搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹技术在胶质瘤诊疗中的应用: 从组织分级到分子分型

穆宁 杨川艳 马康 全玉莲 王诗 赖颖 李飞 王与烨 陈图南 徐德刚 冯华

引用本文:
Citation:

太赫兹技术在胶质瘤诊疗中的应用: 从组织分级到分子分型

穆宁, 杨川艳, 马康, 全玉莲, 王诗, 赖颖, 李飞, 王与烨, 陈图南, 徐德刚, 冯华

Terahertz technology applications in glioma diagnosis: From histological classification to molecular typing

Mu Ning, Yang Chuan-Yan, Ma Kang, Quan Yu-Lian, Wang Shi, Lai Ying, Li Fei, Wang Yu-Ye, Chen Tu-Nan, Xu De-Gang, Feng Hua
PDF
HTML
导出引用
  • 太赫兹波(terahertz, THz)是位于微波和红外之间介观尺度波长的电磁波, 因其低电离性和指纹性的特点, 在生物医学领域有着巨大的应用潜力, 尤其是在肿瘤的术中定位定性诊断方面. 而对于定位定性诊断需求最迫切的肿瘤为胶质瘤, 因其侵袭性和异质性, 切除后极易复发且对临近脑区神经功能有显著影响, 快速确定瘤体边界以及肿瘤病理学特征, 是开展胶质瘤精准诊疗和临床研究的重要前提. 本文总结了胶质瘤诊断的生物物理技术, 梳理了太赫兹波这一新兴技术在胶质瘤诊断方面所取得的研究成果. 进一步, 基于胶质瘤组织病理和分子病理整合诊断研究进展, 提出不同分子分型肿瘤组织在太赫兹波段可能具有不同 “特异性蛋白组成”的太赫兹肿瘤亚型识别机制假说, 结合脑组织生物学特点与体液中胶质瘤标志物检测潜力, 全面设想了未来太赫兹波在胶质瘤临床诊疗中的应用模式和发展前景.
    Terahertz wave is an electromagnetic wave, whose wavelength is located between microwave wavelength and infrared wavelength. Based on low ionization and fingerprint characteristics, it has great potential applications in biomedical field, especially in the intraoperative localization and qualitative diagnosis of tumors. Glioma is the most urgent tumor for positioning qualitative diagnosis. Owing to its invasiveness and heterogeneity, it is easy to relapse after resection and has a significant influence on the nerve function of adjacent brain regions. Therefore, rapid determination of tumor boundary and pathological characteristics is an important prerequisite for accurate diagnosis, treatment and clinical research of glioma. Here, we summarize the biophysical technology of glioma diagnosis, and expound the new technique of terahertz wave and its research results in diagnosis of glioma. Furthermore, based on the research progress of integrated diagnosis of glioma histopathology and molecular pathology, we propose a hypothesis that different molecular subtypes of tumor tissue may have a consistent 'differential terahertz wave protein composition' of terahertz tumor subtype recognition mechanism. Finally, combining the biological characteristics of brain tissue and the potential of glioma marker detection in body fluids, we discuss the clinical application model and prospects of terahertz technologies in glioma detection.
      通信作者: 王与烨, yuyewang@tju.edu.cn ; 陈图南, ctn@tmmu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 82173388)、国家重点基础研究发展计划(批准号: 2015CB755405)和陆军军医大学人才培养方案(批准号: 2019MPRC021/XZ-2019-505-051)资助的课题.
      Corresponding author: Wang Yu-Ye, yuyewang@tju.edu.cn ; Chen Tu-Nan, ctn@tmmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 82173388), the National Basic Research Program of China (Grant No. 2015CB755405), and the Talents Training Program of Army Military Medical University, China (Grant No. 2019MPRC021/XZ-2019-505-051).
    [1]

    Wen P Y, Kesari S 2008 New Engl. J. Med. 359 492Google Scholar

    [2]

    Coons S W, Johnson P C, Scheithauer B W, Yates A J, Pearl D K 1997 Cancer 79 1381Google Scholar

    [3]

    齐娜, 张卓勇, 相玉红 2013 光谱学与光谱分析 33 2064Google Scholar

    Qi N, Zhang Z Y, Xiang Y H 2013 Spectrosc. Spectral Anal. 33 2064Google Scholar

    [4]

    刘欢, 徐德刚, 姚建铨 2008 物理学报 57 5662Google Scholar

    Liu H, Xu D G, Yao J Q 2008 Acta Phys. Sin. 57 5662Google Scholar

    [5]

    Schirmer M, Fujio M, Minami M, Miura J, Araki T, Yasui T 2010 Biomed. Opt. Express 1 354Google Scholar

    [6]

    Brun M A, Formanek F, Yasuda A, Sekine M, Ando N, Eishii Y 2010 Phys. Med. Biol. 55 4615Google Scholar

    [7]

    Danciu M, Alexa-Stratulat T, Stefanescu C, et al. 2019 Materials 12 1Google Scholar

    [8]

    Gong A, Qiu Y, Chen X, Zhao Z, Xia L, Shao Y 2019 Appl. Spectrosc. Rev. 55 418Google Scholar

    [9]

    Nikitkina A I, Bikmulina P Y, Gafarova E R, et al. 2021 J. Biomed. Opt. 26 043005Google Scholar

    [10]

    Sun Q, He Y, Liu K, Fan S, Parrott E P J, Pickwell-MacPherson E 2017 Quant. Imaging Med. Surg. 7 345Google Scholar

    [11]

    Wan M, Healy J J, Sheridan J T 2019 Opt. Laser Technol. 122 105859Google Scholar

    [12]

    Yang X, Zhao X, Yang K, Liu Y, Liu Y, Fu W, Luo Y 2016 Trends Biotechnol. 34 810Google Scholar

    [13]

    Liu Y, Liu H, Tang M, Huang J, Liu W, Dong J, Chen X, Fu W, Zhang Y 2019 RSC Adv. 9 9354Google Scholar

    [14]

    Liang B, Liu W, Zhan Q, Li M, Zhuang M, Liu Q H, Yao J 2019 J. Biophotonics 12 e201800466Google Scholar

    [15]

    Ostrom Q T, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C, Barnholtz-Sloan J S 2019 Neuro-Oncology 21 1Google Scholar

    [16]

    Louis D, Arie P, Pieter W, Brat D, Cree I, Dominique F, Cynthia H, Ng H, Pfister S, Guido R 2021 Neuro-Oncology 23 1Google Scholar

    [17]

    Fisher R, Pusztai L, Swanton C 2013 Br. J. Cancer 108 479Google Scholar

    [18]

    Parker N R, Khong P, Parkinson J F, RuthWheeler H 2015 Front. Oncol. 5 1Google Scholar

    [19]

    Martin J van d B 2010 Acta Neuropathol. 120 297Google Scholar

    [20]

    Louis D N, Perry A, Reifenberger G, et al. 2016 Acta Neuropathol. 131 803Google Scholar

    [21]

    苏昌亮, 李丽, 陈小伟, 张巨, 申楠茜, 王振熊, 杨时骐, 李娟, 朱文珍, 王承缘 2016 放射学实践 31 570Google Scholar

    Su C L, Li L, Chen X W, Zhang J, Shen N Q, Wang Z X, Yang S J, Li J, Zhu W Z, Wang C Y 2016 Radiol. Pract. 31 570Google Scholar

    [22]

    Hainfellner J, Louis D, Perry A, Wesseling P 2014 Brain Pathol. 24 429Google Scholar

    [23]

    高培毅, 林燕, 张红梅 2000 中华放射学杂志 31 570Google Scholar

    Gao P Y, Lin Y, Zhang H M 2000 Chin. J. Radiol. 31 570Google Scholar

    [24]

    Yeung T P, Bauman G, Yartsev S, Fainardi E, Macdonald D, Lee T Y 2015 84 2386Google Scholar

    [25]

    Swanson K R, Chakraborty G, Wang C, Rockne R, Harpold H L, Muzi M, Adamsen T C, Krohn K A, Spence A M 2009 J. Nucl. Med. 50 36Google Scholar

    [26]

    Jenkinson M, Barone D, Bryant A, Vale L, Bulbeck H, Lawrie T, Hart M, Watts C 2018 Cochrane Database Syst. Rev. 1 1Google Scholar

    [27]

    Senft C, Bink A, Franz K, Vatter H, Gasser T, Seifert V 2011 Oncology 12 997Google Scholar

    [28]

    Hishii M, Matsumoto T, Arai H 2019 Asian J. Neurosurg. 14 589Google Scholar

    [29]

    Vasefi F, MacKinnon N, Farkas D L, Kateb B 2017 Neurophotonics 4 011010Google Scholar

    [30]

    Dolganova I N, Aleksandrova P V, Beshplav S I T, et al. 2018 Saratov Fall Meeting, International Symposium on Optics and Biophotonics Saratov(RU) pp1–2

    [31]

    Honda N, Lshii K, Kajimoto Y, Kuroiwa T, Awazu K 2018 J. Biomed. Opt. 23 075006Google Scholar

    [32]

    Roessle K, Roessler K, Donat M, Cejna M, Zachenhofer I 2013 Neurol. Res. 34 314Google Scholar

    [33]

    Genina E, Bashkatov A, Tuchina D, Timoshina P, Tuchin V 2019 Biomed. Opt. Express 10 5182Google Scholar

    [34]

    Gebhart S, Lin W, Mahadevan J A 2006 Phys. Med. Biol. 51 2011Google Scholar

    [35]

