-
采用900 eV能量的电子对直玻璃管进行了穿透实验, 测量了玻璃管在倾角为–0.15°, –0.4°和–1.15°时充电过程角分布的时间演化, 以及平衡态下出射电子能谱. 发现穿透率随时间先下降后上升最后趋于平稳, 下降的时间随倾角的增大而减小. 当倾角为–0.4°和–1.15°时, 电子穿透率下降到最低点时几乎看不到穿透电子(穿透率小于3‰), 这种穿透率最低点状态保持时间随倾角增大而增大. 穿透电子的角分布中心随着时间变化. 在平稳状态时, 发现穿透电子的能量损失随倾角增大而增大. 采用蒙特卡罗方法模拟了电子经过管壁不同次数反射后的能谱, 与测量能谱进行对比, 发现–0.15°, –0.4°和–1.15°倾角下, 穿透电子分别经历了管壁的一次、两次和三次与表面的反射过程. 基于此, 本文对电子穿越玻璃管的充电过程动力学给出了物理解释. 实验结果和理论分析表明, 在小倾角下玻璃管内能形成宏观负电荷累积, 排斥后续电子形成反射, 增加电子出射概率, 这对应用绝缘体微结构, 例如玻璃锥管产生稳定的电子微束具有重要的参考意义.
It is a hot topic that using glass capillary to focus and shape the charged particle beam, for it is inexpensive and simple. There are the cases that single glass capillaries are used to make the microbeam of the positive ions. When it comes to electrons, their transmitting through insulating capillaries is complex and the attempt to use the glass capillary to produce electron beams in the size of micrometer needs further exploring. In this paper, the charging-up process of the 900-eV electrons transmitting through a glass capillary with the grounded conductive-coated outer surface is reported. Two-dimensional angular distributions of the transmitted electrons and their time evolutions are measured for the cases of various tilt angles of glass tube. It is found that there are a considerable number of transmitted electrons at the tilt angle exceeding the geometrical opening angle (1°) of the glass tube. The intensity of transmitted electrons for large tilt angle (i.e. –1.15°) can be considered as first falling to zero, then keeping zero for a long time, finally rising to a certain stable value. Correspondingly, the angular distribution center experiences moving towards negative-positive-negative-settled. The energy losses are measured for various tilt angles. The larger the tilt angles, the larger the energy loss of transmitted electrons is. To better understand the physics behind the observed phenomena, the simulations of the energy loss for transmitted electrons at various tilt angles are performed by the Monte Carlo method. The comparation between the simulated energy losses and the measured energy losses shows that the experimental results are well explained by multiple deflections from the wall. -
Keywords:
- electron /
- energy loss /
- charge-up process /
- glass capillary
[1] Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502Google Scholar
[2] Cassimi A, Maunoury L, Muranaka T, Huber B, Dey K R, Lebius H, Lelièvre D, Ramillon J M, Been T, Ikeda T 2009 Nucl. Inst. Meth. Phys. Res. B 267 674Google Scholar
[3] Nakayama R, Tona M, Nakamura N, Watanabe H, Yoshiyasu N, Yamada C, Yamazaki A, Ohtani S, Sakurai M 2009 Nucl. Inst. Meth. Phys. Res. B 267 2381Google Scholar
[4] Dassanayake B, Das S, Bereczky R, Tőkési K, Tanis J 2010 Phys. Rev. A 81 020701Google Scholar
[5] Dassanayake B, Bereczky R, Das S, Ayyad A, Tökési K, Tanis J 2011 Phys. Rev. A 83 012707Google Scholar
[6] Wang W, Chen J, Yu D Y, Yang B, Wu Y H, Zhang M W, Ruan F F, Cai X H 2011 Phys. Scri. T144Google Scholar
