搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低密度Co-Ni-Al-Mo-Cr-Ti/Nb/Ta系列高温合金方形γ/γ′共格组织设计及其稳定性

吕梦甜 李金临 孙九栋 王镇华 王清 董闯

引用本文:
Citation:

低密度Co-Ni-Al-Mo-Cr-Ti/Nb/Ta系列高温合金方形γ/γ′共格组织设计及其稳定性

吕梦甜, 李金临, 孙九栋, 王镇华, 王清, 董闯

Design of cuboidal γ/γ′ coherent microstructure and its stability in low-density Co-Ni-Al-Mo-Cr-Ti/ Nb/Ta superalloys

Lü Meng-Tian, Li Jin-Lin, Sun Jiu-Dong, Wang Zhen-Hua, Wang Qing, Dong Chuang
PDF
HTML
导出引用
  • 利用团簇成分式方法设计系列低密度Co基高温合金[Al-(Co8Ni4)]((Al0.5(Ti/Nb/Ta)0.5Mo0.5) (Mo0.5Cr0.5Co0.5))(=Co8.5Ni4Al1.5Mo1.0Cr0.5(Ti/Nb/Ta)0.5), 采用真空非自耗电弧炉制备合金铸锭, 并对其在1300 ℃固溶15 h , 在900 ℃下进行长期时效处理, 进而对时效态样品进行微观组织表征和力学性能测试. 结果表明, 当Ti/Nb/Ta, Ti/Nb和Ti/Ta以等物质的量比匹配时, 3种合金的微观组织均表现为立方形γ′相均匀地分布在γ基体中, 这取决于合金适中的γ/γ′点阵错配度(0.27%—0.34%). 在900 ℃长期时效过程中, 3种合金中的γ′相均具有较小的粗化速率, 且合金的显微硬度随时效时间基本不发生变化(275—296 HV); 尤其(Ti/Ta)0.5合金具有最高的γ/γ′共格组织稳定性, 时效500 h后γ′相粗化最慢, 并在晶界处无其他第二相粒子析出, 而在其他合金的晶界附近均析出针状和颗粒状的第二相粒子.
    Co-base superalloys generally have high strengths, good oxidation- and corrosion-resistances, as well as excellent creep-resistant properties at high temperatures (HTs), which are ascribed to the coherent precipitation of cuboidal γ′ phase into face-centered-cubic (FCC) γ matrix induced by co-alloying of multiple elements. However, the cuboidal γ/γ′ coherent microstructure is liable to be destabilized after a long-time aging at HTs in Co-base superalloys. In the present work, the cluster formula is used to design a series of low-density Co-base superalloys with the composition of [Al-(Co8Ni4)]((Al0.5(Ti/Nb/Ta)0.5Mo0.5)(Mo0.5Cr0.5Co0.5)) (=Co8.5Ni4Al1.5Mo1.0Cr0.5(Ti/Nb/Ta)0.5). Alloy ingots are prepared by arc melting under an argon atmosphere, and are solid-solutionized at 1300 ℃ for 15 h and then aged at 900 ℃ for up to 500 h. Microstructural characterizations and mechanical properties of these alloys in different aged states are obtained by using XRD, SEM, EPMA, TEM, and HV. It is found that all these alloys with Ti/Nb/Ta, Ti/Nb, and Ti/Ta in an equi-molar mixing have a special coherent microstructure with cuboidal γ′ phase uniformly-precipitated into the γ matrix, which is contributed to the moderate lattice misfit of γ/γ′ (0.27%–0.34%). Moreover, these cuboidal γ′ phase are coarsened slowly during aging, in which the microhardness does not vary obviously with aging time (275 HV–296 HV). Especially, the alloy with (Ti/Ta)0.5 exhibits the highest γ/γ′ microstructural stability with a slow coarsening rate after aging 500 h, and no other second phases appear near the grain boundaries. While needle and bulk particles would precipitate on grain boundaries in other alloys after 500 h-aging.
      通信作者: 王清, wangq@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 91860108, U1867201)和大连市科技创新基金重点学科(研究方向)和重大课题(批准号: 2020JJ25CY004)资助的课题.
      Corresponding author: Wang Qing, wangq@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91860108, U1867201) and the Key Discipline and Major Project of Dalian Science and Technology Innovation Foundation, China (Grant No. 2020JJ25CY004 ) .
    [1]