    Yaroslavsky A N, Schulze P C, Yaroslavsky I V, Schober R, Schwarzmaier H J 2002 Phys. Med. Biol. 47 2059Google Scholar

    [36]

    Jermyn M, Desroches J, Mercier J, St-Arnaud K, Petrecca K 2016 Biomed. Opt. Express 7 5129Google Scholar

    [37]

    Chen W, Zheng R, Baade P D, Zhang S, Zeng H, Bray F, Jemal A, Yu X Q, He J 2016 IEEE Trans. Terahertz Sci. Technol. 6 442Google Scholar

    [38]

    Chen H, Chen T H, Tseng T F, et al. 2011 Opt. Express 19 21552Google Scholar

    [39]

    Wahaia F, Kasalynas I, Seliuta D, Molis G, Urbanowicz A, Carvalho S C D, Carneiro F, Valusis G, Granja P L 2015 J. Mol. Struct. 1079 448Google Scholar

    [40]

    Wahaia F, Kasalynas I, Venckevicius R, et al. 2016 J. Mol. Struct. 1107 214Google Scholar

    [41]

    Joseph C S, Yaroslavsky A N, Lagraves J L, Goyette T M, Giles R H 2010 Terahertz Technology and Applications III San Francisco, CA(US), February 11, 2010 p760104

    [42]

    Meng K, Chen T N, Tao C, Zhu L G, Liu Q, Li Z, Li F, Zhong S C, Li Z R, Feng H 2014 J. Biomed. Opt. 19 077001Google Scholar

    [43]

    Cao Y, Huang P, Li X, Ge W, Hou D, Zhang G 2018 Phys. Med. Biol. 63 035016Google Scholar

    [44]

    Bowman T, Walter A, Shenderova O, Nunn N, McGuire G, El-Shenawee M 2017 Biomed. Phys. Eng. Express 3 055001Google Scholar

    [45]

    Poorgholam K S, Zarrabi F 2021 Opt. Commun. 480 126482Google Scholar

    [46]

    Park J Y, Choi H J, Cho K S, Kim K R, Son J H 2011 J. Appl. Phys. 109 064704Google Scholar

    [47]

    Reid C B, Fitzgerald A, Reese G, Goldin R, Tekkis P, O'Kelly P S, Pickwell M E, Gibson A P, Wallace V P 2011 Phys. Med. Biol. 56 4333Google Scholar

    [48]

    Bennett D B, Taylor Z D, Tewari P, et al. 2011 J. Biomed. Opt. 16 057003Google Scholar

    [49]

    Jung E, Lim M, Moon K, Do Y, Lee S, Han H, Choi H, Cho K, Kim K 2011 J. Opt. Soc. Korea 15 155Google Scholar

    [50]

    Sim Y C, Park J Y, Ahn K M, Park C, Son J H 2013 Biomed. Opt. Express 4 1413Google Scholar

    [51]

    St. Peter B, Yngvesson S, Siqueira P, Kelly P, Khan A, Glick S, Karellas A 2013 IEEE Trans. Terahertz Sci. Technol. 3 374Google Scholar

    [52]

    Anashkina E A, Andrianov A V, Akhmedzhanov R A, et al. 2014 Phys. Wave Phenom. 22 202Google Scholar

    [53]

    Yamaguchi S, Fukushi Y, Kubota O, Itsuji T, Ouchi T, Yamamoto S 2016 Phys. Med. Biol. 61 6808Google Scholar

    [54]

    Duling I, Dimdars Z 2009 Nat. Photonics 3 630Google Scholar

    [55]

    Crawley D A, Longbottom C, Cole B E 2003 Caries Res. 37 352Google Scholar

    [56]

    Shi J, Wang Y Y, Xu D G 2018 Opt. Express 26 6371Google Scholar

    [57]

    丁胜晖, 李琦, 李运达 2011 中国激光 38 220Google Scholar

    Ding S H, Li Q, Li Y D, Wang Q 2011 Chin. J. Lasers 38 220Google Scholar

    [58]

    Wu L M, Xu D G, Wang Y Y, Liao B, Jiang Z N, Zhao L, Sun Z C, Wu N, Chen T N, Feng H, Yao J Q 2019 Biomed. Opt. Express 10 3953Google Scholar

    [59]

    Wu L M, Xu D G, Wang Y Y, Zhang Y, Wang H, Liao B, Gong S, Chen T N, Wu N, Feng H, Yao J Q 2020 Neurophotonics 7 025005Google Scholar

    [60]

    Wu L M, Wang Y Y, Liao B, Zhao L, Chen K, Ge M L, Li H, Chen T N, Feng H, Xu D G, Yao J J 2021 Biomed. Opt. Express 13 93Google Scholar

    [61]

    Chen H, Chiu C M, Lai W L, Lee W J, Tsai Y F, Lin C W, Tseng T F, Sun C K 2011 Opt. Express 19 19523Google Scholar

    [62]

    Oh S J, Huh Y M, Kim S H, Yang J, Jeong K, Kang C, Son J H, Suh J S 2011 International Conference on Infrared, Millimeter, and Terahertz Waves Houston, USA, October 2–7 2011 pp1–2

    [63]

    Doradl P, Alavi K, Josep C, Giles R 2013 J. Biomed. Opt. 18 090504Google Scholar

    [64]

    Chen H, Ma S H, Yan W X, Wu X M, Wang X Z 2013 Chin. Phys. Lett. 30 030702Google Scholar

    [65]

    Sim Y C, Ahn K M, Park J Y, Park C S, Son J H 2013 IEEE J. Biomed. Health Inf. 17 779Google Scholar

    [66]

    Doradla P, Alavi K, Joseph C S, Giles R H 2014 J. Biomed. Opt. 19 080501Google Scholar

    [67]

    Azizi S, Novin S N, Seyedsharbaty M M, Zarrabi F 2018 Opt. Quantum Electron 50 230Google Scholar

    [68]

    Joseph C S, Patel R, Neel V A, Giles R H, Yaroslavsky A N 2014 J. Biophotonics 7 295Google Scholar

    [69]

    Oh S J, Kim S H, Ji Y B, Jeong K, Park Y, Yang J, Park D W, Noh S K, Kang S G, Huh Y M, Son J H, Suha J S 2014 Biomed. Opt. Express 5 2837Google Scholar

    [70]

    Ji Y B, Kim S H, Jeong K, Choi Y, Son J H, Park D W, Noh S K, Jeon T I, Huh Y M, Haam S, Lee S K, Oh S J, Suh J S 2014 Biomed. Opt. Express 5 4162Google Scholar

    [71]

    Chen H, Ma S, Wu X, Yang W, Zhao T 2015 J. Biomed. Opt. 20 036017Google Scholar

    [72]

    Wahaia F, Kasalynas I, Seliuta D, Molis G, Urbanowicz A, Carvalho S C D, Carneiro F, Valusis G, Granja P L 2015 J. Mol. Struct. 1079 391Google Scholar

    [73]

    Bowman T C, Shenawee M E, Campbell L K 2015 IEEE Trans. Antennas Propag. 63 2088Google Scholar

    [74]

    Rong L, Latychevskaia T, Chen C, Wang D, Yu Z, Zhou X, Li Z, Huang H, Wang Y, Zhou Z 2015 Sci. Rep. 5 1Google Scholar

    [75]

    Ji Y B, Park C H, Kim H, et al. 2015 Biomed. Opt. Express 6 274099146Google Scholar

    [76]

    Martin J P, Joseph C S, Giles R H 2016 J. Biomed. Opt. 21 70502Google Scholar

    [77]

    Rahman A, Rahman A K, Rao B 2016 Biosens. Bioelectron. 82 64Google Scholar

    [78]

    Yamaguchi S, Fukushi Y, Kubota O, Itsuji T, Ouchi T, Yamamoto S 2016 Sci. Rep. 6 30124Google Scholar

    [79]

    Ji Y B, JaeOh S, Kang S G, et al. 2016 Sci. Rep. 6 36040Google Scholar

    [80]

    Bowman T, Wu Y, Gauch J, Campbell L K, Shenawee M E 2017 J. Infrared Millimeter Terahertz Waves 38 766Google Scholar

    [81]

    Liu H, Zhang Z, Zhang X, Yang Y, Zhang Z, Liu X, Wang F, Han Y, Zhang C 2018 IEEE Trans. Terahertz Sci. Technol. 8 271Google Scholar

    [82]

    Mavarani L, Hillger P, Bücher T, Grzyb J, Pfeiffer U R, Cassar Q, Al-Ibadi A, Zimmer T, Guillet J P, Mounaix P, MacGrogan G 2018 Frequenz 72 93Google Scholar

    [83]

    Chernomyrdin N V, Kucheryavenko A S, Kolontaeva G S, et al. 2018 Appl. Phys. Lett. 113 274099146Google Scholar

    [84]

    Bowman T, Chavez T, Khan K, Wu J X, Chakraborty A, Rajaram N, Bailey K, El-Shenawee M 2018 J. Biomed. Opt. 23 026004Google Scholar

    [85]

    Grigorev R, Kuzikova A, Demchenko P, Senyuk A, Svechkova A, Khamid A, Zakharenko A, Khodzitskiy M 2019 Materials-Basel 13 1Google Scholar

    [86]

    Bowman T, Vohra N, Bailey K, Shenawee M E 2019 J. Med. Imaging 6 023501Google Scholar

