搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镁中位错和非晶作用机制的分子动力学模拟

张博佳 安敏荣 胡腾 韩腊

引用本文:
Citation:

镁中位错和非晶作用机制的分子动力学模拟

张博佳, 安敏荣, 胡腾, 韩腊

Molecular dynamics simulation of mechanism of interaction between dislocation and amorphism in magnesium

Zhang Bo-Jia, An Min-Rong, Hu Teng, Han La
PDF
HTML
导出引用
  • 镁合金作为最轻的金属结构材料, 被誉为21世纪的“绿色工程材料”, 具有广阔的应用前景. 晶体-非晶双相纳米镁材料更是表现了优异力学性能, 但是晶体中位错与非晶相的相互作用机制尚不明确. 本文采用分子动力学模拟方法研究了剪切载荷作用下纳米晶镁中刃位错与非晶相的相互作用机制. 研究结果表明, 纳米晶镁中非晶相与位错的相互作用机制表现出一定的尺寸依赖性. 相较于非晶相尺寸较小的样品, 较大的非晶相尺寸会导致较大的二次应力强化现象. 非晶相和位错的作用机制主要归结为非晶相对位错的钉扎作用. 对于非晶相尺寸较小的样品, 非晶相对位错的钉扎作用有限, 钉扎时间较短, 其相互作用主要是位错绕过非晶相的机制; 而对于非晶相尺寸较大的样品, 非晶相对位错的钉扎作用较大, 钉扎时间较长, 其相互作用主要是非晶相引发的位错的交滑移机制. 本文的研究结果对于设计和制备高性能的镁及其合金材料具有一定的参考价值和指导意义.
    As the lightest metal structural material, magnesium alloy is known as the “green engineering material” of the 21st century. Especially, crystalline-amorphous dual-phase nanostructure magnesium materials exhibit excellent mechanical properties, though the mechanism of interaction between the dislocation in crystal and amorphous phase is still under the investigation. In the present work, the interaction between the edge dislocation and amorphous phase in nanocrystalline magnesium under shear load is studied by using molecular dynamics simulation. The result indicates that the interaction mechanism between amorphous phase and dislocation shows the size dependence. Compared with the sample with smaller amorphous size, larger amorphous size will lead to a large second strengthening effect. And the mechanism of the interaction between amorphous phase and dislocation is mainly attributed to the pinning effect of amorphous on the dislocation. For the samples with small amorphous size, the pinning effect of amorphous on the dislocation is limited and the pinning time is shorter. The interaction mechanism is contributed mainly by the dislocation bypassing amorphous phase. While for the samples with larger amorphous size, the pinning effect of amorphous on the dislocation is larger and the pinning time is longer. The interaction is due mainly to the cross slip mechanism of dislocation caused by amorphous phase. The results from this work have a certain reference value and guiding significance for designing and preparing the high-performance magnesium and its alloys.
      通信作者: 安敏荣, anminrong@xsyu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11572259)、陕西省自然科学基金 (批准号: 2021JZ-53) 和西安石油大学研究生创新与实践能力培养资助项目(批准号: YCS20211049)资助的课题.
      Corresponding author: An Min-Rong, anminrong@xsyu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11572259), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2021JZ-53), and the Program for Graduate Innovation Fund of Xi’an Shiyou University, China (Grant No. YCS20211049).
    [1]

    Pollock T M 2010 Science 328 986Google Scholar

    [2]

    Wu Z, Ahmad R, Yin B, Sandlöbes S, Curtin W A 2018 Science 359 447

    [3]

    Liu B Y, Liu F, Yang N, Zhai X B, Zhang L, Yang Y, Li B, Li J, Ma E, Nie J F, Shan Z W 2019 Science 365 73Google Scholar

    [4]

    Wu G, Chan K C, Zhu L, Sun L, Lu J 2017 Nature 545 80Google Scholar

    [5]

    Dai J L, Song H Y, An M R, Wang J Y, Deng Q, Li Y L 2020 J. Appl. Phys. 127 135105Google Scholar

    [6]

    Wang J Y, Song H Y, An M R, Deng Q, Li Y L 2020 Chin. Phys. B 29 066201Google Scholar

    [7]

    Song H Y, Zuo X D, Yin P, An M R, Li Y L 2018 J. Non-Cryst. Solids 494 1Google Scholar

    [8]

    Song H Y, Li Y L 2015 Phys. Lett. A 379 2087Google Scholar

    [9]