    Meyers M A, Chawla K K 2008 Mechanical Behavior of Materials (2nd Ed.) (New York: Cambridge University Press) p1

    [2]

    Gleiter H, Hornbogen E 1968 Mater. Sci. Eng. 2 285Google Scholar

    [3]

    Reed R C 2006 The Superalloys: Fundamentals and Applications (Cambridge: Cambridge University Press) p19

    [4]

    Kobayashi S, Tsukamoto Y, Takasugi T, Chinen H, Omori T, Ishida K, Zaefferer S 2009 Intermetallics 17 1085Google Scholar

    [5]

    Tsukamoto Y, Kobayashi S, Takasugi T 2010 Mater. Sci. Forum. 654 448

    [6]

    Lass E A, Williams M E, Campbell C E, Moon K W, Kattner U R 2014 J. Phase Equilib. Diffus. 35 711Google Scholar

    [7]

    Lass E A, Grist R D, Williams M E 2016 J. Phase equilib. Diffus. 37 387Google Scholar

    [8]

    Bauer A, Neumeier S, Pyczak F, Göken M 2010 Intermetallics 63 1197

    [9]

    Chen Y, Wang C, Ruan J, Omori T, Kainuma R, Ishida K, Liu X 2019 Acta Mater. 170 62Google Scholar

    [10]

    Ng D S, Chung D W, Toinin J P, Seidman D N, Dunand D C, Lass E A 2020 Mater. Sci. Eng. A 778 139108Google Scholar

    [11]

    Pandey P, Makineni S K, Samanta A, Sharma A, Das S M, Nithin B, Srivastava C, Singh A K, Raabe D, Gault B, Chattopadhyay K 2019 Acta Mater. 163 140Google Scholar

    [12]

    Pyczak F, Bauer A, Göken M, Lorenz U, Neumeier S, Oehring M, Paul J, Schell N, Schreyer A, Stark A, Symanzik F 2015 J. Alloy. Compd. 632 110Google Scholar

    [13]

    Feng G, Li H, Li S S, Sha J B 2012 Scr. Mater. 67 499Google Scholar

    [14]

    Liu X, Chen Z, Chen Y, Yang S, Pan Y, Lu Y, Qu S, Li Y J, Yang Y S, Wang C 2021 Mater. Lett. 284 128910Google Scholar

    [15]

    Vorontsov V A, Barnard J S, Rahman K M, Yan H Y, Midgley P A, Dye D 2016 Acta Mater. 120 14Google Scholar

    [16]

    Tian L Y, Lizárraga R, Larsson H, Holmström E, Vitos L 2017 Acta Mater. 136 215Google Scholar

    [17]

    Naghavi S S, Hegde V I, Wolverton C 2017 Acta Mater. 132 467Google Scholar

    [18]

    Neumeier S, Rehman H U, Neuner J, Zenk C H, Michel S, Schuwalow S, Rogal J, Drautz R, Göken M 2016 Acta Mater. 106 304Google Scholar

    [19]

    Liu X J, Yu Y, Liu Y H, Huang W L, Lu Y, Guo Y H, Wang C P 2017 J. Phase Equilib. Diffus. 38 733Google Scholar

    [20]

    Wang C, Zhao C, Lu Y, Li T, Peng D, Shi J, Liu X 2015 Mater. Chem. Phys. 162 555Google Scholar

    [21]