    [87]

    Gavdush A, Chernomyrdin N, Malakhov K, et al. 2019 J. Biomed. Opt. 24 023501Google Scholar

    [88]

    Chavez T, Vohra N, Wu J, Bailey K, El-Shenawee M 2020 IEEE Trans. Terzhertz Sci. Technol. 10 176Google Scholar

    [89]

    Wang Y, Sun Z, Xu D, Wu L, Chang J, Tang L, Jiang Z, Jiang B, Wang G, Chen T, Feng H, Yao J 2019 J. Phys. D:Appl. Phys. 53 095403Google Scholar

    [90]

    Gavdush A A, Chernomyrdin N V, et al. 2021 Biomed. Opt. Express 12 69Google Scholar

    [91]

    Kucheryavenko A S, Chernomyrdin N, Gavdush A, et al. 2021 Biomed. Opt. Express 12 4162Google Scholar

    [92]

    Guerboukha H, Nallappan K, Skorobogatiy M 2018 Adv. Opt. Photonics 10 843Google Scholar

    [93]

    Zaytsev K, Dolganova I, Chernomyrdin N, et al. 2020 J. Opt. 22 013001Google Scholar

    [94]

    Chen W, Peng Y, Jiang X, Zhao J, Zhao H, Zhu Y 2017 Sci. Rep. 7 12166Google Scholar

    [95]

    Sy S, Shengyang H, Wáng Y X, Yu J, Ahuja A T, Zhang Y T, Pickwell M E 2010 Phys. Med. Biol. 55 7587Google Scholar

    [96]

    Xie A, van der Meer A F, Austin R H 2002 Phys. Rev. Lett. 88 018102Google Scholar

    [97]

    Wang Y, Jiang Z, Xu D, Chen T, Chen B, Wang S, Mu N, Feng H, Yao J 2019 Biomed. Opt. Express 10 5351Google Scholar

    [98]

    Zhang J, Mu N, Liu L, Xie J, Feng H, Yao J, Chen T, Zhu W 2021 Biosens. Bioelectron. 185 113241Google Scholar

    [99]

    Cheng C, Zhu Z, Li S, Ren G, Zhang J, Cong H, Peng Y, Han J, Chang C, Zhao H 2019 RSC Adv. 9 20240Google Scholar

    [100]

    Waniewski R A, Martin D L 1984 J. Neurosci. 4 2237Google Scholar

    [101]

    Ruggiero M T, Sibik J, Zeitler J A, Korter T M 2016 J Phys Chem A 120 7490Google Scholar

    [102]

    Liu K, Zhang R, Liu Y, Chen X, Li K, Pickwell M E 2021 Biomed. Opt. Express 12 1559Google Scholar

    [103]

    Stefano N D, Matthews P M, Arnold D L 1995 Magn. Reson. Med. 34 721Google Scholar

    [104]

    Hattingen E, Raab P, Franz K, Zanella F E, Lanfermann H, Pilatus U 2008 NMR Biomed. 21 233Google Scholar

    [105]

    Metwally L I A, El-din S E, Abdelaziz O, Hamdy I M, Elsamman A K, Abdelalim A M 2014 Egypt. J. Radiol. Nucl. Med. 45 211Google Scholar

    [106]

    Yang L, Sun H, Weng S, Zhao K, Zhang L, Zhao G, Wang Y, Xu Y, Lu X, Zhang C, Wu J 2008 Spectrochim. Acta, Part A. 69 160Google Scholar

    [107]

    King M D, Blanton T N, Misture S T, Korter T M 2011 Cryst. Growth Des. 11 5733Google Scholar

    [108]

    Cherkasova O, Peng Y, Konnikova M, Kistenev Y, Shi C J, Vrazhnov D, Shevelev O, Zavjalov E, Kuznetsov S, Shkurinov A 2021 Photonics 8 22Google Scholar

    [109]

    Wu K, Qi C, Zhu Z, Wang C, Song B, Chang C 2020 J. Phys. Chem. Lett. 11 7002Google Scholar

    [110]

    Xiang Z, Tang C, Chang C, Liua G 2020 Sci. Bull. 65 308Google Scholar

    [111]

    Liu G, Chang C, Qiao Z, Wu K, Zhu Z, Cui G, Peng W, Tang Y, Li J, Fan C 2019 Adv. Funct. Mater. 29 1807862.1Google Scholar

    [112]

    Liu X, Qiao Z, Chai Y, Zhu Z, Wu K, Ji W, Li D, Xiao Y, Mao L, Chang C, Wen Q, Song B, Shu Y 2021 Proc. Natl. Acad. Sci. U. S. A. 118 e2015685118Google Scholar

    [113]

    Zhang J, He Y, Liang S, Liao X, Li T, Qiao Z, Chang C, Jia H, Chen X 2021 Nat. Commun. 12 1Google Scholar

    [114]

    Li Y, Chang C, Zhu Z, Sun L, Fan C 2021 J. Am. Chem. Soc. 143 4311Google Scholar

    [115]

    Touat M, Duran P A, Alentorn A, Lacroix L, Massard C, Idbaih A 2015 Expert Rev. Mol. Diagn. 15 1311Google Scholar

    [116]

    Cheung A H K, Chit Chow, To K F 2018 J. Thorac. Dis. 10 S1645Google Scholar

    [117]

    Kit O I, Vodolazhsky D I, Rostorguev E E, Porksheyan D H, Panina S 2017 Biomed. Khim. 63 481Google Scholar

    [118]

    Simonelli M, Dipasquale A, Orzan F, Lorenzi E, Persico P, Navarria P, Pessina F, Conti Nibali M, Bello L, Santoro A, Boccaccio C 2020 Crit. Rev. Oncol. Hematol. 146 102879Google Scholar

    [119]

    Kumar A, Verma P, Jindal P 2021 Opt. Quantum Electron 53 165Google Scholar

    [120]

    Pantel K, Brakenhoff R H, Brandt B 2008 Nat. Rev. Cancer 8 329Google Scholar

    [121]

    Sheng W, Ogunwobi O O, Chen T, Zhang J, George T J, Liu C, Fan Z H 2014 Lab Chip 14 89Google Scholar

    [122]

    Zhu M, Zhang L, Ma S, Wang J, Su J, Liu A 2018 Mater. Res. Express 6 045805Google Scholar

    [123]

    Wan J, Massie C, Garcia-Corbacho J, Mouliere F, Brenton J D, Caldas C, Pacey S, Baird R, Rosenfeld N 2017 Nat. Rev. Cancer 17 223Google Scholar

    [124]

    杨柯 2020 博士学位论文 (重庆: 陆军军医大学)

    Yang K 2020 Ph. D. Dissertation (Chongqing: Army Military Medical University) (in Chinese)

    [125]

    Silantyev A S, Libra L F M, Gurina O I, Kardashova K S, Nikolouzakis T K, Nosyrev A E, Sutton C W, Mitsias P D, Tsatsakis A 2019 Cells 8 863Google Scholar

    [126]

    Pirlog R, Susman S, Iuga C A, Florian S I 2019 Medicina 55 1Google Scholar

    [127]

    Petrik V, Saadoun S, Loosemore A, Hobbs J, Opstad K S, Sheldon J, Tarelli E, Howe F A, Bell A, Papadopoulos M C 2008 Clin. Chem. 54 713Google Scholar

    [128]

    Miyauchi E, Furuta T, Ohtsuki S, Tachikawa M, Uchida Y, Sabit H, Obuchi W, Baba T, Watanabe M, Terasaki T 2018 PloS One 13 e0193799Google Scholar

    [129]

    López-López n, López-Gonzálvez n, Clive-Baker T, Barbas C 2018 Expert Rev. Mol. Diagn. 18 1Google Scholar

    [130]

    Mangano K, Mazzon E, Basile M S, Marco R D, Bramanti P, Mammana S, Petralia M C, Fagone P, Nicoletti F 2018 Oncotarget 9 17951Google Scholar

    [131]

    Mario P, Emanuela M, Maria B, Maria P, Alessia B, Giuseppe C, Placido B, Ferdinando N, Paolo F 2018 Oncol. Lett. 16 2881Google Scholar

    [132]

    Zavialova M, Shevchenko V, Nikolaev E, Zgoda V 2017 Eur. J. Mass Spectrom. 23 192Google Scholar

    [133]

    曹灿 2020 博士学位论文 (北京: 北京科技大学)

    Cao C 2020 Ph. D. Dissertation (Beijing: University of Science & Technology Beijing) (in Chinese)

    [134]

    Bi J, Chowdhry S, Wu S, Zhang W, Masui K, Mischel P S 2020 Nat. Rev. Cancer 20 57Google Scholar

    [135]

    Kwon H, Oh S, Jin X, An Y J, Park S 2015 Arch. Pharmacal Res. 38 372Google Scholar

    [136]

    燕芳, 李伟, 王志春 2020 光谱学与光谱分析 40 397Google Scholar

    Yan F, Li W, Wang Z C 2020 Spectrosc. Spectral Anal. 40 397Google Scholar

    [137]

    Gourlay J, Morokoff A P, Luwor R B, Zhu H J, Kaye A H, Stylli S S 2017 J. Clin. Neurosci. 35 13Google Scholar

    [138]

    Yunusova N V, Borisov A, Yury K 2020 Multimodal Optical Diagnostics of Cancer (Germany: Springer, Chan) pp157–192

    [139]

