王在伟, 吕思刘, 逄淑平, 崔光磊. 溶剂对钙钛矿薄膜形貌和结晶性的影响研究. 物理学报, 2015, 64(3): 038403. doi: 10.7498/aps.64.038403
    [10] 程赛, 吕惠民, 石振海, 崔静雅. 碳泡沫衬底上氮化铝纳米线的生长及其光致发光特性研究. 物理学报, 2012, 61(12): 126201. doi: 10.7498/aps.61.126201
    [11] 兰木, 向钢, 辜刚旭, 张析. 一种晶体表面水平纳米线生长机理的蒙特卡罗模拟研究. 物理学报, 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [12] 郑立仁, 黄柏标, 尉吉勇. SiO2纳米线簇、C-Si-O纳米球的制备及形貌、红外光谱和光致发光光谱研究. 物理学报, 2009, 58(12): 8612-8616. doi: 10.7498/aps.58.8612
    [13] 汪俊, 侯氢. 金属钛中氦团簇生长行为的分子动力学研究. 物理学报, 2009, 58(9): 6408-6412. doi: 10.7498/aps.58.6408
    [14] 郑立仁, 黄柏标, 尉吉勇. 不同气氛下SiOx纳米线的制备及形貌、红外、光致发光研究. 物理学报, 2009, 58(4): 2306-2312. doi: 10.7498/aps.58.2306
    [15] 胡林华, 戴俊, 刘伟庆, 王孔嘉, 戴松元. 锐钛矿相纳米TiO2晶体生长动力学及生长过程控制. 物理学报, 2009, 58(2): 1115-1119. doi: 10.7498/aps.58.1115
    [16] 方 祺, 王 庆, 赵哲龙, 董远达. Nb添加对Cu-Zr非晶合金玻璃转变和晶化动力学的影响. 物理学报, 2007, 56(3): 1292-1296. doi: 10.7498/aps.56.1292
    [17] 刘志文, 谷建峰, 孙成伟, 张庆瑜. 磁控溅射ZnO薄膜的成核机制及表面形貌演化动力学研究. 物理学报, 2006, 55(4): 1965-1973. doi: 10.7498/aps.55.1965
    [18] 陈志浩, 刘兰俊, 张 博, 席 赟, 王 强, 祖方遒. Zr-Al-Ni-Cu(Nb,Ti)大块非晶玻璃转变的动力学性质. 物理学报, 2004, 53(11): 3839-3844. doi: 10.7498/aps.53.3839
    [19] 连贵君, 李美亚, 康晋峰, 郭建东, 孙云峰, 熊光成. 钙钛矿结构氧化物薄膜 的外延生长. 物理学报, 1999, 48(10): 1917-1922. doi: 10.7498/aps.48.1917
    [20] 吕振东, 李 晴, 许继宗, 郑宝真, 徐仲英, 葛惟锟. 自组织生长InAs/GaAs量子点发光动力学研究. 物理学报, 1999, 48(4): 744-750. doi: 10.7498/aps.48.744
计量
  • 文章访问数:  9801
  • PDF下载量:  249
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-02
  • 修回日期:  2022-01-13
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-05-05

/

返回文章
返回