    Ruan J J, Wang C P, Yang S Y, Omori T, Yang T, Kimura Y, Liu X J, Kainuma R, Ishida K 2016 J. Alloy. Compd. 664 141Google Scholar

    [22]

    Wang C P, Yang S, Yang S Y, Wang D, Ruan J J, Li J, Liu X J 2015 J. Phase Equilib. Diffus. 36 592Google Scholar

    [23]

    Ruan J, Xu W, Yang T, Yu J, Yang S, Luan J, Omori T, Wang C, Kainuma R, Ishida K, Liu C T, Liu X 2020 Acta Mater. 186 425Google Scholar

    [24]

    宿彦京, 付华栋, 白洋, 姜雪, 谢建新 2020 金属学报 56 1313Google Scholar

    Su Y J, Fu H D, Bai Y, Jiang X, Xie J X 2020 Acta. Metall. Sin. 56 1313Google Scholar

    [25]

    Li W, Li L, Wei C, Zhao J C, Feng Q 2021 J. Mater. Sci. Technol. 80 139Google Scholar

    [26]

    王清, 查钱锋, 刘恩雪, 董闯, 王学军, 谭朝鑫, 冀春俊 2012 金属学报 48 1201Google Scholar

    Wang Q, Zha Q F, Liu E X, Dong C, Wang X J, Tan C X, Ji C J 2012 Acta. Metall. Sin. 48 1201Google Scholar

    [27]

    马仁涛, 郝传璞, 王清, 任明法, 王英敏, 董闯 2010 金属学报 46 1034Google Scholar

    Ma R T, Hao C P, Wang Q, Ren M F, Wang Y M, Dong C 2010 Acta. Metall. Sin. 46 1034Google Scholar

    [28]

    Zhang Y, Wang Q, Dong H G, Dong C, Zhang H Y, Sun X F 2018 Acta Metall. Sin. -Engl. Lett. 31 127Google Scholar

    [29]

    Chen C, Wang Q, Dong C, Zhang Y, Dong H 2020 Sci. Rep. 10 1Google Scholar

    [30]

    Makineni S K, Samanta A, Rojhirunsakool T, Alam T, Nithin B, Singh A K, Banerjee R, Chattopadhyay K 2015 Acta Mater. 97 29Google Scholar

    [31]

    Zhang J, Huang T, Cao K, Chen J, Zong H, Wang D, Zhang J, Zhang J, Liu L 2021 J. Mater. Sci. Technol. 75 68Google Scholar

    [32]

    Yang T, Zhao Y L, Tong Y, Jiao Z B, Wei J, Cai J X, Han X D, Chen D, Hu A, Liu C T 2018 Science 362 933Google Scholar

    [33]

    Kim K, Voorhees P W 2018 Acta Materi. 152 327Google Scholar

    [34]

    Orthacker A, Haberfehlner G, Taendl J, Poletti M C, Sonderegger B, Kothleitner G 2018 Nat. Mater. 17 1101Google Scholar

    [35]

    Sims C T, S Stoloff N S, Hagel W C 1987 Superalloy II (New York: John Wiley & Sons Inc) p1

    [36]

    Nithin B, Samanta A, Makineni S K, Alam T, Pandey P, Singh A K, Banerjee R, Chattopadhyay K 2017 J. Mater. Sci. 52 11036Google Scholar

    [37]

    Wang Q, Li Z, Pang S, Li X, Dong C, Liaw P K 2018 Entropy 20 878Google Scholar

    [38]

    Yoo Y S, Yoon D Y, Henry M F 1995 Met. Mater. 1 47Google Scholar

    [39]

    Zenk C H, Neumeier S, Stone H J, Göken M 2014 Intermetallics 55 28Google Scholar

    [40]

    Philippe T, Voorhees P W 2013 Acta Mater. 61 4237Google Scholar

    [41]

    Zhou H J, Xue F, Chang H, Feng Q 2018 J. Mater. Sci. Technol. 34 799Google Scholar

  • 图 1  设计的Co8.5Ni4Al1.5Mo1.0Cr0.5(Ti/Nb/Ta)0.5 3种合金在900 ℃ /50 h时效后的XRD图谱

    Fig. 1.  XRD patterns of the three designed Co8.5Ni4Al1.5Mo1.0Cr0.5(Ti/Nb/Ta)0.5 alloys after aging at 900 ℃ for 50 h.

