-
在传统的氧化物约束型的垂直腔面发射半导体激光器中, 横向光限制主要取决于氧化层的厚度及其相对于腔内光驻波分布的位置. 通过减少外延结构中氧化层与光场驻波分布之间的重叠, 可以降低芯层与包层之间的有效折射率差, 从而减少腔内可存在的横向模的数量, 并增加横模向氧化物孔径之外的扩展. 本文利用这一原理设计并制作了一个795 nm的大氧化孔径的垂直腔面发射激光器. 器件在80 ℃下可实现4.1 mW的高功率单基模工作, 最高边模抑制比为41.68 dB, 最高正交偏振抑制比为27.46 dB. 将VCSEL作为抽运源应用于核磁共振陀螺仪系统样机中, 实验结果表面新设计的VCSEL可以满足陀螺系统的初步应用需求.
-
关键词:
- 垂直腔面发射半导体激光器 /
- 大氧化孔径 /
- 单基模 /
- 核磁共振陀螺仪
Single-transverse mode vertical-cavity surface-emitting lasers (VCSELs) are preferable optical sources for small low-power atomic sensors, including chip-scale atomic clocks, magnetometers, and gyroscopes.When VCSEL is used as the pump source of nuclear magnetic resonance gyroscope, it is required to have high single-mode output power. Oxide aperture diameter must be sufficiently small (< 4 µm) in a conventional oxide-confined VCSEL to support the fundamental mode alone. However, high series resistance (typically > 200 Ω for GaAs-based VCSEL) from the small aperture limits its output power and reliability due to excessive current-induced self-heating and high current density. It is a very attractive idea to achieve high power operation of an intrinsic single mode VCSEL based on a large oxide aperture by means of epitaxial structure design without introducing additional process steps. Transverse optical confinement in oxide-confined VCSELs crucially depends on the thickness of oxide layer and its position relative to standing wave. Modifying the structure reduces the overlap between the oxide layer and the standing wave as well as the difference in effective refractive index between core and cladding of the VCSEL, thereby reducing the number of transverse modes andincreasing the mode extension beyond oxide aperture. A 795-nm VCSEL is designed and fabricated based on this concept. A cavity structure of VCSEL with gain-cavity detuning of ~10.8 nm at room temperature is adopted in this paper. The effective refractive index and the standing wave distribution of the VCSEL are calculated, and the position of the oxide layer in the epitaxial structure of the VCSEL is optimized according to the standing wave distribution. Finally, the structure with low effective refractive index difference is obtained. The proposed device achieves high single-mode operation of 4.1 mW at 80 ℃, SMSR of 41.68 dB, and OPSR of 27.4 dB. The VCSEL is applied to a nuclear magnetic resonance gyroscope (NMRG) system as pump source due to its excellent device performance, and satisfactory test results are obtained. This paper presents a new method of designing single-mode high power VCSEL and its feasibility is also demonstrated through experimental results.-
Keywords:
- vertical cavity surface-emitting semiconductor laser /
- large oxide aperture /
- single fundermental mode /
- nuclear magnetic resonance gyroscope
[1] Larson A 2011 IEEE J. Sel. Top. Quant. Electron. 17 1552Google Scholar
[2] Kasukawa A 2012 IEEE Photonics J. 4 642Google Scholar
[3] Kitching J 2018 Appl. Phys. Rev. 5 031302Google Scholar
[4] Knappe S, Gerginov V, Schwindt P D D, Shah V, Robinson H G, Hollberg L, Kitching J 2005 Opt. Lett. 30 2351Google Scholar
[5] Gruet F, Al-Samaneh A, Kroemer E, Bimboes L, Miletic D, Affolderbach C, Wahl D, Boudot R, Mileti G, Michalzik R 2013 Opt. Express 21 5781Google Scholar
[6] Maleev N A, Blokhin S A, Bobrov M A, et al. 2018 Gyroscopy Navig. 9 177Google Scholar