[7] 万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 物理学报 65 204103Google Scholar
Wan C L, Li P F, Qian L B, Jin B, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Reinhold S, Zhang H Q, Chen X M 2016 Acta Phys. Sin. 65 204103Google Scholar
[8] Wickramarachchi S, Ikeda T, Dassanayake B, Keerthisinghe D, Tanis J 2016 Phys. Rev. A 94 022701Google Scholar
[9] Wickramarachchi S, Ikeda T, Dassanayake B, Keerthisinghe D, Tanis J 2016 Nucl. Inst. Meth. Phys. Res. B 382 60Google Scholar
[10] 钱立冰, 李鹏飞, 靳博, 等 2017 物理学报 66 124101Google Scholar
Qian L B, Li P F, Jin B, et al. 2017 Acta Phys. Sin. 66 124101Google Scholar
[11] Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl. Phys. Lett. 92 023509Google Scholar
[12] Giglio E, Guillous S, Cassimi A 2018 Phys. Rev. A 98 052704Google Scholar
[13] Ikeda T 2020 Quan. Beam Sci. 4 22Google Scholar
[14] 李嘉庆, 王建中, 王旭飞, 张杰雄, 张伟, 张斌, 邵春林, 施立群 2013 原子能科学与技术 47 1917Google Scholar
Li J Q, Wang J Z, Wang X F, Zhang J X, Zhang W, Zhang B, Shao C L, Shi L Q 2013 Atom. Ener. Sci. Tech. 47 1917Google Scholar
[15] Simon M J, Döbeli M, Müller A M, Synal H A 2012 Nucl. Inst. Meth. Phys. Res. B 273 237Google Scholar
[16] Hasegawa J, Shiba S, Fukuda H, Oguri Y 2008 Nucl. Inst. Meth. Phys. Res. B 266 2125Google Scholar
[17] Sekiba D, Yonemura H, Nebiki T, Wilde M, Ogura S, Yamashita H, Matsumoto M, Kasagi J, Iwamura Y, Itoh T 2008 Nucl. Inst. Meth. Phys. Res. B 266 4027Google Scholar
[18] Kowarik G, Bereczky R J, Aumayr F, Tőkési K 2009 Nucl. Inst. Meth. Phys. Res. B 267 2277Google Scholar
[19] Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201Google Scholar
[20] Lemell C, Burgdörfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237Google Scholar
[21] Stolterfoht N, Yamazaki Y 2016 Phys. Rep. 629 1Google Scholar
[22] Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901Google Scholar
[23] Zhang H, Akram N, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. A 86 022901Google Scholar
[24] Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202Google Scholar
[25] Zhang H, Akram N, Schuch R 2016 Phys. Rev. A 94 032704Google Scholar
[26] Skog P, Zhang H, Schuch R 2008 Phys. Rev. Lett. 101 223202Google Scholar
[27] Liu S D, Wang Y Y, Zhao Y T, Zhou X M, Cheng R, Lei Y, Sun Y B, Ren J R, Duan J L, Liu J, Xu H S, Xiao G Q 2015 Phys. Rev. A 91 012714Google Scholar
[28] Liu S D, Zhao Y T, Wang Y Y 2017 Chin. Phys. B 26 106104Google Scholar
[29] Xue Y, Yu D, Liu J, Zhang M, Yang B, Zhang Y, Cai X 2015 Appl. Phys. Lett. 107 254102Google Scholar
[30] Stolterfoht N, Tanis J 2018 Nucl. Inst. Meth. Phys. Res. B 421 32Google Scholar
[31] Das S, Dassanayake B, Winkworth M, Baran J, Stolterfoht N, Tanis J 2007 Phys. Rev. A 76 042716Google Scholar
[32] Milosavljević A, Schiessl K, Lemell C, Tőkési K, Mátéfi-Tempfli M, Mátéfi-Tempfli S, Marinković B, Burgdörfer J 2012 Nucl. Inst. Meth. Phys. Res. B 279 190Google Scholar