    图 2  Co8.5Ni4Al1.5Mo1.0Cr0.5(Ti/Nb/Ta)0.5 3种合金900 ℃/50 h时效后的SEM微观组织观察 (a) S1-TNT; (b) S2-TN; (c) S3-TT

    Fig. 2.  SEM observations of three Co8.5Ni4Al1.5Mo1.0Cr0.5(Ti/Nb/Ta)0.5 alloys at 900 ℃ for 50 h: (a) S1-TNT; (b) S2-TN; (c) S3-TT

    图 3  Co8.5Ni4Al1.5Mo1.0Cr0.5(Ti/Ta)0.5合金(S3-TT)时效50 h后的TEM结果 (a) TEM明场(BF)像; (b) TEM暗场(DF)像; (c)TEM高分辨(HRTEM)像及其对应的FFT图谱

    Fig. 3.  TEM characterization of 50 h aged Co8.5Ni4Al1.5Mo1.0Cr0.5(Ti/Ta)0.5 alloy (S3-TT): (a) The bright-field (BF) image; (b) the corresponding dark-field (DF) image; (c) the HRTEM image and FFT patterns.

    图 4  设计的3种合金在900 ℃长期时效过程中γ/γ′共格组织形貌演变 (a-1)—(c-1) S1-TNT时效100, 200, 500 h; (a-2)—(c-2) S2-TN时效100, 200, 500 h; (a-3)—(c-3) S3-TT时效100, 200, 500 h

    Fig. 4.  Microstructural evolutions with the aging time at 900 ℃ of the three alloys: (a-1)−(c-1) Aged S1-TNT for 100, 200, and 500 h, respectively; (a-2)−(c-2) aged S2-TN for 100, 200, and 500 h, respectively; (a-3)−(c-3) aged S3-TT for 100, 200, and 500 h, respectively.

    图 5  3种合金在900 ℃长期时效时γ′相的尺寸r和体积分数f的变化

    Fig. 5.  Variations of particle size r and volume fraction f of γ′ precipitates with the aging time at 900 ℃ in the designed alloys.

    图 6  Co8.5Ni4Al1.5Mo1.0Cr0.5(Ti/Nb)0.5合金(S2-TN)在900 ℃/500 h长期时效后γ/γ′共格组织中的元素分布

    Fig. 6.  Elemental distribution in the γ/γ′ coherent microstructure of 500 h aged Co8.5Ni4Al1.5Mo1.0Cr0.5(Ti/Nb)0.5 alloy (S2-TN) at 900 ℃ with STEM-EDS.

    图 7  设计的3种合金900 ℃时效500 h后晶界处的微观组织 (a) S1-TNT; (b) S2-TN; (c) S3-TT

    Fig. 7.  SEM observations on the microstructure on the grain boundaries in 500 h aged alloys at 900 ℃: (a) S1-TNT; (b) S2-TN; (c) S3-TT.

    图 8  Co8.5Ni4Al1.5Mo1.0Cr0.5(Ti/Nb/Ta)0.5合金(S1-TNT) 900 ℃时效500 h后晶界处析出相的TEM暗场(DF)像及其对应的SAED花样

    Fig. 8.  TEM dark-field (DF) images and the corresponding SAED patterns of precipitated phases on grain boundaries in 500 h aged Co8.5Ni4Al1.5Mo1.0Cr0.5(Ti/Nb/Ta)0.5 alloy (S1-TNT) at 900 ℃.