    Song H Y, Zuo X D, An M R, Xiao M X, Li Y L 2019 Comput. Mater. Sci. 160 295Google Scholar

    [10]

    Ardell A J 1985 Metall. Trans. A 16 2131Google Scholar

    [11]

    Nie J F 2012 Metall. Mater. Trans. A 43 3891Google Scholar

    [12]

    Gao S, Fivel M, Ma A, Hartmaier A 2015 J. Mech. Phys. Solids 76 276Google Scholar

    [13]

    Santos-Güemes R, Esteban-Manzanares G, Papadimitriou I, Segurado J, Capolungo L, LLorca J 2018 J. Mech. Phys. Solids 118 228Google Scholar

    [14]

    Li J, Liu B, Fang Q H, Huang Z, Liu Y 2017 Ceram. Int. 43 3839Google Scholar

    [15]

    Bryukhanov I A 2020 Int. J. Plast. 135 102834Google Scholar

    [16]

    Cepeda-Jimenez C M, Castillo-Rodríguez M, Perez-Prado M T 2019 Acta Mater. 165 164Google Scholar

    [17]

    Alizadeh R, LLorca R 2020 Acta Mater. 186 475Google Scholar

    [18]

    Huang Z, Yang C, Qi L, Allison J E, Misra A 2019 Mater. Sci. Eng. A 742 278Google Scholar

    [19]

    Esteban-Manzanares G, Alizadeh R, Papadimitriou I, Dickel D, Barrett C D, Lorca J L 2020 Mater. Sci. Eng. A 788 139555Google Scholar

    [20]

    Ye T, Xu Y, Ren J 2019 Mater. Sci. Eng. A 753 146Google Scholar

    [21]

    Habiyaremye F, Guitton A, Schäfer F, Scholz F, Schneider M, Frenzel J, Laplanche G, Maloufi N 2021 Mater. Sci. Eng. A 817 141364Google Scholar

    [22]

    Li H, Gao S, Tomota Y, Li S, Tsuji N, Ohmura T 2021 Acta Mater. 206 116621Google Scholar

    [23]

    Li Y, Ran G, Guo Y, Sun Z, Liu X, Li Y, Qiu X, Xin Y 2021 Acta Mater. 201 462

    [24]

    杨权, 马立, 耿松超, 林旖旎, 陈涛, 孙立宁 2021 物理学报 70 106101Google Scholar

    Yang Q, Ma L, Geng S C, Lin Y N, Chen T, Sun L N 2021 Acta Phys. Sin. 70 106101Google Scholar

    [25]

    潘伶, 张昊, 林国斌 2021 物理学报 70 134704Google Scholar

    Pan L, Zhang H, Lin G B 2021 Acta Phys. Sin. 70 134704Google Scholar

    [26]

    申天展, 宋海洋, 安敏荣 2021 物理学报 70 186201Google Scholar

    Shen T Z, Song H Y, An M R 2021 Acta Phys. Sin. 70 186201Google Scholar

    [27]

    刘东静, 王韶铭, 杨平 2021 物理学报 70 187302Google Scholar

    Liu D J, Wang S M, Yang P 2021 Acta Phys. Sin. 70 187302Google Scholar

    [28]

    Su M J, Deng Q, An M R, Liu L T, Chen L Y 2021 J. Alloys Compd. 868 159282Google Scholar

    [29]

    Liu X Y, Ohotnicky P P, Adams J B, Lane Rohrer C, Hyland R W 1997 Surf. Sci. 373 357Google Scholar

    [30]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [31]

    Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [32]

    Faken D, Jónsson H 1994 Comp. Mater. Sci. 2 279Google Scholar

    [33]

    Stukowski A, Bulatov V V, Arsenlis A 2012 Model. Simul. Mater. Sci. Eng. 20 08500

    [34]

    Esteban-Manzanares G, Bellón B, Martínez E, Papadimitriou I, LLorca J 2019 J. Mech. Phys. Solids 132 103675Google Scholar

    [35]

    Simar A, Voigt H J L, Wirth B D 2011 Comput. Mater. Sci. 50 1811Google Scholar

    [36]

    Jian W R, Zhang M, Xu S, Beyerlein I J 2020 Model. Simul. Mater. Sci. Eng. 28 045004Google Scholar

  • 图 1  剪切变形过程中位错与非晶柱体相互作用示意图

    Fig. 1.  Schematic of interaction between dislocation and amorphous nanopillar under shear deformation.