[33] Milosavljević A, Víkor G, Pešić Z, Kolarž P, Šević D, Marinković B, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901Google Scholar
[34] Dassanayake B, Keerthisinghe D, Wickramarachchi S, Ayyad A, Das S, Stolterfoht N, Tanis J 2013 Nucl. Inst. Meth. Phys. Res. B 298 1Google Scholar
[35] Keerthisinghe D, Dassanayake B, Wickramarachchi S, Stolterfoht N, Tanis J 2013 Nucl. Inst. Meth. Phys. Res. B 317 105Google Scholar
[36] Keerthisinghe D, Dassanayake B, Wickramarachchi S, Stolterfoht N, Tanis J 2015 Phys. Rev. A 92 012703Google Scholar
[37] Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201Google Scholar
[38] 李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 物理学报 71 074101Google Scholar
Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Reinhold S, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 074101Google Scholar
[39] Drouin D, Couture A R, Gauvin R, Hovington P, Horny P, Demers H 2016 Computer Code CASINO (version 3.3), https://www.gel.usherbrooke.ca/casino/index.html
-
图 5 在–0.15°, –0.4°和–1.15°倾角下, 900 eV电子对涂导电胶的玻璃毛细管的充电过程中, 穿透电子在ϕ平面的投影中心随时间的演化曲线. 数据空白处为等待时间
Fig. 5. The time evolution of the projection center of the transmitted electron angular distribution on the ϕ-plane during the charge-up process at various tilt angles (–0.15°, –0.4° and –1.15°) for 900 eV electrons. The blanks of data are waiting time.
-
[1] Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502Google Scholar
[2] Cassimi A, Maunoury L, Muranaka T, Huber B, Dey K R, Lebius H, Lelièvre D, Ramillon J M, Been T, Ikeda T 2009 Nucl. Inst. Meth. Phys. Res. B 267 674Google Scholar
[3] Nakayama R, Tona M, Nakamura N, Watanabe H, Yoshiyasu N, Yamada C, Yamazaki A, Ohtani S, Sakurai M 2009 Nucl. Inst. Meth. Phys. Res. B 267 2381Google Scholar
[4] Dassanayake B, Das S, Bereczky R, Tőkési K, Tanis J 2010 Phys. Rev. A 81 020701Google Scholar
[5] Dassanayake B, Bereczky R, Das S, Ayyad A, Tökési K, Tanis J 2011 Phys. Rev. A 83 012707Google Scholar
[6] Wang W, Chen J, Yu D Y, Yang B, Wu Y H, Zhang M W, Ruan F F, Cai X H 2011 Phys. Scri. T144Google Scholar
[7] 万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 物理学报 65 204103Google Scholar
Wan C L, Li P F, Qian L B, Jin B, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Reinhold S, Zhang H Q, Chen X M 2016 Acta Phys. Sin. 65 204103Google Scholar
[8] Wickramarachchi S, Ikeda T, Dassanayake B, Keerthisinghe D, Tanis J 2016 Phys. Rev. A 94 022701Google Scholar
[9] Wickramarachchi S, Ikeda T, Dassanayake B, Keerthisinghe D, Tanis J 2016 Nucl. Inst. Meth. Phys. Res. B 382 60Google Scholar
[10] 钱立冰, 李鹏飞, 靳博, 等 2017 物理学报 66 124101Google Scholar
Qian L B, Li P F, Jin B, et al. 2017 Acta Phys. Sin. 66 124101Google Scholar
[11] Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl. Phys. Lett. 92 023509Google Scholar
[12] Giglio E, Guillous S, Cassimi A 2018 Phys. Rev. A 98 052704Google Scholar
[13] Ikeda T 2020 Quan. Beam Sci. 4 22Google Scholar
[14] 李嘉庆, 王建中, 王旭飞, 张杰雄, 张伟, 张斌, 邵春林, 施立群 2013 原子能科学与技术 47 1917Google Scholar