    图 9  500 h时效后Co8.5Ni4Al1.5Mo1.0Cr0.5(Ti/Nb/Ta)0.5合金(S1-TNT)晶界处的元素分布图

    Fig. 9.  Elemental distribution on the grain boundaries in 500 h aged Co8.5Ni4Al1.5Mo1.0Cr0.5(Ti/Nb/Ta)0.5 alloy (S1-TNT) mapped with EPMA.

    图 10  3种合金在900 ℃时效时显微硬度随时间的变化(a)及合金的密度(b)

    Fig. 10.  Variation of microhardness of the 900 ℃-aged alloys with the aging time (a) and their densities (b).

    图 11  设计的3种合金在900 ℃时效过程中γ′相的尺寸r3随时效时间t的变化

    Fig. 11.  Variation of the average particle size r3 with the aging time at 900 ℃ in the three designed alloys.

    表 1  设计的3种合金的成分(团簇式和原子百分比)、以及900 ℃/50 h时效后γγ′两相的晶格常数(aγ, aγ′)和点阵错配度(ε)

    Table 1.  Related data of the designed series of alloys, including cluster formulas, alloy composition, lattice constant (a), lattice misfit (ε) between γ and γ′ phases after aging at 900 ℃ for 50 h.

    AlloyCluster formulasAlloy composition/%a/nmε/%
    S1-TNT[Al-(Co8Ni4)]((Al0.5(Ti, Nb, Ta)0.5Mo0.5)(Mo0.5Cr0.5Co0.5))Co53.13Ni25.00Al9.38Ti1.04Nb1.04Ta1.04Cr3.12Mo6.25aγ = 0.3570 ± 0.0003
    aγ′ = 0.3583 ± 0.0002
    0.34 ± 0.05
    S2-TN[Al-(Co8Ni4)]((Al0.5(Ti, Nb)0.5Mo0.5)(Mo0.5Cr0.5Co0.5))Co53.13Ni25.00Al9.38Ti1.56Nb1.56Cr3.12Mo6.25aγ = 0.3575 ± 0.0004
    aγ′ = 0.3584 ± 0.0002
    0.27 ± 0.05
    S3-TT[Al-(Co8Ni4)]((Al0.5(Ti, Ta)0.5Mo0.5)(Mo0.5Cr0.5Co0.5))Co53.13Ni25.00Al9.38Ti1.56Ta1.56Cr3.12Mo6.25aγ = 0.3575 ± 0.0004
    aγ′= 0.3586 ± 0.0003
    0.29 ± 0.07
    下载: 导出CSV
  • [1]

    Meyers M A, Chawla K K 2008 Mechanical Behavior of Materials (2nd Ed.) (New York: Cambridge University Press) p1

    [2]

    Gleiter H, Hornbogen E 1968 Mater. Sci. Eng. 2 285Google Scholar

    [3]

    Reed R C 2006 The Superalloys: Fundamentals and Applications (Cambridge: Cambridge University Press) p19

    [4]

    Kobayashi S, Tsukamoto Y, Takasugi T, Chinen H, Omori T, Ishida K, Zaefferer S 2009 Intermetallics 17 1085Google Scholar

    [5]

    Tsukamoto Y, Kobayashi S, Takasugi T 2010 Mater. Sci. Forum. 654 448

    [6]

    Lass E A, Williams M E, Campbell C E, Moon K W, Kattner U R 2014 J. Phase Equilib. Diffus. 35 711Google Scholar

    [7]

    Lass E A, Grist R D, Williams M E 2016 J. Phase equilib. Diffus. 37 387Google Scholar

    [8]

    Bauer A, Neumeier S, Pyczak F, Göken M 2010 Intermetallics 63 1197

    [9]

    Chen Y, Wang C, Ruan J, Omori T, Kainuma R, Ishida K, Liu X 2019 Acta Mater. 170 62Google Scholar

    [10]