    图 2  含有不同非晶相尺寸和不含非晶相的纳米晶镁的剪切应力-应变曲线

    Fig. 2.  Shear stress-strain curves of the nanocrystalline Mg with different amorphous nanopillar sizes and without amorphous nanopillar.

    图 3  不含非晶相的样品在不同剪切应变下的变化过程 (a)—(f)不同剪切应变时YZ面视图; (a1)—(f1)不同剪切应变时XY面视图

    Fig. 3.  The evolution process of the sample without amorphous nanopillar at different shear strains: (a)–(f) View of YZ plane; (a1)–(f1) view of XY plane.

    图 4  非晶相尺寸为1.6 nm的样品在不同剪切应变下的变化过程 (a)—(f)不同剪切应变时YZ面视图; (a1)—(f1)不同剪切应变时XY面视图

    Fig. 4.  The evolution process of the sample with amorphous nanopillar size of 1.6 nm at different shear strains: (a)–(f) View of YZ plane; (a1)–(f1) view of XY plane.

    图 5  非晶相尺寸为4.0 nm的样品在不同剪切应变下的变化过程 (a)—(f)不同剪切应变时YZ面视图; (a1)—(f1)不同剪切应变时XY面视图

    Fig. 5.  The evolution process of the sample with amorphous nanopillar size of 4 nm at different shear strains: (a)–(f) View of YZ plane; (a1)–(f1) view of XY plane.

    图 6  图5(f1)中类螺位错的细节图 (a)图5(f1)中类螺位错的具体形貌图, d代表层错宽度; (b) DXA分析出的位错结构图; (c)扩展位错交滑移的细节图

    Fig. 6.  The details of the like-screw dislocation shown in Fig. 5(f1): (a) The specific morphologies of like-screw dislocation; (b) dislocation structure analyzed by DXA method; (c) the cross-slip details of the extended dislocation.

    图 7  不同非晶相尺寸的样品中, 非晶相对位错的钉扎时间

    Fig. 7.  The variation of pinning time versus amorphous nanopillar size.

    图 8  位错与非晶相的作用机制 (a)非晶相尺寸较小时的位错绕过机制; (b)非晶相尺寸较大时的扩展位错交滑移机制

    Fig. 8.  The interaction mechanism of the dislocation and the amorphous phase: (a) The dislocation bypass mechanism for the sample with small amorphous nanopillar size; (b) the cross-slip mechanism of extended dislocation for the sample with larger amorphous nanopillar size.

    图 9  非晶相尺寸为3.0 nm的样品与位错的相互作用的过程 (a)—(f)不同剪切应变时XY面视图; (a1)—(f1)不同剪切应变时YZ面视图

    Fig. 9.  The evolution process of the sample with amorphous nanopillar size of 3.0 nm at different shear strains: (a)–(f) View of XY plane; (a1)–(f1) view of YZ plane.

    图 10  非晶相尺寸为3.3 nm的样品与位错的相互作用 (a)—(f)不同剪切应变时XY面视图; (a1)—(f1)不同剪切应变时YZ面视图

    Fig. 10.  The evolution process of the sample with amorphous nanopillar size of 3.3 nm at different shear strains: (a)–(f) View of XY plane; (a1)–(f1) view of YZ plane.

    图 11  非晶相尺寸为3.6 nm的样品与位错的相互作用的过程 (a)—(f)不同剪切应变时XY面视图; (a1)—(f1)不同剪切应变时YZ面视图

    Fig. 11.  The evolution process of the sample with amorphous nanopillar size of 3.6 nm at different shear strains: (a)–(f) View of XY plane; (a1)–(f1) view of YZ plane.

  • [1]

    Pollock T M 2010 Science 328 986Google Scholar

    [2]

    Wu Z, Ahmad R, Yin B, Sandlöbes S, Curtin W A 2018 Science 359 447

    [3]

    Liu B Y, Liu F, Yang N, Zhai X B, Zhang L, Yang Y, Li B, Li J, Ma E, Nie J F, Shan Z W 2019 Science 365 73Google Scholar

    [4]

    Wu G, Chan K C, Zhu L, Sun L, Lu J 2017 Nature 545 80Google Scholar

    [5]

    Dai J L, Song H Y, An M R, Wang J Y, Deng Q, Li Y L 2020 J. Appl. Phys. 127 135105Google Scholar

    [6]

    Wang J Y, Song H Y, An M R, Deng Q, Li Y L 2020 Chin. Phys. B 29 066201Google Scholar

    [7]