    Surman M, Stępień E, Hoja-Łukowicz D, Przybyło M 2017 Clin. Exp. Metastasis 34 273Google Scholar

    [140]

    André-Grégoire G, Gavard J 2016 Cell Adhes. Migr. 11 164Google Scholar

    [141]

    Yang H, Fua H, Xu W, Zhang X 2016 Clin. Chem. Lab. Med. 54 1871Google Scholar

    [142]

    Lan F, Qing Q, Pan Q, Hu M, Yu H, Yue X 2018 Cell. Oncol. 41 25Google Scholar

    [143]

    Yue X, Lan F, Xia T 2019 Mol. Ther. 27 1939Google Scholar

    [144]

    Manda S V, Kataria Y, Tatireddy B R, Ramakrishnan B, Ratnam B G, Lath R, Ranjan A, Ray A 2017 J. Neurosurg. 128 1Google Scholar

    [145]

    Akers A C, Hua W, Li H, et al. 2017 Oncotarget 8 68769Google Scholar

    [146]

    Figueroa J, Phillips L M, Shahar T, et al. 2017 Cancer Res. 77 5808Google Scholar

    [147]

    Shao H, Chung J, Lee K, Balaj L, Min C, Carter B S, Hochberg F H, Breakefield X O, Lee H, Weissleder R 2015 Nat. Commun. 6 6999Google Scholar

    [148]

    汤明杰 2020年 博士学位论文(重庆: 中国科学院大学)

    Tang M J 2020 Ph. D. Dissertation (Chongqing: University of Chinese Academy of Sciences) (in Chinese)

    [149]

    Zhang R, Chen Q, Liu K, Chen Z, Li K, Zhang X, Xu J, Pickwell-MacPherson E 2019 IEEE Trans. Terahertz Sci. Technol. 99 1Google Scholar

    [150]

    Zhou R, Wang C, Huang Y, Huang K, Wang Y, Xu W, Xie L, Ying Y 2021 Biosens. Bioelectron. 188 113336Google Scholar

    [151]

    Sebastiani F, Ma C Y, Funke S, Bäumer A, Decka D, Hoberg C, Esser A, Forbert H, Schwa G, Marx D, Havenith M 2020 Angew. Chem. Int. Ed. 60 3768Google Scholar

    [152]

    Zhang Z, Yang M, Yan X, Guo X, Li J, Yang Y, Wei D, Liu L, Xie J, Liu Y, Liang L, Yao J 2020 ACS Appl. Mater. Interfaces 12 11399Google Scholar

    [153]

    Yiwen, Sun, Bernd, M, Fischer, Emma, Pickwell-MacPherson 2009 J. Biomed. Opt. 14 064017Google Scholar

    [154]

    Fan S, Ung B, Parrott E, Pickwell-Macpherson E 2015 Phys. Med. Biol. 60 2703Google Scholar

    [155]

    Png G M, Choi J W, Ng B W, Mickan S P, Abbott D, Zhang X J P i M 2008 Phys. Med. Biol. 53 3501Google Scholar

    [156]

    Oh S J, Kim S H, Jeong K, Park Y, Huh Y M, Son H, Suh J S 2013 Opt. Express 21 21299Google Scholar

    [157]

    Kolesnikov A S, Kolesnikova E A, Popov A P, Nazarov M M, Shkurinov A P, Tuchin V V 2014 Quantum Electron. 44 633Google Scholar

    [158]

    Formanek F, Brun M A, Yasuda A 2010 Biomed. Opt. Express 2 58Google Scholar

    [159]

    He Y, Ung B S Y, Parrott E P J, Ahuja A T, Pickwell-MacPherson E 2016 Biomed. Opt. Express 7 4711Google Scholar

  • 图 1  基于“组织病理”和“分子病理”联合诊断标准 (a) 肿瘤细胞形态学特征; (b) 胶质瘤分子分型

    Fig. 1.  Based on a combination of histopathology and molecular pathology: (a) Morphological characteristics of tumor cells; (b) molecular typing of gliomas.

    图 2  胶质瘤诊断方法

    Fig. 2.  Diagnostic methods for glioma.

    图 3  太赫兹光谱检测技术 (a) 透射式太赫兹光谱系统; (b) 反射式太赫兹光谱系统; (c)衰减全反射太赫兹光谱系统

    Fig. 3.  Terahertz spectral detection technology: (a) Transmitted THz spectral system; (b) reflected THz spectral system; (c) attenuated total reflection THz spectral system.

    图 4  近10年太赫兹技术在胶质瘤诊断研究中的发文情况

    Fig. 4.  Publication of THz technology in glioma diagnosis in recent 10 years.

    图 5  THz技术在临床胶质瘤诊断方面的新模式

    Fig. 5.  New models of THz technology in clinical glioma diagnosis.

    表 1  当前胶质瘤临床诊断方法

    Table 1.  Current clinical diagnosis of glioma.

    诊断方式标记物对健康组织损伤局限性应用效果对比检测信息
    影像学
    诊断
    CT18F; 11C; 64Cu微量辐射暴露对软组织的分辨率和敏感性相对较低, 成像参数少适用于术后早期病人的检查及因手术银夹不能行MRI检查者实现定位, 部分定性
    PET-CT碘剂; 钡剂; 金辐射引起微量
    组织损伤
    辐射大、价格昂贵,
    缺乏解剖相关性
    特异性高, 具有较高阳性预测值与准确性, 阴性预测值较CT和MRI低
    SPECT放射药物辐射剂量小,
    价格低廉
    空间分辨率、特异性低可应用于判断胶质瘤恶性程度
    MRI顺磁性或超顺磁性粒子钆无创、需造影剂检查时间长、费用高, 对患者自身因素有限制敏感性高, 具有较高的诊断准确性
    病理学
    诊断
    术中冰冻病理HE试剂有创、局部组织取材局限、容易漏诊,
    图像解释具有主观性
    可用于术中胶质瘤形态观察, 确定手术范围实现定性
    术后免疫组化标记物抗体有创、病灶组织周期长、滞后为后期胶质瘤治疗提供指导建议
    分子生物学技术生物芯片、基因检测和测序依赖检测平台有创、局部病灶组织、血液准入门槛高、滞后性、
    价格昂贵
    提供药物筛查、靶向精准治疗
    其他新型技术拉曼光谱抗干扰强, 结果
    重复性好
    散射效率低, 单次检测面积小介观尺度胶质瘤病灶精准检测及分级识别可同时获取“定位定性”信息
    太赫兹波无创、非电离穿透深度低, 水敏感宏观到介观尺度病灶分布与肿瘤边界, 肿瘤组织与正常组织, 肿瘤分子分型特异性识别
    下载: 导出CSV

    表 2  近10年太赫兹技术在肿瘤诊断中的工作模式

    Table 2.  Patterns of THz technique in tumor diagnosis over the last 10 years.

    年份癌症种类辐射源工作模式参考文献
    2011肝癌(兔)脉冲式反射式光谱成像系统[46]
    2011结肠癌(人)脉冲式反射式成像系统[47]
    2011基底细胞癌(BCC)连续式光纤扫描近场显微镜透射成像系统[61]
    2011乳腺癌脉冲式透射式成像系统[38]
    2011结肠癌脉冲式反射式成像系统[48]
    2011宫颈癌脉冲式反射式成像模式[49]
    2011皮肤癌连续式透射式成像模式[41]
    2011胶质瘤脉冲式反射式成像模式[62]
    2013结肠癌连续式反射式成像模式[63]
    2013肝癌脉冲式光纤扫描近场显微镜透射成像系统[64]
    2013恶性黑色素瘤脉冲式反射式成像模式[65]
    2013乳腺癌连续式反射式成像模式[51]
    2013口腔癌脉冲式反射式成像模式[50]
    2014结肠癌连续式反射式成像模式[66]
    2014皮肤病脉冲式反射式成像模式[52]
    2014皮肤癌脉冲式反射式成像模式[67]
    2014皮肤癌连续式反射式成像模式[68]
    2014胶质瘤脉冲式反射式成像模式[69]
    2014肠癌脉冲式反射式成像模式[70]
    2014胶质瘤脉冲式透射式光谱模式[42]
    2015结肠癌组织脉冲式透射式近场成像模式[71]
    2015结肠癌组织脉冲式透射式光谱模式[39]
    2015胃癌脉冲式透射式光谱模式[72]
    2015乳腺癌脉冲式反射式成像模式[73]
    2015肝癌组织连续式透射式同轴全息成像模式[74]
    2016结肠癌连续式反射式光谱及成像模式[40]
    2015胃癌脉冲式反射式光谱及成像模式[75]
    2016NMSC组织连续式反射式成像模式[76]
    2016胶质瘤脉冲式反射式光谱模式[53]
    2016皮肤癌连续式反射式光谱及成像模式[77]
    2016胶质瘤脉冲式反射式光谱及成像模式[78]
    2016胶质瘤脉冲式反射式成像系统[79]
    2017胃癌脉冲式透射式光谱模式[43]
    2017乳腺癌脉冲式反射式成像模式[80]
    2017乳腺癌脉冲式透射式光谱及反射式成像模式[44]
    2018肝癌脉冲式反射式光谱模式[81]
    2018乳腺癌脉冲式透射式成像模式[82]
    2018乳腺癌连续式反射式成像模式[83]
    2018乳腺癌脉冲式反射式光谱及成像模式[84]
    2019胃癌脉冲式反射式光谱模式[85]
    2019胶质瘤连续式反射式成像模式[58]
    2019乳腺癌脉冲式反射式成像模式[86]
    2019胶质瘤脉冲式反射式光谱及成像模式[87]
    2020乳腺癌脉冲式反射式光谱及成像模式[88]
    2020胶质瘤组织连续式反射成像模式[59]
    2020胶质瘤组织连续式反射式成像模式[89]
    2021皮肤癌脉冲式透射式光谱模式[45]
    2021胶质瘤脉冲式[90]
    2021胶质瘤脉冲式反射式光谱及成像系统[91]
    2021胶质瘤组织连续式反射式光谱及成像系统[60]
    下载: 导出CSV

    表 3  当前基于太赫兹技术研究胶质瘤的结果

    Table 3.  Current results of glioma studies using the terahertz techniques.