[7] Czyszanowski T, Dems M, Panajotov K 2007 Opt. Express 15 5604Google Scholar
[8] Baek J H, Song D S, Hwang I K, Lee K H, Lee Y H 2004 Opt. Express 12 859Google Scholar
[9] Furukawa A, Sasaki S, Hoshi M, Matsuzono A, Moritoh K, Baba T 2004 Appl. Phys. Lett. 85 5161Google Scholar
[10] Shi J W, Wei Z R, Chi K L, Jiang J W, Wu J M, Lu I C, Chen J, Yang Y J 2013 J. Lightwave Technol. 31 4037Google Scholar
[11] Shi J W, Khan Z, Horng R H, Yeh H Y, Huang C K, Liu C Y, Shi J C, Chang Y H, Yen J L, Sheu J K 2020 Opt. Lett. 45 4839Google Scholar
[12] Haglund A, Gustavsson J S, Vukušić J, Modh P, Larsson A 2004 IEEE Photon. Technol. Lett. 16 368Google Scholar
[13] Al-Samaneh A, Sanayeh M B, Miah M J, Schwarz W, Wahl D, Kern A, Michalzik R 2012 Appl. Phys. Lett. 101 171104Google Scholar
[14] Gustavsson J, Haglund Å, Vukušić J, Bengtsson J, Jedrasik P, Larsson A 2005 Opt. Express 13 6626Google Scholar
[15] Serkland D K, Geib K M, Lutwak R, Garvey R M, Varghese M, Mescher M 2006 Proc. SPIE 6132 613208Google Scholar
[16] Ostermann J M, Debernardi P, Jalics C, Michalzik R 2005 IEEE J. Sel. Topics Quantum Electron. 11 107Google Scholar
[17] Keeler G A, Geib K M, Serkland D K, Peake G M 2007 VCSEL Polarization Control for Chip-scale Atomic Clocks. (Sandia National Laboratories)
[18] 王阳, 崔碧峰, 房天啸 2017 光电子 7 50Google Scholar
Wang Y, Cui B F, Fang T X 2017 Optoelectronics 7 50Google Scholar
[19] 张建, 宁永强, 张建伟, 张星, 曾玉刚, 王立军 2014 光学精密工程 22 50Google Scholar
Zhang J, Ning Y Q, Zhang J W, Zhang X, Zeng Y G, Wang L J 2014 Optics Precision Engineer. 22 50Google Scholar
[20] Zhang J W, Zhang X, Zhu H B, Zhang J, Ning Y Q, Qin L, Wang L J 2015 Opt. Express. 23 14763Google Scholar
[21] Li X, Zhou Y L, Zhang X, Zhang J W, Zeng Y G, Ning Y Q, Wang L J 2022 Appl. Phys. B 128 16
[22] Pang W, Pan G Z, Wei Q H, Hu L C, Zhao Z Z, Xie Y Y 2020 3 rd International Conference on Electron Device and Mechanical Engineering (ICEDME), Suzhou, China, 2020 p573
[23] 赵军, 秦丽, 闫树斌, 任小红 2009 电子设计工程 17 118Google Scholar
Zhao J, Qin L, Yan S B, Ren X H 2009 Int. Electr. Elem. 17 118Google Scholar
[24] Zhang J Y, Zhang J W, Zhang X, Zhou Y L, Huang Y W, Ning Y Q, Zhu H B, Zhang J, Zeng Y G, Wang L J 2021 Opt. Laser Technol. 139 106948Google Scholar
[25] Hadley G R 1995 Opt. Lett. 20 1483Google Scholar
[26] Chiang K S 1996 IEEE. Trans. Microw. Theory Tech. 44 692Google Scholar
[27] 时尧成, 戴道锌, 何赛灵 2005 光学学报 25 51Google Scholar
Shi Y C, Dai D X, He S L 2005 Acta Optica Sinica 25 51Google Scholar
[28] Michalzik R 2013 Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers (Ulm, Germany: Springer Series in Optical Sciences) p124
[29] Al-Samaneh A, Bou Sanayeh M, Renz S, Wahl D, Michalzik R 2011 IEEE Photon. Technol. Lett. 23 1049Google Scholar
[30] Gruet F, Al-Samaneh A, Kroemer E, Bimboes L, Miletic D, Affolderback C, Wahl D, Boudot R, Mileti G, Michalzik R 2013 Optics Express 21 5781
[31] Chen L L, Zhou B Q, Lei G Q, Wu W F, Zhai Y Y, Wang Z, Fang J C. 2017 AIP Adv. 7 115101Google Scholar
-
-
[1] Larson A 2011 IEEE J. Sel. Top. Quant. Electron. 17 1552Google Scholar
[2] Kasukawa A 2012 IEEE Photonics J. 4 642Google Scholar
[3] Kitching J 2018 Appl. Phys. Rev. 5 031302Google Scholar
[4] Knappe S, Gerginov V, Schwindt P D D, Shah V, Robinson H G, Hollberg L, Kitching J 2005 Opt. Lett. 30 2351Google Scholar
