搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低能电子穿越玻璃直管时倾角依赖的输运动力学

李鹏飞 袁华 程紫东 钱立冰 刘中林 靳博 哈帅 张浩文 万城亮 崔莹 马越 杨治虎 路迪 ReinholdSchuch 黎明 张红强 陈熙萌

引用本文:
Citation:

低能电子穿越玻璃直管时倾角依赖的输运动力学

李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 张浩文, 万城亮, 崔莹, 马越, 杨治虎, 路迪, ReinholdSchuch, 黎明, 张红强, 陈熙萌

Dynamics of low energy electrons transmitting through straight glass capillary: Tilt angle dependence

Li Peng-Fei, Yuan Hua, Cheng Zi-Dong, Qian Li-Bing, Liu Zhong-Lin, Jin Bo, Ha Shuai, Zhang Hao-Wen, Wan Cheng-Liang, Cui Ying, Ma Yue, Yang Zhi-Hu, Lu Di, Reinhold Schuch, Li Ming, Zhang Hong-Qiang, Chen Xi-Meng
PDF
HTML
导出引用
  • 采用900 eV能量的电子对直玻璃管进行了穿透实验, 测量了玻璃管在倾角为–0.15°, –0.4°和–1.15°时充电过程角分布的时间演化, 以及平衡态下出射电子能谱. 发现穿透率随时间先下降后上升最后趋于平稳, 下降的时间随倾角的增大而减小. 当倾角为–0.4°和–1.15°时, 电子穿透率下降到最低点时几乎看不到穿透电子(穿透率小于3‰), 这种穿透率最低点状态保持时间随倾角增大而增大. 穿透电子的角分布中心随着时间变化. 在平稳状态时, 发现穿透电子的能量损失随倾角增大而增大. 采用蒙特卡罗方法模拟了电子经过管壁不同次数反射后的能谱, 与测量能谱进行对比, 发现–0.15°, –0.4°和–1.15°倾角下, 穿透电子分别经历了管壁的一次、两次和三次与表面的反射过程. 基于此, 本文对电子穿越玻璃管的充电过程动力学给出了物理解释. 实验结果和理论分析表明, 在小倾角下玻璃管内能形成宏观负电荷累积, 排斥后续电子形成反射, 增加电子出射概率, 这对应用绝缘体微结构, 例如玻璃锥管产生稳定的电子微束具有重要的参考意义.
    It is a hot topic that using glass capillary to focus and shape the charged particle beam, for it is inexpensive and simple. There are the cases that single glass capillaries are used to make the microbeam of the positive ions. When it comes to electrons, their transmitting through insulating capillaries is complex and the attempt to use the glass capillary to produce electron beams in the size of micrometer needs further exploring.In this paper, the charging-up process of the 900-eV electrons transmitting through a glass capillary with the grounded conductive-coated outer surface is reported. Two-dimensional angular distributions of the transmitted electrons and their time evolutions are measured for the cases of various tilt angles of glass tube. It is found that there are a considerable number of transmitted electrons at the tilt angle exceeding the geometrical opening angle (1°) of the glass tube. The intensity of transmitted electrons for large tilt angle (i.e. –1.15°) can be considered as first falling to zero, then keeping zero for a long time, finally rising to a certain stable value. Correspondingly, the angular distribution center experiences moving towards negative-positive-negative-settled. The energy losses are measured for various tilt angles. The larger the tilt angles, the larger the energy loss of transmitted electrons is. To better understand the physics behind the observed phenomena, the simulations of the energy loss for transmitted electrons at various tilt angles are performed by the Monte Carlo method. The comparation between the simulated energy losses and the measured energy losses shows that the experimental results are well explained by multiple deflections from the wall.
      通信作者: 张红强, zhanghq@lzu.edu.cn ; 陈熙萌, chenxm@lzu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: U1732269, 11805169)、中央高校基本科研业务费(批准号: lzujbky-2021-sp41) 和瑞典科研与教育国际合作基金 (STINT) (批准号: IB2018-8071) 资助的课题
      Corresponding author: Zhang Hong-Qiang, zhanghq@lzu.edu.cn ; Chen Xi-Meng, chenxm@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1732269, 11805169), the Fundamental Research Funds for the Central Universities, China (Grant No. lzujbky-2021-sp41), and the Swedish Foundation for International Cooperation in Research and Higher Education (Grant No. IB2018-8071)
    [1]

    Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502Google Scholar

    [2]

    Cassimi A, Maunoury L, Muranaka T, Huber B, Dey K R, Lebius H, Lelièvre D, Ramillon J M, Been T, Ikeda T 2009 Nucl. Inst. Meth. Phys. Res. B 267 674Google Scholar

    [3]

    Nakayama R, Tona M, Nakamura N, Watanabe H, Yoshiyasu N, Yamada C, Yamazaki A, Ohtani S, Sakurai M 2009 Nucl. Inst. Meth. Phys. Res. B 267 2381Google Scholar

    [4]

    Dassanayake B, Das S, Bereczky R, Tőkési K, Tanis J 2010 Phys. Rev. A 81 020701Google Scholar

    [5]

    Dassanayake B, Bereczky R, Das S, Ayyad A, Tökési K, Tanis J 2011 Phys. Rev. A 83 012707Google Scholar

    [6]

    Wang W, Chen J, Yu D Y, Yang B, Wu Y H, Zhang M W, Ruan F F, Cai X H 2011 Phys. Scri. T144Google Scholar

    [7]

    万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 物理学报 65 204103Google Scholar

    Wan C L, Li P F, Qian L B, Jin B, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Reinhold S, Zhang H Q, Chen X M 2016 Acta Phys. Sin. 65 204103Google Scholar

    [8]

    Wickramarachchi S, Ikeda T, Dassanayake B, Keerthisinghe D, Tanis J 2016 Phys. Rev. A 94 022701Google Scholar

    [9]

    Wickramarachchi S, Ikeda T, Dassanayake B, Keerthisinghe D, Tanis J 2016 Nucl. Inst. Meth. Phys. Res. B 382 60Google Scholar

    [10]

    钱立冰, 李鹏飞, 靳博, 等 2017 物理学报 66 124101Google Scholar

    Qian L B, Li P F, Jin B, et al. 2017 Acta Phys. Sin. 66 124101Google Scholar

    [11]

    Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl. Phys. Lett. 92 023509Google Scholar

    [12]

    Giglio E, Guillous S, Cassimi A 2018 Phys. Rev. A 98 052704Google Scholar

    [13]

    Ikeda T 2020 Quan. Beam Sci. 4 22Google Scholar

    [14]

    李嘉庆, 王建中, 王旭飞, 张杰雄, 张伟, 张斌, 邵春林, 施立群 2013 原子能科学与技术 47 1917Google Scholar

    Li J Q, Wang J Z, Wang X F, Zhang J X, Zhang W, Zhang B, Shao C L, Shi L Q 2013 Atom. Ener. Sci. Tech. 47 1917Google Scholar

    [15]

    Simon M J, Döbeli M, Müller A M, Synal H A 2012 Nucl. Inst. Meth. Phys. Res. B 273 237Google Scholar

    [16]

    Hasegawa J, Shiba S, Fukuda H, Oguri Y 2008 Nucl. Inst. Meth. Phys. Res. B 266 2125Google Scholar

    [17]

    Sekiba D, Yonemura H, Nebiki T, Wilde M, Ogura S, Yamashita H, Matsumoto M, Kasagi J, Iwamura Y, Itoh T 2008 Nucl. Inst. Meth. Phys. Res. B 266 4027Google Scholar

    [18]

    Kowarik G, Bereczky R J, Aumayr F, Tőkési K 2009 Nucl. Inst. Meth. Phys. Res. B 267 2277Google Scholar

    [19]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201Google Scholar

    [20]

    Lemell C, Burgdörfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237Google Scholar

    [21]

    Stolterfoht N, Yamazaki Y 2016 Phys. Rep. 629 1Google Scholar

    [22]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901Google Scholar

    [23]

    Zhang H, Akram N, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. A 86 022901Google Scholar

    [24]

    Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202Google Scholar

    [25]