    参考文献年份样本类型THz 技术研究特点生物学对照机理解释
    组织[62]2011SD大鼠胶质瘤模型反射式太赫兹脉冲成像系统首次开展THz胶质瘤成像MRI, 可见光水含量
    [69]2014SD大鼠胶质瘤及瘤旁
    (石蜡3 μm)
    反射式太赫兹脉冲成像系统解释THz波生物组织成像机制MRI, HE除水含量外, 细胞密度、髓鞘分布
    [42]2014C57小鼠胶质瘤模型, 大脑组织石蜡1—2.5 mm透射式太赫兹脉冲光谱系统测量了石蜡包埋的脑胶质瘤和正常脑组织的折射率、吸收系数和复介电常数, 分析最佳太赫兹频率脑胶质瘤具有更高的折射率、吸收系数和介电常数
    [78]2016SD大鼠胶质瘤模型(新鲜、石蜡)反射式太赫兹脉冲光谱系统定量解释THz光谱检测胶质瘤可行性HE细胞密度、含水量增加肿瘤折射率
    [76]2016SD大鼠胶质瘤模型(新鲜)反射式太赫兹脉冲光谱成像系统探究利用复折射率值获得太赫兹图像检测脑肿瘤的可能性HE水含量、细胞密度
    [79]2016Balb裸鼠原位异种移植、临床新鲜标本反射式太赫兹脉冲成像系统回答TRI解决临床组织移动性及无标记成像可能性HE, 核磁水、脂质
    [87]2019临床人脑胶质瘤(明胶包埋)反射式太赫兹脉冲光谱成像系统应用于临床分级组织HE水、细胞密度、血肿成分
    [58]2019C57胶质瘤组织反射连续波太赫兹成像系统反射连续波太赫兹成像系统应用与胶质瘤成像可能性MRI, HE血管、坏死碎片、水肿、细胞密度
    [59]2020大鼠/小鼠胶质瘤组织衰减全反射连续波太赫兹成像系统提高成像有效面积HE水、细胞密度、血管密度
    [89]2020大鼠胶质瘤反射连续波太赫兹成像系统提高分辨率HE水、细胞密度、血管密度
    [91]2021SD大鼠胶质瘤模型(新鲜)反射式太赫兹脉冲光谱系统胶质瘤异质性HE微血管生成、组织异质性
    [60]2021SD小鼠胶质瘤组织反射式连续性太赫兹光谱成像系统提高分辨率及扫描面积HE、MRI细胞、血管密度、组织坏死
    [90]2021临床胶质瘤样品(明胶包埋)脉冲太赫兹光谱系统验证介电常数的物理模型可靠性
    细胞系[98]2021胶质瘤细胞系透射式太赫兹脉冲光谱系统首次提出THz检测不同分子分型细胞形态、大小、分子分型
    [97]2019神经胶质细胞和胶质瘤细胞衰减全反射太赫兹脉冲式光谱系统从细胞系角度解释THz可区分肿瘤组织形态、含水量
    分子
    标记物
    [99]2019GABA/COC 1:15—1:18透射式太赫兹脉冲光谱系统率先推进了太赫兹神经递质检测
    [101]2016A-GLU/b-Glu太赫兹时域光谱系统区分不同构型谷氨酸
    [37]20162-HG及其异构体太赫兹时域光谱系统区分不同构型代谢物碳链质子转移
    [102]2021EGFR抗体结合太赫兹时域光谱系统提升EGFR检测灵敏性
    下载: 导出CSV
  • [1]

    Wen P Y, Kesari S 2008 New Engl. J. Med. 359 492Google Scholar

    [2]

    Coons S W, Johnson P C, Scheithauer B W, Yates A J, Pearl D K 1997 Cancer 79 1381Google Scholar

    [3]

    齐娜, 张卓勇, 相玉红 2013 光谱学与光谱分析 33 2064Google Scholar

    Qi N, Zhang Z Y, Xiang Y H 2013 Spectrosc. Spectral Anal. 33 2064Google Scholar

    [4]

    刘欢, 徐德刚, 姚建铨 2008 物理学报 57 5662Google Scholar

    Liu H, Xu D G, Yao J Q 2008 Acta Phys. Sin. 57 5662Google Scholar

    [5]

    Schirmer M, Fujio M, Minami M, Miura J, Araki T, Yasui T 2010 Biomed. Opt. Express 1 354Google Scholar

    [6]

    Brun M A, Formanek F, Yasuda A, Sekine M, Ando N, Eishii Y 2010 Phys. Med. Biol. 55 4615Google Scholar

    [7]

    Danciu M, Alexa-Stratulat T, Stefanescu C, et al. 2019 Materials 12 1Google Scholar

    [8]

    Gong A, Qiu Y, Chen X, Zhao Z, Xia L, Shao Y 2019 Appl. Spectrosc. Rev. 55 418Google Scholar

    [9]

    Nikitkina A I, Bikmulina P Y, Gafarova E R, et al. 2021 J. Biomed. Opt. 26 043005Google Scholar

    [10]

    Sun Q, He Y, Liu K, Fan S, Parrott E P J, Pickwell-MacPherson E 2017 Quant. Imaging Med. Surg. 7 345Google Scholar

    [11]

    Wan M, Healy J J, Sheridan J T 2019 Opt. Laser Technol. 122 105859Google Scholar

    [12]

    Yang X, Zhao X, Yang K, Liu Y, Liu Y, Fu W, Luo Y 2016 Trends Biotechnol. 34 810Google Scholar

    [13]

    Liu Y, Liu H, Tang M, Huang J, Liu W, Dong J, Chen X, Fu W, Zhang Y 2019 RSC Adv. 9 9354Google Scholar

    [14]

    Liang B, Liu W, Zhan Q, Li M, Zhuang M, Liu Q H, Yao J 2019 J. Biophotonics 12 e201800466Google Scholar

    [15]

    Ostrom Q T, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C, Barnholtz-Sloan J S 2019 Neuro-Oncology 21 1Google Scholar

    [16]

    Louis D, Arie P, Pieter W, Brat D, Cree I, Dominique F, Cynthia H, Ng H, Pfister S, Guido R 2021 Neuro-Oncology 23 1Google Scholar

    [17]

    Fisher R, Pusztai L, Swanton C 2013 Br. J. Cancer 108 479Google Scholar

    [18]

    Parker N R, Khong P, Parkinson J F, RuthWheeler H 2015 Front. Oncol. 5 1Google Scholar

    [19]

    Martin J van d B 2010 Acta Neuropathol. 120 297Google Scholar

    [20]

    Louis D N, Perry A, Reifenberger G, et al. 2016 Acta Neuropathol. 131 803Google Scholar

    [21]

    苏昌亮, 李丽, 陈小伟, 张巨, 申楠茜, 王振熊, 杨时骐, 李娟, 朱文珍, 王承缘 2016 放射学实践 31 570Google Scholar

    Su C L, Li L, Chen X W, Zhang J, Shen N Q, Wang Z X, Yang S J, Li J, Zhu W Z, Wang C Y 2016 Radiol. Pract. 31 570Google Scholar

    [22]

    Hainfellner J, Louis D, Perry A, Wesseling P 2014 Brain Pathol. 24 429Google Scholar

    [23]

    高培毅, 林燕, 张红梅 2000 中华放射学杂志 31 570Google Scholar

    Gao P Y, Lin Y, Zhang H M 2000 Chin. J. Radiol. 31 570Google Scholar

    [24]

    Yeung T P, Bauman G, Yartsev S, Fainardi E, Macdonald D, Lee T Y 2015 84 2386Google Scholar

    [25]

    Swanson K R, Chakraborty G, Wang C, Rockne R, Harpold H L, Muzi M, Adamsen T C, Krohn K A, Spence A M 2009 J. Nucl. Med. 50 36Google Scholar

    [26]

    Jenkinson M, Barone D, Bryant A, Vale L, Bulbeck H, Lawrie T, Hart M, Watts C 2018 Cochrane Database Syst. Rev. 1 1Google Scholar

    [27]

    Senft C, Bink A, Franz K, Vatter H, Gasser T, Seifert V 2011 Oncology 12 997Google Scholar

    [28]

    Hishii M, Matsumoto T, Arai H 2019 Asian J. Neurosurg. 14 589Google Scholar

    [29]

    Vasefi F, MacKinnon N, Farkas D L, Kateb B 2017 Neurophotonics 4 011010Google Scholar

    [30]

    Dolganova I N, Aleksandrova P V, Beshplav S I T, et al. 2018 Saratov Fall Meeting, International Symposium on Optics and Biophotonics Saratov(RU) pp1–2

    [31]