[5] Gruet F, Al-Samaneh A, Kroemer E, Bimboes L, Miletic D, Affolderbach C, Wahl D, Boudot R, Mileti G, Michalzik R 2013 Opt. Express 21 5781Google Scholar
[6] Maleev N A, Blokhin S A, Bobrov M A, et al. 2018 Gyroscopy Navig. 9 177Google Scholar
[7] Czyszanowski T, Dems M, Panajotov K 2007 Opt. Express 15 5604Google Scholar
[8] Baek J H, Song D S, Hwang I K, Lee K H, Lee Y H 2004 Opt. Express 12 859Google Scholar
[9] Furukawa A, Sasaki S, Hoshi M, Matsuzono A, Moritoh K, Baba T 2004 Appl. Phys. Lett. 85 5161Google Scholar
[10] Shi J W, Wei Z R, Chi K L, Jiang J W, Wu J M, Lu I C, Chen J, Yang Y J 2013 J. Lightwave Technol. 31 4037Google Scholar
[11] Shi J W, Khan Z, Horng R H, Yeh H Y, Huang C K, Liu C Y, Shi J C, Chang Y H, Yen J L, Sheu J K 2020 Opt. Lett. 45 4839Google Scholar
[12] Haglund A, Gustavsson J S, Vukušić J, Modh P, Larsson A 2004 IEEE Photon. Technol. Lett. 16 368Google Scholar
[13] Al-Samaneh A, Sanayeh M B, Miah M J, Schwarz W, Wahl D, Kern A, Michalzik R 2012 Appl. Phys. Lett. 101 171104Google Scholar
[14] Gustavsson J, Haglund Å, Vukušić J, Bengtsson J, Jedrasik P, Larsson A 2005 Opt. Express 13 6626Google Scholar
[15] Serkland D K, Geib K M, Lutwak R, Garvey R M, Varghese M, Mescher M 2006 Proc. SPIE 6132 613208Google Scholar
[16] Ostermann J M, Debernardi P, Jalics C, Michalzik R 2005 IEEE J. Sel. Topics Quantum Electron. 11 107Google Scholar
[17] Keeler G A, Geib K M, Serkland D K, Peake G M 2007 VCSEL Polarization Control for Chip-scale Atomic Clocks. (Sandia National Laboratories)
[18] 王阳, 崔碧峰, 房天啸 2017 光电子 7 50Google Scholar
Wang Y, Cui B F, Fang T X 2017 Optoelectronics 7 50Google Scholar
[19] 张建, 宁永强, 张建伟, 张星, 曾玉刚, 王立军 2014 光学精密工程 22 50Google Scholar
Zhang J, Ning Y Q, Zhang J W, Zhang X, Zeng Y G, Wang L J 2014 Optics Precision Engineer. 22 50Google Scholar
[20] Zhang J W, Zhang X, Zhu H B, Zhang J, Ning Y Q, Qin L, Wang L J 2015 Opt. Express. 23 14763Google Scholar
[21] Li X, Zhou Y L, Zhang X, Zhang J W, Zeng Y G, Ning Y Q, Wang L J 2022 Appl. Phys. B 128 16
[22] Pang W, Pan G Z, Wei Q H, Hu L C, Zhao Z Z, Xie Y Y 2020 3 rd International Conference on Electron Device and Mechanical Engineering (ICEDME), Suzhou, China, 2020 p573
[23] 赵军, 秦丽, 闫树斌, 任小红 2009 电子设计工程 17 118Google Scholar
Zhao J, Qin L, Yan S B, Ren X H 2009 Int. Electr. Elem. 17 118Google Scholar
[24] Zhang J Y, Zhang J W, Zhang X, Zhou Y L, Huang Y W, Ning Y Q, Zhu H B, Zhang J, Zeng Y G, Wang L J 2021 Opt. Laser Technol. 139 106948Google Scholar
[25] Hadley G R 1995 Opt. Lett. 20 1483Google Scholar
[26] Chiang K S 1996 IEEE. Trans. Microw. Theory Tech. 44 692Google Scholar
[27] 时尧成, 戴道锌, 何赛灵 2005 光学学报 25 51Google Scholar
Shi Y C, Dai D X, He S L 2005 Acta Optica Sinica 25 51Google Scholar
[28] Michalzik R 2013 Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers (Ulm, Germany: Springer Series in Optical Sciences) p124
[29] Al-Samaneh A, Bou Sanayeh M, Renz S, Wahl D, Michalzik R 2011 IEEE Photon. Technol. Lett. 23 1049Google Scholar
[30] Gruet F, Al-Samaneh A, Kroemer E, Bimboes L, Miletic D, Affolderback C, Wahl D, Boudot R, Mileti G, Michalzik R 2013 Optics Express 21 5781
[31] Chen L L, Zhou B Q, Lei G Q, Wu W F, Zhai Y Y, Wang Z, Fang J C. 2017 AIP Adv. 7 115101Google Scholar
计量
- 文章访问数: 6006
- PDF下载量: 166
- 被引次数: 0