    Song H Y, Zuo X D, Yin P, An M R, Li Y L 2018 J. Non-Cryst. Solids 494 1Google Scholar

    [8]

    Song H Y, Li Y L 2015 Phys. Lett. A 379 2087Google Scholar

    [9]

    Song H Y, Zuo X D, An M R, Xiao M X, Li Y L 2019 Comput. Mater. Sci. 160 295Google Scholar

    [10]

    Ardell A J 1985 Metall. Trans. A 16 2131Google Scholar

    [11]

    Nie J F 2012 Metall. Mater. Trans. A 43 3891Google Scholar

    [12]

    Gao S, Fivel M, Ma A, Hartmaier A 2015 J. Mech. Phys. Solids 76 276Google Scholar

    [13]

    Santos-Güemes R, Esteban-Manzanares G, Papadimitriou I, Segurado J, Capolungo L, LLorca J 2018 J. Mech. Phys. Solids 118 228Google Scholar

    [14]

    Li J, Liu B, Fang Q H, Huang Z, Liu Y 2017 Ceram. Int. 43 3839Google Scholar

    [15]

    Bryukhanov I A 2020 Int. J. Plast. 135 102834Google Scholar

    [16]

    Cepeda-Jimenez C M, Castillo-Rodríguez M, Perez-Prado M T 2019 Acta Mater. 165 164Google Scholar

    [17]

    Alizadeh R, LLorca R 2020 Acta Mater. 186 475Google Scholar

    [18]

    Huang Z, Yang C, Qi L, Allison J E, Misra A 2019 Mater. Sci. Eng. A 742 278Google Scholar

    [19]

    Esteban-Manzanares G, Alizadeh R, Papadimitriou I, Dickel D, Barrett C D, Lorca J L 2020 Mater. Sci. Eng. A 788 139555Google Scholar

    [20]

    Ye T, Xu Y, Ren J 2019 Mater. Sci. Eng. A 753 146Google Scholar

    [21]

    Habiyaremye F, Guitton A, Schäfer F, Scholz F, Schneider M, Frenzel J, Laplanche G, Maloufi N 2021 Mater. Sci. Eng. A 817 141364Google Scholar

    [22]

    Li H, Gao S, Tomota Y, Li S, Tsuji N, Ohmura T 2021 Acta Mater. 206 116621Google Scholar

    [23]

    Li Y, Ran G, Guo Y, Sun Z, Liu X, Li Y, Qiu X, Xin Y 2021 Acta Mater. 201 462

    [24]

    杨权, 马立, 耿松超, 林旖旎, 陈涛, 孙立宁 2021 物理学报 70 106101Google Scholar

    Yang Q, Ma L, Geng S C, Lin Y N, Chen T, Sun L N 2021 Acta Phys. Sin. 70 106101Google Scholar

    [25]

    潘伶, 张昊, 林国斌 2021 物理学报 70 134704Google Scholar

    Pan L, Zhang H, Lin G B 2021 Acta Phys. Sin. 70 134704Google Scholar

    [26]

    申天展, 宋海洋, 安敏荣 2021 物理学报 70 186201Google Scholar

    Shen T Z, Song H Y, An M R 2021 Acta Phys. Sin. 70 186201Google Scholar

    [27]

    刘东静, 王韶铭, 杨平 2021 物理学报 70 187302Google Scholar

    Liu D J, Wang S M, Yang P 2021 Acta Phys. Sin. 70 187302Google Scholar

    [28]

    Su M J, Deng Q, An M R, Liu L T, Chen L Y 2021 J. Alloys Compd. 868 159282Google Scholar

    [29]

    Liu X Y, Ohotnicky P P, Adams J B, Lane Rohrer C, Hyland R W 1997 Surf. Sci. 373 357Google Scholar

    [30]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [31]

    Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [32]

    Faken D, Jónsson H 1994 Comp. Mater. Sci. 2 279Google Scholar

    [33]

    Stukowski A, Bulatov V V, Arsenlis A 2012 Model. Simul. Mater. Sci. Eng. 20 08500

    [34]

    Esteban-Manzanares G, Bellón B, Martínez E, Papadimitriou I, LLorca J 2019 J. Mech. Phys. Solids 132 103675Google Scholar

    [35]

    Simar A, Voigt H J L, Wirth B D 2011 Comput. Mater. Sci. 50 1811Google Scholar

    [36]

    Jian W R, Zhang M, Xu S, Beyerlein I J 2020 Model. Simul. Mater. Sci. Eng. 28 045004Google Scholar