    Zhang H, Akram N, Schuch R 2016 Phys. Rev. A 94 032704Google Scholar

    [26]

    Skog P, Zhang H, Schuch R 2008 Phys. Rev. Lett. 101 223202Google Scholar

    [27]

    Liu S D, Wang Y Y, Zhao Y T, Zhou X M, Cheng R, Lei Y, Sun Y B, Ren J R, Duan J L, Liu J, Xu H S, Xiao G Q 2015 Phys. Rev. A 91 012714Google Scholar

    [28]

    Liu S D, Zhao Y T, Wang Y Y 2017 Chin. Phys. B 26 106104Google Scholar

    [29]

    Xue Y, Yu D, Liu J, Zhang M, Yang B, Zhang Y, Cai X 2015 Appl. Phys. Lett. 107 254102Google Scholar

    [30]

    Stolterfoht N, Tanis J 2018 Nucl. Inst. Meth. Phys. Res. B 421 32Google Scholar

    [31]

    Das S, Dassanayake B, Winkworth M, Baran J, Stolterfoht N, Tanis J 2007 Phys. Rev. A 76 042716Google Scholar

    [32]

    Milosavljević A, Schiessl K, Lemell C, Tőkési K, Mátéfi-Tempfli M, Mátéfi-Tempfli S, Marinković B, Burgdörfer J 2012 Nucl. Inst. Meth. Phys. Res. B 279 190Google Scholar

    [33]

    Milosavljević A, Víkor G, Pešić Z, Kolarž P, Šević D, Marinković B, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901Google Scholar

    [34]

    Dassanayake B, Keerthisinghe D, Wickramarachchi S, Ayyad A, Das S, Stolterfoht N, Tanis J 2013 Nucl. Inst. Meth. Phys. Res. B 298 1Google Scholar

    [35]

    Keerthisinghe D, Dassanayake B, Wickramarachchi S, Stolterfoht N, Tanis J 2013 Nucl. Inst. Meth. Phys. Res. B 317 105Google Scholar

    [36]

    Keerthisinghe D, Dassanayake B, Wickramarachchi S, Stolterfoht N, Tanis J 2015 Phys. Rev. A 92 012703Google Scholar

    [37]

    Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201Google Scholar

    [38]

    李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 物理学报 71 074101Google Scholar

    Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Reinhold S, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 074101Google Scholar

    [39]

    Drouin D, Couture A R, Gauvin R, Hovington P, Horny P, Demers H 2016 Computer Code CASINO (version 3.3), https://www.gel.usherbrooke.ca/casino/index.html

  • 图 1  实验设备示意图

    Fig. 1.  A schematic drawing of the experimental setup.

    图 2  900 eV电子涂导电胶玻璃毛细管的穿透率随倾角变化的分布曲线

    Fig. 2.  The steady-state values of the transmission rate as a function of the tilt angle for 900 eV electrons through conductive-coated glass capillary.

    图 3  不同倾角下, 900 eV电子对涂导电胶的玻璃毛细管的充电过程中, 穿透率随时间的演化曲线

    Fig. 3.  The measured time evolution of the transmission rates of the charge-up process in the glass capillary at various tilt angles for 900 eV electrons.

    图 4  不同倾角下, 900 eV电子对涂导电胶的玻璃毛细管的充电过程中选取的穿透电子的二维角分布图像 (a) –0.15°; (b) –0.4°; (c) –1.15°

    Fig. 4.  The 2D images of electron angular distribution at different stages during the charge-up process at various tilt angles for 900 eV electrons: (a) –0.15°; (b) –0.4°; (c) –1.15°.

    图 5  在–0.15°, –0.4°和–1.15°倾角下, 900 eV电子对涂导电胶的玻璃毛细管的充电过程中, 穿透电子在ϕ平面的投影中心随时间的演化曲线. 数据空白处为等待时间

    Fig. 5.  The time evolution of the projection center of the transmitted electron angular distribution on the ϕ-plane during the charge-up process at various tilt angles (–0.15°, –0.4° and –1.15°) for 900 eV electrons. The blanks of data are waiting time.