Li J Q, Wang J Z, Wang X F, Zhang J X, Zhang W, Zhang B, Shao C L, Shi L Q 2013 Atom. Ener. Sci. Tech. 47 1917Google Scholar
[15] Simon M J, Döbeli M, Müller A M, Synal H A 2012 Nucl. Inst. Meth. Phys. Res. B 273 237Google Scholar
[16] Hasegawa J, Shiba S, Fukuda H, Oguri Y 2008 Nucl. Inst. Meth. Phys. Res. B 266 2125Google Scholar
[17] Sekiba D, Yonemura H, Nebiki T, Wilde M, Ogura S, Yamashita H, Matsumoto M, Kasagi J, Iwamura Y, Itoh T 2008 Nucl. Inst. Meth. Phys. Res. B 266 4027Google Scholar
[18] Kowarik G, Bereczky R J, Aumayr F, Tőkési K 2009 Nucl. Inst. Meth. Phys. Res. B 267 2277Google Scholar
[19] Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201Google Scholar
[20] Lemell C, Burgdörfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237Google Scholar
[21] Stolterfoht N, Yamazaki Y 2016 Phys. Rep. 629 1Google Scholar
[22] Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901Google Scholar
[23] Zhang H, Akram N, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. A 86 022901Google Scholar
[24] Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202Google Scholar
[25] Zhang H, Akram N, Schuch R 2016 Phys. Rev. A 94 032704Google Scholar
[26] Skog P, Zhang H, Schuch R 2008 Phys. Rev. Lett. 101 223202Google Scholar
[27] Liu S D, Wang Y Y, Zhao Y T, Zhou X M, Cheng R, Lei Y, Sun Y B, Ren J R, Duan J L, Liu J, Xu H S, Xiao G Q 2015 Phys. Rev. A 91 012714Google Scholar
[28] Liu S D, Zhao Y T, Wang Y Y 2017 Chin. Phys. B 26 106104Google Scholar
[29] Xue Y, Yu D, Liu J, Zhang M, Yang B, Zhang Y, Cai X 2015 Appl. Phys. Lett. 107 254102Google Scholar
[30] Stolterfoht N, Tanis J 2018 Nucl. Inst. Meth. Phys. Res. B 421 32Google Scholar
[31] Das S, Dassanayake B, Winkworth M, Baran J, Stolterfoht N, Tanis J 2007 Phys. Rev. A 76 042716Google Scholar
[32] Milosavljević A, Schiessl K, Lemell C, Tőkési K, Mátéfi-Tempfli M, Mátéfi-Tempfli S, Marinković B, Burgdörfer J 2012 Nucl. Inst. Meth. Phys. Res. B 279 190Google Scholar
[33] Milosavljević A, Víkor G, Pešić Z, Kolarž P, Šević D, Marinković B, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901Google Scholar
[34] Dassanayake B, Keerthisinghe D, Wickramarachchi S, Ayyad A, Das S, Stolterfoht N, Tanis J 2013 Nucl. Inst. Meth. Phys. Res. B 298 1Google Scholar
[35] Keerthisinghe D, Dassanayake B, Wickramarachchi S, Stolterfoht N, Tanis J 2013 Nucl. Inst. Meth. Phys. Res. B 317 105Google Scholar
[36] Keerthisinghe D, Dassanayake B, Wickramarachchi S, Stolterfoht N, Tanis J 2015 Phys. Rev. A 92 012703Google Scholar
[37] Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201Google Scholar
[38] 李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 物理学报 71 074101Google Scholar
Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Reinhold S, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 074101Google Scholar
[39] Drouin D, Couture A R, Gauvin R, Hovington P, Horny P, Demers H 2016 Computer Code CASINO (version 3.3), https://www.gel.usherbrooke.ca/casino/index.html
计量
- 文章访问数: 4388
- PDF下载量: 68
- 被引次数: 0