    Honda N, Lshii K, Kajimoto Y, Kuroiwa T, Awazu K 2018 J. Biomed. Opt. 23 075006Google Scholar

    [32]

    Roessle K, Roessler K, Donat M, Cejna M, Zachenhofer I 2013 Neurol. Res. 34 314Google Scholar

    [33]

    Genina E, Bashkatov A, Tuchina D, Timoshina P, Tuchin V 2019 Biomed. Opt. Express 10 5182Google Scholar

    [34]

    Gebhart S, Lin W, Mahadevan J A 2006 Phys. Med. Biol. 51 2011Google Scholar

    [35]

    Yaroslavsky A N, Schulze P C, Yaroslavsky I V, Schober R, Schwarzmaier H J 2002 Phys. Med. Biol. 47 2059Google Scholar

    [36]

    Jermyn M, Desroches J, Mercier J, St-Arnaud K, Petrecca K 2016 Biomed. Opt. Express 7 5129Google Scholar

    [37]

    Chen W, Zheng R, Baade P D, Zhang S, Zeng H, Bray F, Jemal A, Yu X Q, He J 2016 IEEE Trans. Terahertz Sci. Technol. 6 442Google Scholar

    [38]

    Chen H, Chen T H, Tseng T F, et al. 2011 Opt. Express 19 21552Google Scholar

    [39]

    Wahaia F, Kasalynas I, Seliuta D, Molis G, Urbanowicz A, Carvalho S C D, Carneiro F, Valusis G, Granja P L 2015 J. Mol. Struct. 1079 448Google Scholar

    [40]

    Wahaia F, Kasalynas I, Venckevicius R, et al. 2016 J. Mol. Struct. 1107 214Google Scholar

    [41]

    Joseph C S, Yaroslavsky A N, Lagraves J L, Goyette T M, Giles R H 2010 Terahertz Technology and Applications III San Francisco, CA(US), February 11, 2010 p760104

    [42]

    Meng K, Chen T N, Tao C, Zhu L G, Liu Q, Li Z, Li F, Zhong S C, Li Z R, Feng H 2014 J. Biomed. Opt. 19 077001Google Scholar

    [43]

    Cao Y, Huang P, Li X, Ge W, Hou D, Zhang G 2018 Phys. Med. Biol. 63 035016Google Scholar

    [44]

    Bowman T, Walter A, Shenderova O, Nunn N, McGuire G, El-Shenawee M 2017 Biomed. Phys. Eng. Express 3 055001Google Scholar

    [45]

    Poorgholam K S, Zarrabi F 2021 Opt. Commun. 480 126482Google Scholar

    [46]

    Park J Y, Choi H J, Cho K S, Kim K R, Son J H 2011 J. Appl. Phys. 109 064704Google Scholar

    [47]

    Reid C B, Fitzgerald A, Reese G, Goldin R, Tekkis P, O'Kelly P S, Pickwell M E, Gibson A P, Wallace V P 2011 Phys. Med. Biol. 56 4333Google Scholar

    [48]

    Bennett D B, Taylor Z D, Tewari P, et al. 2011 J. Biomed. Opt. 16 057003Google Scholar

    [49]

    Jung E, Lim M, Moon K, Do Y, Lee S, Han H, Choi H, Cho K, Kim K 2011 J. Opt. Soc. Korea 15 155Google Scholar

    [50]

    Sim Y C, Park J Y, Ahn K M, Park C, Son J H 2013 Biomed. Opt. Express 4 1413Google Scholar

    [51]

    St. Peter B, Yngvesson S, Siqueira P, Kelly P, Khan A, Glick S, Karellas A 2013 IEEE Trans. Terahertz Sci. Technol. 3 374Google Scholar

    [52]

    Anashkina E A, Andrianov A V, Akhmedzhanov R A, et al. 2014 Phys. Wave Phenom. 22 202Google Scholar

    [53]

    Yamaguchi S, Fukushi Y, Kubota O, Itsuji T, Ouchi T, Yamamoto S 2016 Phys. Med. Biol. 61 6808Google Scholar

    [54]

    Duling I, Dimdars Z 2009 Nat. Photonics 3 630Google Scholar

    [55]

    Crawley D A, Longbottom C, Cole B E 2003 Caries Res. 37 352Google Scholar

    [56]

    Shi J, Wang Y Y, Xu D G 2018 Opt. Express 26 6371Google Scholar

    [57]

    丁胜晖, 李琦, 李运达 2011 中国激光 38 220Google Scholar

    Ding S H, Li Q, Li Y D, Wang Q 2011 Chin. J. Lasers 38 220Google Scholar

    [58]

    Wu L M, Xu D G, Wang Y Y, Liao B, Jiang Z N, Zhao L, Sun Z C, Wu N, Chen T N, Feng H, Yao J Q 2019 Biomed. Opt. Express 10 3953Google Scholar

    [59]

    Wu L M, Xu D G, Wang Y Y, Zhang Y, Wang H, Liao B, Gong S, Chen T N, Wu N, Feng H, Yao J Q 2020 Neurophotonics 7 025005Google Scholar

    [60]

    Wu L M, Wang Y Y, Liao B, Zhao L, Chen K, Ge M L, Li H, Chen T N, Feng H, Xu D G, Yao J J 2021 Biomed. Opt. Express 13 93Google Scholar

    [61]

    Chen H, Chiu C M, Lai W L, Lee W J, Tsai Y F, Lin C W, Tseng T F, Sun C K 2011 Opt. Express 19 19523Google Scholar

    [62]

    Oh S J, Huh Y M, Kim S H, Yang J, Jeong K, Kang C, Son J H, Suh J S 2011 International Conference on Infrared, Millimeter, and Terahertz Waves Houston, USA, October 2–7 2011 pp1–2

    [63]

    Doradl P, Alavi K, Josep C, Giles R 2013 J. Biomed. Opt. 18 090504Google Scholar

    [64]

    Chen H, Ma S H, Yan W X, Wu X M, Wang X Z 2013 Chin. Phys. Lett. 30 030702Google Scholar

    [65]

    Sim Y C, Ahn K M, Park J Y, Park C S, Son J H 2013 IEEE J. Biomed. Health Inf. 17 779Google Scholar

    [66]

    Doradla P, Alavi K, Joseph C S, Giles R H 2014 J. Biomed. Opt. 19 080501Google Scholar

    [67]

    Azizi S, Novin S N, Seyedsharbaty M M, Zarrabi F 2018 Opt. Quantum Electron 50 230Google Scholar

    [68]

    Joseph C S, Patel R, Neel V A, Giles R H, Yaroslavsky A N 2014 J. Biophotonics 7 295Google Scholar

    [69]

    Oh S J, Kim S H, Ji Y B, Jeong K, Park Y, Yang J, Park D W, Noh S K, Kang S G, Huh Y M, Son J H, Suha J S 2014 Biomed. Opt. Express 5 2837Google Scholar

    [70]

    Ji Y B, Kim S H, Jeong K, Choi Y, Son J H, Park D W, Noh S K, Jeon T I, Huh Y M, Haam S, Lee S K, Oh S J, Suh J S 2014 Biomed. Opt. Express 5 4162Google Scholar

    [71]

    Chen H, Ma S, Wu X, Yang W, Zhao T 2015 J. Biomed. Opt. 20 036017Google Scholar

    [72]

    Wahaia F, Kasalynas I, Seliuta D, Molis G, Urbanowicz A, Carvalho S C D, Carneiro F, Valusis G, Granja P L 2015 J. Mol. Struct. 1079 391Google Scholar

    [73]

    Bowman T C, Shenawee M E, Campbell L K 2015 IEEE Trans. Antennas Propag. 63 2088Google Scholar

    [74]

    Rong L, Latychevskaia T, Chen C, Wang D, Yu Z, Zhou X, Li Z, Huang H, Wang Y, Zhou Z 2015 Sci. Rep. 5 1Google Scholar

    [75]

    Ji Y B, Park C H, Kim H, et al. 2015 Biomed. Opt. Express 6 274099146Google Scholar

    [76]

    Martin J P, Joseph C S, Giles R H 2016 J. Biomed. Opt. 21 70502Google Scholar

    [77]

    Rahman A, Rahman A K, Rao B 2016 Biosens. Bioelectron. 82 64Google Scholar

    [78]

    Yamaguchi S, Fukushi Y, Kubota O, Itsuji T, Ouchi T, Yamamoto S 2016 Sci. Rep. 6 30124Google Scholar

    [79]

    Ji Y B, JaeOh S, Kang S G, et al. 2016 Sci. Rep. 6 36040Google Scholar

    [80]

    Bowman T, Wu Y, Gauch J, Campbell L K, Shenawee M E 2017 J. Infrared Millimeter Terahertz Waves 38 766Google Scholar

    [81]

    Liu H, Zhang Z, Zhang X, Yang Y, Zhang Z, Liu X, Wang F, Han Y, Zhang C 2018 IEEE Trans. Terahertz Sci. Technol. 8 271Google Scholar

    [82]

    Mavarani L, Hillger P, Bücher T, Grzyb J, Pfeiffer U R, Cassar Q, Al-Ibadi A, Zimmer T, Guillet J P, Mounaix P, MacGrogan G 2018 Frequenz 72 93Google Scholar

    [83]

    Chernomyrdin N V, Kucheryavenko A S, Kolontaeva G S, et al. 2018 Appl. Phys. Lett. 113 274099146Google Scholar

    [84]