    图 6  充电达到稳定阶段后, 900 eV能量的电子穿越不同倾角(–0.15°, –0.4°和–1.15°)玻璃管的穿透电子能谱图

    Fig. 6.  The energy spectrum of transmitted electrons for 900 eV electrons at various tilt angles (–0.15°, –0.4° and –1.15°) in the steady stage.

    图 7  充电完成达到稳定阶段后, 电子在涂导电胶的玻璃毛细管内的反射轨迹示意, 其中红线为电子轨迹

    Fig. 7.  The diagrams for the trajectories of the transmitted electrons through the conductive-coated glass capillary in the steady stage, where the red line is electron trajectory.

  • [1]

    Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502Google Scholar

    [2]

    Cassimi A, Maunoury L, Muranaka T, Huber B, Dey K R, Lebius H, Lelièvre D, Ramillon J M, Been T, Ikeda T 2009 Nucl. Inst. Meth. Phys. Res. B 267 674Google Scholar

    [3]

    Nakayama R, Tona M, Nakamura N, Watanabe H, Yoshiyasu N, Yamada C, Yamazaki A, Ohtani S, Sakurai M 2009 Nucl. Inst. Meth. Phys. Res. B 267 2381Google Scholar

    [4]

    Dassanayake B, Das S, Bereczky R, Tőkési K, Tanis J 2010 Phys. Rev. A 81 020701Google Scholar

    [5]

    Dassanayake B, Bereczky R, Das S, Ayyad A, Tökési K, Tanis J 2011 Phys. Rev. A 83 012707Google Scholar

    [6]

    Wang W, Chen J, Yu D Y, Yang B, Wu Y H, Zhang M W, Ruan F F, Cai X H 2011 Phys. Scri. T144Google Scholar

    [7]

    万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 物理学报 65 204103Google Scholar

    Wan C L, Li P F, Qian L B, Jin B, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Reinhold S, Zhang H Q, Chen X M 2016 Acta Phys. Sin. 65 204103Google Scholar

    [8]

    Wickramarachchi S, Ikeda T, Dassanayake B, Keerthisinghe D, Tanis J 2016 Phys. Rev. A 94 022701Google Scholar

    [9]

    Wickramarachchi S, Ikeda T, Dassanayake B, Keerthisinghe D, Tanis J 2016 Nucl. Inst. Meth. Phys. Res. B 382 60Google Scholar

    [10]

    钱立冰, 李鹏飞, 靳博, 等 2017 物理学报 66 124101Google Scholar

    Qian L B, Li P F, Jin B, et al. 2017 Acta Phys. Sin. 66 124101Google Scholar

    [11]

    Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl. Phys. Lett. 92 023509Google Scholar

    [12]

    Giglio E, Guillous S, Cassimi A 2018 Phys. Rev. A 98 052704Google Scholar

    [13]

    Ikeda T 2020 Quan. Beam Sci. 4 22Google Scholar

    [14]

    李嘉庆, 王建中, 王旭飞, 张杰雄, 张伟, 张斌, 邵春林, 施立群 2013 原子能科学与技术 47 1917Google Scholar

    Li J Q, Wang J Z, Wang X F, Zhang J X, Zhang W, Zhang B, Shao C L, Shi L Q 2013 Atom. Ener. Sci. Tech. 47 1917Google Scholar

    [15]

    Simon M J, Döbeli M, Müller A M, Synal H A 2012 Nucl. Inst. Meth. Phys. Res. B 273 237Google Scholar

    [16]

    Hasegawa J, Shiba S, Fukuda H, Oguri Y 2008 Nucl. Inst. Meth. Phys. Res. B 266 2125Google Scholar

    [17]

    Sekiba D, Yonemura H, Nebiki T, Wilde M, Ogura S, Yamashita H, Matsumoto M, Kasagi J, Iwamura Y, Itoh T 2008 Nucl. Inst. Meth. Phys. Res. B 266 4027Google Scholar

    [18]

    Kowarik G, Bereczky R J, Aumayr F, Tőkési K 2009 Nucl. Inst. Meth. Phys. Res. B 267 2277Google Scholar

    [19]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201Google Scholar

    [20]

    Lemell C, Burgdörfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237Google Scholar

    [21]