    Ng D S, Chung D W, Toinin J P, Seidman D N, Dunand D C, Lass E A 2020 Mater. Sci. Eng. A 778 139108Google Scholar

    [11]

    Pandey P, Makineni S K, Samanta A, Sharma A, Das S M, Nithin B, Srivastava C, Singh A K, Raabe D, Gault B, Chattopadhyay K 2019 Acta Mater. 163 140Google Scholar

    [12]

    Pyczak F, Bauer A, Göken M, Lorenz U, Neumeier S, Oehring M, Paul J, Schell N, Schreyer A, Stark A, Symanzik F 2015 J. Alloy. Compd. 632 110Google Scholar

    [13]

    Feng G, Li H, Li S S, Sha J B 2012 Scr. Mater. 67 499Google Scholar

    [14]

    Liu X, Chen Z, Chen Y, Yang S, Pan Y, Lu Y, Qu S, Li Y J, Yang Y S, Wang C 2021 Mater. Lett. 284 128910Google Scholar

    [15]

    Vorontsov V A, Barnard J S, Rahman K M, Yan H Y, Midgley P A, Dye D 2016 Acta Mater. 120 14Google Scholar

    [16]

    Tian L Y, Lizárraga R, Larsson H, Holmström E, Vitos L 2017 Acta Mater. 136 215Google Scholar

    [17]

    Naghavi S S, Hegde V I, Wolverton C 2017 Acta Mater. 132 467Google Scholar

    [18]

    Neumeier S, Rehman H U, Neuner J, Zenk C H, Michel S, Schuwalow S, Rogal J, Drautz R, Göken M 2016 Acta Mater. 106 304Google Scholar

    [19]

    Liu X J, Yu Y, Liu Y H, Huang W L, Lu Y, Guo Y H, Wang C P 2017 J. Phase Equilib. Diffus. 38 733Google Scholar

    [20]

    Wang C, Zhao C, Lu Y, Li T, Peng D, Shi J, Liu X 2015 Mater. Chem. Phys. 162 555Google Scholar

    [21]

    Ruan J J, Wang C P, Yang S Y, Omori T, Yang T, Kimura Y, Liu X J, Kainuma R, Ishida K 2016 J. Alloy. Compd. 664 141Google Scholar

    [22]

    Wang C P, Yang S, Yang S Y, Wang D, Ruan J J, Li J, Liu X J 2015 J. Phase Equilib. Diffus. 36 592Google Scholar

    [23]

    Ruan J, Xu W, Yang T, Yu J, Yang S, Luan J, Omori T, Wang C, Kainuma R, Ishida K, Liu C T, Liu X 2020 Acta Mater. 186 425Google Scholar

    [24]

    宿彦京, 付华栋, 白洋, 姜雪, 谢建新 2020 金属学报 56 1313Google Scholar

    Su Y J, Fu H D, Bai Y, Jiang X, Xie J X 2020 Acta. Metall. Sin. 56 1313Google Scholar

    [25]

    Li W, Li L, Wei C, Zhao J C, Feng Q 2021 J. Mater. Sci. Technol. 80 139Google Scholar

    [26]

    王清, 查钱锋, 刘恩雪, 董闯, 王学军, 谭朝鑫, 冀春俊 2012 金属学报 48 1201Google Scholar

    Wang Q, Zha Q F, Liu E X, Dong C, Wang X J, Tan C X, Ji C J 2012 Acta. Metall. Sin. 48 1201Google Scholar

    [27]

    马仁涛, 郝传璞, 王清, 任明法, 王英敏, 董闯 2010 金属学报 46 1034Google Scholar

    Ma R T, Hao C P, Wang Q, Ren M F, Wang Y M, Dong C 2010 Acta. Metall. Sin. 46 1034Google Scholar

    [28]

    Zhang Y, Wang Q, Dong H G, Dong C, Zhang H Y, Sun X F 2018 Acta Metall. Sin. -Engl. Lett. 31 127Google Scholar