    Bowman T, Chavez T, Khan K, Wu J X, Chakraborty A, Rajaram N, Bailey K, El-Shenawee M 2018 J. Biomed. Opt. 23 026004Google Scholar

    [85]

    Grigorev R, Kuzikova A, Demchenko P, Senyuk A, Svechkova A, Khamid A, Zakharenko A, Khodzitskiy M 2019 Materials-Basel 13 1Google Scholar

    [86]

    Bowman T, Vohra N, Bailey K, Shenawee M E 2019 J. Med. Imaging 6 023501Google Scholar

    [87]

    Gavdush A, Chernomyrdin N, Malakhov K, et al. 2019 J. Biomed. Opt. 24 023501Google Scholar

    [88]

    Chavez T, Vohra N, Wu J, Bailey K, El-Shenawee M 2020 IEEE Trans. Terzhertz Sci. Technol. 10 176Google Scholar

    [89]

    Wang Y, Sun Z, Xu D, Wu L, Chang J, Tang L, Jiang Z, Jiang B, Wang G, Chen T, Feng H, Yao J 2019 J. Phys. D:Appl. Phys. 53 095403Google Scholar

    [90]

    Gavdush A A, Chernomyrdin N V, et al. 2021 Biomed. Opt. Express 12 69Google Scholar

    [91]

    Kucheryavenko A S, Chernomyrdin N, Gavdush A, et al. 2021 Biomed. Opt. Express 12 4162Google Scholar

    [92]

    Guerboukha H, Nallappan K, Skorobogatiy M 2018 Adv. Opt. Photonics 10 843Google Scholar

    [93]

    Zaytsev K, Dolganova I, Chernomyrdin N, et al. 2020 J. Opt. 22 013001Google Scholar

    [94]

    Chen W, Peng Y, Jiang X, Zhao J, Zhao H, Zhu Y 2017 Sci. Rep. 7 12166Google Scholar

    [95]

    Sy S, Shengyang H, Wáng Y X, Yu J, Ahuja A T, Zhang Y T, Pickwell M E 2010 Phys. Med. Biol. 55 7587Google Scholar

    [96]

    Xie A, van der Meer A F, Austin R H 2002 Phys. Rev. Lett. 88 018102Google Scholar

    [97]

    Wang Y, Jiang Z, Xu D, Chen T, Chen B, Wang S, Mu N, Feng H, Yao J 2019 Biomed. Opt. Express 10 5351Google Scholar

    [98]

    Zhang J, Mu N, Liu L, Xie J, Feng H, Yao J, Chen T, Zhu W 2021 Biosens. Bioelectron. 185 113241Google Scholar

    [99]

    Cheng C, Zhu Z, Li S, Ren G, Zhang J, Cong H, Peng Y, Han J, Chang C, Zhao H 2019 RSC Adv. 9 20240Google Scholar

    [100]

    Waniewski R A, Martin D L 1984 J. Neurosci. 4 2237Google Scholar

    [101]

    Ruggiero M T, Sibik J, Zeitler J A, Korter T M 2016 J Phys Chem A 120 7490Google Scholar

    [102]

    Liu K, Zhang R, Liu Y, Chen X, Li K, Pickwell M E 2021 Biomed. Opt. Express 12 1559Google Scholar

    [103]

    Stefano N D, Matthews P M, Arnold D L 1995 Magn. Reson. Med. 34 721Google Scholar

    [104]

    Hattingen E, Raab P, Franz K, Zanella F E, Lanfermann H, Pilatus U 2008 NMR Biomed. 21 233Google Scholar

    [105]

    Metwally L I A, El-din S E, Abdelaziz O, Hamdy I M, Elsamman A K, Abdelalim A M 2014 Egypt. J. Radiol. Nucl. Med. 45 211Google Scholar

    [106]

    Yang L, Sun H, Weng S, Zhao K, Zhang L, Zhao G, Wang Y, Xu Y, Lu X, Zhang C, Wu J 2008 Spectrochim. Acta, Part A. 69 160Google Scholar

    [107]

    King M D, Blanton T N, Misture S T, Korter T M 2011 Cryst. Growth Des. 11 5733Google Scholar

    [108]

    Cherkasova O, Peng Y, Konnikova M, Kistenev Y, Shi C J, Vrazhnov D, Shevelev O, Zavjalov E, Kuznetsov S, Shkurinov A 2021 Photonics 8 22Google Scholar

    [109]

    Wu K, Qi C, Zhu Z, Wang C, Song B, Chang C 2020 J. Phys. Chem. Lett. 11 7002Google Scholar

    [110]

    Xiang Z, Tang C, Chang C, Liua G 2020 Sci. Bull. 65 308Google Scholar

    [111]

    Liu G, Chang C, Qiao Z, Wu K, Zhu Z, Cui G, Peng W, Tang Y, Li J, Fan C 2019 Adv. Funct. Mater. 29 1807862.1Google Scholar

    [112]

    Liu X, Qiao Z, Chai Y, Zhu Z, Wu K, Ji W, Li D, Xiao Y, Mao L, Chang C, Wen Q, Song B, Shu Y 2021 Proc. Natl. Acad. Sci. U. S. A. 118 e2015685118Google Scholar

    [113]

    Zhang J, He Y, Liang S, Liao X, Li T, Qiao Z, Chang C, Jia H, Chen X 2021 Nat. Commun. 12 1Google Scholar

    [114]

    Li Y, Chang C, Zhu Z, Sun L, Fan C 2021 J. Am. Chem. Soc. 143 4311Google Scholar

    [115]

    Touat M, Duran P A, Alentorn A, Lacroix L, Massard C, Idbaih A 2015 Expert Rev. Mol. Diagn. 15 1311Google Scholar

    [116]

    Cheung A H K, Chit Chow, To K F 2018 J. Thorac. Dis. 10 S1645Google Scholar

    [117]

    Kit O I, Vodolazhsky D I, Rostorguev E E, Porksheyan D H, Panina S 2017 Biomed. Khim. 63 481Google Scholar

    [118]

    Simonelli M, Dipasquale A, Orzan F, Lorenzi E, Persico P, Navarria P, Pessina F, Conti Nibali M, Bello L, Santoro A, Boccaccio C 2020 Crit. Rev. Oncol. Hematol. 146 102879Google Scholar

    [119]

    Kumar A, Verma P, Jindal P 2021 Opt. Quantum Electron 53 165Google Scholar

    [120]

    Pantel K, Brakenhoff R H, Brandt B 2008 Nat. Rev. Cancer 8 329Google Scholar

    [121]

    Sheng W, Ogunwobi O O, Chen T, Zhang J, George T J, Liu C, Fan Z H 2014 Lab Chip 14 89Google Scholar

    [122]

    Zhu M, Zhang L, Ma S, Wang J, Su J, Liu A 2018 Mater. Res. Express 6 045805Google Scholar

    [123]

    Wan J, Massie C, Garcia-Corbacho J, Mouliere F, Brenton J D, Caldas C, Pacey S, Baird R, Rosenfeld N 2017 Nat. Rev. Cancer 17 223Google Scholar

    [124]

    杨柯 2020 博士学位论文 (重庆: 陆军军医大学)

    Yang K 2020 Ph. D. Dissertation (Chongqing: Army Military Medical University) (in Chinese)

    [125]

    Silantyev A S, Libra L F M, Gurina O I, Kardashova K S, Nikolouzakis T K, Nosyrev A E, Sutton C W, Mitsias P D, Tsatsakis A 2019 Cells 8 863Google Scholar

    [126]

    Pirlog R, Susman S, Iuga C A, Florian S I 2019 Medicina 55 1Google Scholar

    [127]

    Petrik V, Saadoun S, Loosemore A, Hobbs J, Opstad K S, Sheldon J, Tarelli E, Howe F A, Bell A, Papadopoulos M C 2008 Clin. Chem. 54 713Google Scholar

    [128]

    Miyauchi E, Furuta T, Ohtsuki S, Tachikawa M, Uchida Y, Sabit H, Obuchi W, Baba T, Watanabe M, Terasaki T 2018 PloS One 13 e0193799Google Scholar

    [129]

    López-López n, López-Gonzálvez n, Clive-Baker T, Barbas C 2018 Expert Rev. Mol. Diagn. 18 1Google Scholar

    [130]

    Mangano K, Mazzon E, Basile M S, Marco R D, Bramanti P, Mammana S, Petralia M C, Fagone P, Nicoletti F 2018 Oncotarget 9 17951Google Scholar

    [131]

    Mario P, Emanuela M, Maria B, Maria P, Alessia B, Giuseppe C, Placido B, Ferdinando N, Paolo F 2018 Oncol. Lett. 16 2881Google Scholar

    [132]

    Zavialova M, Shevchenko V, Nikolaev E, Zgoda V 2017 Eur. J. Mass Spectrom. 23 192Google Scholar

    [133]

    曹灿 2020 博士学位论文 (北京: 北京科技大学)

    Cao C 2020 Ph. D. Dissertation (Beijing: University of Science & Technology Beijing) (in Chinese)

    [134]

    Bi J, Chowdhry S, Wu S, Zhang W, Masui K, Mischel P S 2020 Nat. Rev. Cancer 20 57Google Scholar

    [135]

    Kwon H, Oh S, Jin X, An Y J, Park S 2015 Arch. Pharmacal Res. 38 372Google Scholar

    [136]

    燕芳, 李伟, 王志春 2020 光谱学与光谱分析 40 397Google Scholar

    Yan F, Li W, Wang Z C 2020 Spectrosc. Spectral Anal. 40 397Google Scholar

    [137]