  • [1] 高丰, 李欢庆, 宋卓, 赵宇宏. 三模晶体相场法研究应变诱导石墨烯晶界位错演化. 物理学报, 2024, 73(24): . doi: 10.7498/aps.73.20241368
    [2] 袁用开, 陈茜, 高廷红, 梁永超, 谢泉, 田泽安, 郑权, 陆飞. GaAs晶体在不同应变下生长过程的分子动力学模拟. 物理学报, 2023, 72(13): 136801. doi: 10.7498/aps.72.20221860
    [3] 安敏荣, 李思澜, 宿梦嘉, 邓琼, 宋海洋. 尺寸依赖的CoCrFeNiMn晶体/非晶双相高熵合金塑性变形机制的分子动力学模拟. 物理学报, 2022, 71(24): 243101. doi: 10.7498/aps.71.20221368
    [4] 汉芮岐, 宋海洋, 安敏荣, 李卫卫, 马佳丽. 石墨烯/铝基复合材料在纳米压痕过程中位错与石墨烯相互作用机制的模拟研究. 物理学报, 2021, 70(6): 066201. doi: 10.7498/aps.70.20201591
    [5] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响. 物理学报, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [6] 李君, 刘立胜, 徐爽, 张金咏. 单轴压缩下Ti3B4的力学、电学性能及变形机制的第一性原理研究. 物理学报, 2020, 69(4): 043102. doi: 10.7498/aps.69.20191194
    [7] 祁科武, 赵宇宏, 田晓林, 彭敦维, 孙远洋, 侯华. 取向角对小角度非对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2020, 69(14): 140504. doi: 10.7498/aps.69.20200133
    [8] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [9] 第伍旻杰, 胡晓棉. 高应变率压缩下纳米孔洞对金属铝塑性变形的影响研究. 物理学报, 2015, 64(17): 170201. doi: 10.7498/aps.64.170201
    [10] 邵宇飞, 杨鑫, 李久会, 赵星. Cu刃型扩展位错附近局部应变场的原子模拟研究. 物理学报, 2014, 63(7): 076103. doi: 10.7498/aps.63.076103
    [11] 陈青, 孙民华. 分子动力学模拟尺寸对纳米Cu颗粒等温晶化过程的影响. 物理学报, 2013, 62(3): 036101. doi: 10.7498/aps.62.036101
    [12] 李联和, 刘官厅. 一维六方准晶中螺形位错与楔形裂纹的相互作用. 物理学报, 2012, 61(8): 086103. doi: 10.7498/aps.61.086103
    [13] 徐振海, 袁林, 单德彬, 郭斌. 单晶铜纳米线屈服机理的原子模拟研究. 物理学报, 2009, 58(7): 4835-4839. doi: 10.7498/aps.58.4835
    [14] 谢 芳, 朱亚波, 张兆慧, 张 林. 碳纳米管振荡的分子动力学模拟. 物理学报, 2008, 57(9): 5833-5837. doi: 10.7498/aps.57.5833
    [15] 张 杨, 张建华, 文玉华, 朱梓忠. 含圆孔纳米薄膜在拉伸加载下变形机理的原子级模拟研究. 物理学报, 2008, 57(11): 7094-7099. doi: 10.7498/aps.57.7094
    [16] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟. 物理学报, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [17] 赵九洲, 刘 俊, 赵 毅, 胡壮麒. 压力对非晶铜形成影响的分子动力学模拟. 物理学报, 2007, 56(1): 443-445. doi: 10.7498/aps.56.443
    [18] 江慧丰, 张青川, 陈学东, 范志超, 陈忠家, 伍小平. 位错与溶质原子间动态相互作用的数值模拟研究. 物理学报, 2007, 56(6): 3388-3392. doi: 10.7498/aps.56.3388
    [19] 邓小良, 祝文军, 贺红亮, 伍登学, 经福谦. 〈111〉晶向冲击加载下单晶铜中纳米孔洞增长的早期动力学行为. 物理学报, 2006, 55(9): 4767-4773. doi: 10.7498/aps.55.4767
    [20] 罗诗裕, 邵明珠, 韦洛霞, 刘曾荣. 位错动力学与系统的全局分叉. 物理学报, 2004, 53(6): 1940-1945. doi: 10.7498/aps.53.1940
计量
  • 文章访问数:  6277
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-15
  • 修回日期:  2022-03-27
  • 上网日期:  2022-07-08
  • 刊出日期:  2022-07-20

/

返回文章
返回