    Stolterfoht N, Yamazaki Y 2016 Phys. Rep. 629 1Google Scholar

    [22]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901Google Scholar

    [23]

    Zhang H, Akram N, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. A 86 022901Google Scholar

    [24]

    Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202Google Scholar

    [25]

    Zhang H, Akram N, Schuch R 2016 Phys. Rev. A 94 032704Google Scholar

    [26]

    Skog P, Zhang H, Schuch R 2008 Phys. Rev. Lett. 101 223202Google Scholar

    [27]

    Liu S D, Wang Y Y, Zhao Y T, Zhou X M, Cheng R, Lei Y, Sun Y B, Ren J R, Duan J L, Liu J, Xu H S, Xiao G Q 2015 Phys. Rev. A 91 012714Google Scholar

    [28]

    Liu S D, Zhao Y T, Wang Y Y 2017 Chin. Phys. B 26 106104Google Scholar

    [29]

    Xue Y, Yu D, Liu J, Zhang M, Yang B, Zhang Y, Cai X 2015 Appl. Phys. Lett. 107 254102Google Scholar

    [30]

    Stolterfoht N, Tanis J 2018 Nucl. Inst. Meth. Phys. Res. B 421 32Google Scholar

    [31]

    Das S, Dassanayake B, Winkworth M, Baran J, Stolterfoht N, Tanis J 2007 Phys. Rev. A 76 042716Google Scholar

    [32]

    Milosavljević A, Schiessl K, Lemell C, Tőkési K, Mátéfi-Tempfli M, Mátéfi-Tempfli S, Marinković B, Burgdörfer J 2012 Nucl. Inst. Meth. Phys. Res. B 279 190Google Scholar

    [33]

    Milosavljević A, Víkor G, Pešić Z, Kolarž P, Šević D, Marinković B, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901Google Scholar

    [34]

    Dassanayake B, Keerthisinghe D, Wickramarachchi S, Ayyad A, Das S, Stolterfoht N, Tanis J 2013 Nucl. Inst. Meth. Phys. Res. B 298 1Google Scholar

    [35]

    Keerthisinghe D, Dassanayake B, Wickramarachchi S, Stolterfoht N, Tanis J 2013 Nucl. Inst. Meth. Phys. Res. B 317 105Google Scholar

    [36]

    Keerthisinghe D, Dassanayake B, Wickramarachchi S, Stolterfoht N, Tanis J 2015 Phys. Rev. A 92 012703Google Scholar

    [37]

    Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201Google Scholar

    [38]

    李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 物理学报 71 074101Google Scholar

    Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Reinhold S, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 074101Google Scholar

    [39]

    Drouin D, Couture A R, Gauvin R, Hovington P, Horny P, Demers H 2016 Computer Code CASINO (version 3.3), https://www.gel.usherbrooke.ca/casino/index.html