    Gourlay J, Morokoff A P, Luwor R B, Zhu H J, Kaye A H, Stylli S S 2017 J. Clin. Neurosci. 35 13Google Scholar

    [138]

    Yunusova N V, Borisov A, Yury K 2020 Multimodal Optical Diagnostics of Cancer (Germany: Springer, Chan) pp157–192

    [139]

    Surman M, Stępień E, Hoja-Łukowicz D, Przybyło M 2017 Clin. Exp. Metastasis 34 273Google Scholar

    [140]

    André-Grégoire G, Gavard J 2016 Cell Adhes. Migr. 11 164Google Scholar

    [141]

    Yang H, Fua H, Xu W, Zhang X 2016 Clin. Chem. Lab. Med. 54 1871Google Scholar

    [142]

    Lan F, Qing Q, Pan Q, Hu M, Yu H, Yue X 2018 Cell. Oncol. 41 25Google Scholar

    [143]

    Yue X, Lan F, Xia T 2019 Mol. Ther. 27 1939Google Scholar

    [144]

    Manda S V, Kataria Y, Tatireddy B R, Ramakrishnan B, Ratnam B G, Lath R, Ranjan A, Ray A 2017 J. Neurosurg. 128 1Google Scholar

    [145]

    Akers A C, Hua W, Li H, et al. 2017 Oncotarget 8 68769Google Scholar

    [146]

    Figueroa J, Phillips L M, Shahar T, et al. 2017 Cancer Res. 77 5808Google Scholar

    [147]

    Shao H, Chung J, Lee K, Balaj L, Min C, Carter B S, Hochberg F H, Breakefield X O, Lee H, Weissleder R 2015 Nat. Commun. 6 6999Google Scholar

    [148]

    汤明杰 2020年 博士学位论文(重庆: 中国科学院大学)

    Tang M J 2020 Ph. D. Dissertation (Chongqing: University of Chinese Academy of Sciences) (in Chinese)

    [149]

    Zhang R, Chen Q, Liu K, Chen Z, Li K, Zhang X, Xu J, Pickwell-MacPherson E 2019 IEEE Trans. Terahertz Sci. Technol. 99 1Google Scholar

    [150]

    Zhou R, Wang C, Huang Y, Huang K, Wang Y, Xu W, Xie L, Ying Y 2021 Biosens. Bioelectron. 188 113336Google Scholar

    [151]

    Sebastiani F, Ma C Y, Funke S, Bäumer A, Decka D, Hoberg C, Esser A, Forbert H, Schwa G, Marx D, Havenith M 2020 Angew. Chem. Int. Ed. 60 3768Google Scholar

    [152]

    Zhang Z, Yang M, Yan X, Guo X, Li J, Yang Y, Wei D, Liu L, Xie J, Liu Y, Liang L, Yao J 2020 ACS Appl. Mater. Interfaces 12 11399Google Scholar

    [153]

    Yiwen, Sun, Bernd, M, Fischer, Emma, Pickwell-MacPherson 2009 J. Biomed. Opt. 14 064017Google Scholar

    [154]

    Fan S, Ung B, Parrott E, Pickwell-Macpherson E 2015 Phys. Med. Biol. 60 2703Google Scholar

    [155]

    Png G M, Choi J W, Ng B W, Mickan S P, Abbott D, Zhang X J P i M 2008 Phys. Med. Biol. 53 3501Google Scholar

    [156]

    Oh S J, Kim S H, Jeong K, Park Y, Huh Y M, Son H, Suh J S 2013 Opt. Express 21 21299Google Scholar

    [157]

    Kolesnikov A S, Kolesnikova E A, Popov A P, Nazarov M M, Shkurinov A P, Tuchin V V 2014 Quantum Electron. 44 633Google Scholar

    [158]

    Formanek F, Brun M A, Yasuda A 2010 Biomed. Opt. Express 2 58Google Scholar

    [159]

    He Y, Ung B S Y, Parrott E P J, Ahuja A T, Pickwell-MacPherson E 2016 Biomed. Opt. Express 7 4711Google Scholar

  • [1] 惠战强, 高黎明, 刘瑞华, 韩冬冬, 汪伟. 低损耗大带宽双芯负曲率太赫兹光纤偏振分束器. 物理学报, 2022, 71(4): 048702. doi: 10.7498/aps.71.20211650
    [2] 惠战强. 低损耗大带宽双芯负曲率太赫兹光纤偏振分束器. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211650
    [3] 汪静丽, 刘洋, 钟凯. 基于领结型多孔光纤的双芯太赫兹偏振分束器. 物理学报, 2017, 66(2): 024209. doi: 10.7498/aps.66.024209
    [4] 柴路, 牛跃, 栗岩锋, 胡明列, 王清月. 差频可调谐太赫兹技术的新进展. 物理学报, 2016, 65(7): 070702. doi: 10.7498/aps.65.070702
    [5] 陈泽章. 太赫兹波段液晶分子极化率的理论研究. 物理学报, 2016, 65(14): 143101. doi: 10.7498/aps.65.143101
    [6] 王学扬, 齐志华, 宋颖, 刘东平. 等离子体放电活化生理盐水杀菌应用研究. 物理学报, 2016, 65(12): 123301. doi: 10.7498/aps.65.123301
    [7] 杨华斌, 仝丽, 朱逸伦. 先进微波成像诊断技术中高通滤波板的优化设计. 物理学报, 2015, 64(16): 165202. doi: 10.7498/aps.64.165202
    [8] 鹿文亮, 娄淑琴, 王鑫, 申艳, 盛新志. 基于太赫兹时域光谱技术的伪色彩太赫兹成像的实验研究. 物理学报, 2015, 64(11): 114206. doi: 10.7498/aps.64.114206
    [9] 王琛, 安红海, 王伟, 方智恒, 贾果, 孟祥富, 孙今人, 刘正坤, 付绍军, 乔秀梅, 郑无敌, 王世绩. 利用软X射线双频光栅剪切干涉技术诊断金等离子体. 物理学报, 2014, 63(12): 125210. doi: 10.7498/aps.63.125210
    [10] 陈大鹏, 邢春飞, 张峥, 张存林. 太赫兹激励的红外热波检测技术. 物理学报, 2012, 61(2): 024202. doi: 10.7498/aps.61.024202
    [11] 孟田华, 赵国忠, 张存林. 亚波长分形结构太赫兹透射增强的机理研究. 物理学报, 2008, 57(6): 3846-3852. doi: 10.7498/aps.57.3846
    [12] 牛田野, 曹金祥, 刘 磊, 刘金英, 王 艳, 王 亮, 吕 铀, 王 舸, 朱 颖. 低温氩等离子体中的单探针和发射光谱诊断技术. 物理学报, 2007, 56(4): 2330-2336. doi: 10.7498/aps.56.2330
    [13] 张晓丹, 张发荣, Amanatides Elefterious, Mataras Dimitris, 赵 颖. 硅薄膜沉积中等离子体辉光功率和阻抗的测试分析. 物理学报, 2007, 56(9): 5309-5313. doi: 10.7498/aps.56.5309
    [14] 王 真, 杨建伦, 徐荣昆, 李林波, 许泽平, 章法强, 钟耀华. 用于Z-pinch诊断的266nm激光探针分幅阴影成像系统. 物理学报, 2006, 55(11): 5942-5946. doi: 10.7498/aps.55.5942
    [15] 徐妙华, 梁天骄, 张 杰. 利用韧致辐射诊断激光等离子体相互作用产生的超热电子. 物理学报, 2006, 55(5): 2357-2363. doi: 10.7498/aps.55.2357
    [16] 张治国, 刘天伟, 徐 军, 邓新禄, 董 闯. MW-ECR PE-UMS等离子体特性及对Zr-N薄膜结构性能的影响. 物理学报, 2005, 54(7): 3257-3262. doi: 10.7498/aps.54.3257
    [17] 杨家敏, 丁耀南, 郑志坚, 王耀梅, 张文海, 张继彦, 刘进元, 山 冰, 高盛琛, 任有来, 刘秀琴. 时空分辨软x射线谱诊断技术研究. 物理学报, 2003, 52(6): 1427-1431. doi: 10.7498/aps.52.1427
    [18] 董贾福, 唐年益, 李伟, 罗俊林, 郭干诚, 钟云泽, 刘仪, 傅炳忠, 姚良骅, 冯北滨, 秦运文. HL-1M装置超声分子束注入等离子体穿透特性的诊断. 物理学报, 2002, 51(9): 2074-2079. doi: 10.7498/aps.51.2074
    [19] 杨晓华, 陈扬琴, 蔡佩佩, 王荣军, 卢晶晶. 速度调制光谱技术在等离子体诊断中的应用. 物理学报, 2000, 49(3): 421-425. doi: 10.7498/aps.49.421
    [20] 林尊琪, 张燕珍, 毕无忌, 陆海鹤, 何兴法, 赵志文, 韦小春, 施阿英, 王笑琴, 林康春, 李家明, 董骐. 激光内爆靶的四分幅X射线阴影成像诊断实验和理论模拟. 物理学报, 1988, 37(1): 20-28. doi: 10.7498/aps.37.20
计量
  • 文章访问数:  9344
  • PDF下载量:  170
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-29
  • 修回日期:  2022-01-26
  • 上网日期:  2022-08-16
  • 刊出日期:  2022-09-05

/

返回文章
返回