  • [1] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究. 物理学报, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [2] 李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 万城亮, 崔莹, 马越, 杨治虎, 路迪, ReinholdSchuch, 黎明, 张红强, 陈熙萌. 低能电子在玻璃管中的稳定传输. 物理学报, 2022, 71(7): 074101. doi: 10.7498/aps.71.20212036
    [3] 张鸿, 郭红霞, 潘霄宇, 雷志峰, 张凤祁, 顾朝桥, 柳奕天, 琚安安, 欧阳晓平. 重离子在碳化硅中的输运过程及能量损失. 物理学报, 2021, 70(16): 162401. doi: 10.7498/aps.70.20210503
    [4] 陈燕红, 程锐, 张敏, 周贤明, 赵永涛, 王瑜玉, 雷瑜, 麻鹏鹏, 王昭, 任洁茹, 马新文, 肖国青. 利用质子能损检测气体靶区有效靶原子密度的实验研究. 物理学报, 2018, 67(4): 044101. doi: 10.7498/aps.67.20172028
    [5] 薛丹, 刘金远, 李书翰. 月表尘埃颗粒带电的机理及应用研究. 物理学报, 2018, 67(13): 135201. doi: 10.7498/aps.67.20180047
    [6] 秦丽, 郭红霞, 张凤祁, 盛江坤, 欧阳晓平, 钟向丽, 丁李利, 罗尹虹, 张阳, 琚安安. 铁电存储器60Co γ射线及电子总剂量效应研究. 物理学报, 2018, 67(16): 166101. doi: 10.7498/aps.67.20180829
    [7] 陈锋, 郑娜, 许海波. 质子照相中基于能量损失的密度重建. 物理学报, 2018, 67(20): 206101. doi: 10.7498/aps.67.20181039
    [8] 张宁, 张鑫, 杨爱香, 把得东, 冯展祖, 陈益峰, 邵剑雄, 陈熙萌. 质子束辐照单层石墨烯的损伤效应. 物理学报, 2017, 66(2): 026103. doi: 10.7498/aps.66.026103
    [9] 钱立冰, 李鹏飞, 靳博, 靳定坤, 宋光银, 张琦, 魏龙, 牛犇, 万成亮, 周春林, Arnold Milenko Müller, Max Dobeli, 宋张勇, 杨治虎, Reinhold Schuch, 张红强, 陈熙萌. 低能电子在外层导电屏蔽的玻璃锥管中的传输. 物理学报, 2017, 66(12): 124101. doi: 10.7498/aps.66.124101
    [10] 王承伟, 赵全忠, 钱静, 黄媛媛, 王关德, 李阳博, 柏锋, 范文中, 李虹瑾. 黑体辐射法测量电介质内部被超短激光脉冲加工后的温度. 物理学报, 2016, 65(12): 125201. doi: 10.7498/aps.65.125201
    [11] 万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌. 低能电子穿越玻璃直管和锥管动力学研究. 物理学报, 2016, 65(20): 204103. doi: 10.7498/aps.65.204103
    [12] 邓佳川, 赵永涛, 程锐, 周贤明, 彭海波, 王瑜玉, 雷瑜, 刘世东, 孙渊博, 任洁茹, 肖家浩, 麻礼东, 肖国青, R. Gavrilin, S. Savin, A. Golubev, D. H. H. Hoffmann. 低能质子束在氢等离子体中的能损研究. 物理学报, 2015, 64(14): 145202. doi: 10.7498/aps.64.145202
    [13] 高瑞军, 葛自明. 共面不对称条件下Ar原子(e, 2e)反应的三重微分截面. 物理学报, 2010, 59(3): 1702-1706. doi: 10.7498/aps.59.1702
    [14] 张涛. 光与电子之间能量交换的一个诱因. 物理学报, 2009, 58(1): 234-237. doi: 10.7498/aps.58.234
    [15] 杨 欢, 高 矿, 张穗萌. 大能量损失小动量转移几何条件下氦原子(e, 2e)反应的理论研究. 物理学报, 2007, 56(9): 5202-5208. doi: 10.7498/aps.56.5202
    [16] 夏志林, 范正修, 邵建达. 激光作用下薄膜中的电子-声子散射速率. 物理学报, 2006, 55(6): 3007-3012. doi: 10.7498/aps.55.3007
    [17] 何宝平, 陈 伟, 王桂珍. CMOS器件60Co γ射线、电子和质子电离辐射损伤比较. 物理学报, 2006, 55(7): 3546-3551. doi: 10.7498/aps.55.3546
    [18] 杨海亮, 邱爱慈, 李静雅, 孙剑锋, 何小平, 汤俊萍, 王海洋, 黄建军, 任书庆, 邹丽丽, 杨 莉. 叠片法测量“闪光二号”加速器的高功率离子束能谱. 物理学报, 2005, 54(9): 4072-4078. doi: 10.7498/aps.54.4072
    [19] 程兴奎, 周均铭, 黄绮. 超晶格结构中电子的波动性. 物理学报, 2001, 50(3): 536-539. doi: 10.7498/aps.50.536
    [20] 何斌, 常铁强, 张家泰, 许林宝. 超强激光场等离子体中电子纵向运动的研究. 物理学报, 2001, 50(10): 1939-1945. doi: 10.7498/aps.50.1939
计量
  • 文章访问数:  4056
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-17
  • 修回日期:  2022-01-10
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-20

/

返回文章
返回