    [29]

    Chen C, Wang Q, Dong C, Zhang Y, Dong H 2020 Sci. Rep. 10 1Google Scholar

    [30]

    Makineni S K, Samanta A, Rojhirunsakool T, Alam T, Nithin B, Singh A K, Banerjee R, Chattopadhyay K 2015 Acta Mater. 97 29Google Scholar

    [31]

    Zhang J, Huang T, Cao K, Chen J, Zong H, Wang D, Zhang J, Zhang J, Liu L 2021 J. Mater. Sci. Technol. 75 68Google Scholar

    [32]

    Yang T, Zhao Y L, Tong Y, Jiao Z B, Wei J, Cai J X, Han X D, Chen D, Hu A, Liu C T 2018 Science 362 933Google Scholar

    [33]

    Kim K, Voorhees P W 2018 Acta Materi. 152 327Google Scholar

    [34]

    Orthacker A, Haberfehlner G, Taendl J, Poletti M C, Sonderegger B, Kothleitner G 2018 Nat. Mater. 17 1101Google Scholar

    [35]

    Sims C T, S Stoloff N S, Hagel W C 1987 Superalloy II (New York: John Wiley & Sons Inc) p1

    [36]

    Nithin B, Samanta A, Makineni S K, Alam T, Pandey P, Singh A K, Banerjee R, Chattopadhyay K 2017 J. Mater. Sci. 52 11036Google Scholar

    [37]

    Wang Q, Li Z, Pang S, Li X, Dong C, Liaw P K 2018 Entropy 20 878Google Scholar

    [38]

    Yoo Y S, Yoon D Y, Henry M F 1995 Met. Mater. 1 47Google Scholar

    [39]

    Zenk C H, Neumeier S, Stone H J, Göken M 2014 Intermetallics 55 28Google Scholar

    [40]

    Philippe T, Voorhees P W 2013 Acta Mater. 61 4237Google Scholar

    [41]

    Zhou H J, Xue F, Chang H, Feng Q 2018 J. Mater. Sci. Technol. 34 799Google Scholar

  • [1] 王凯乐, 杨文奎, 史新成, 侯华, 赵宇宏. 相场法研究AlxCuMnNiFe高熵合金富Cu相析出机理. 物理学报, 2023, 72(7): 076102. doi: 10.7498/aps.72.20222439
    [2] 蒋新安, 赵宇宏, 杨文奎, 田晓林, 侯华. 相场法研究Fe84Cu15Mn1合金富Cu相析出的内磁能作用机理. 物理学报, 2022, 71(8): 080201. doi: 10.7498/aps.71.20212087
    [3] 郭震, 赵宇宏, 孙远洋, 赵宝军, 田晓林, 侯华. 相场法研究Fe-Cu-Mn-Al合金富Cu相析出机制. 物理学报, 2021, 70(8): 086401. doi: 10.7498/aps.70.20201843
    [4] 王陶, 李俊杰, 王锦程. 界面润湿性及固相体积分数对颗粒粗化动力学影响的相场法研究. 物理学报, 2013, 62(10): 106402. doi: 10.7498/aps.62.106402
    [5] 谢红献, 于涛, 刘波. 温度对镍基单晶高温合金γ/γ'相界面上错配位错运动影响的分子动力学研究. 物理学报, 2011, 60(4): 046104. doi: 10.7498/aps.60.046104
    [6] 胡琦, 张青川, 符师桦, 曹鹏涛, 龚明. 析出相在铝镁合金Portevin-Le Chatelier效应中的作用研究. 物理学报, 2011, 60(9): 096201. doi: 10.7498/aps.60.096201
    [7] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算. 物理学报, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [8] 邢艳辉, 韩军, 邓军, 李建军, 徐晨, 沈光地. p型GaN低温粗化提高发光二极管特性. 物理学报, 2010, 59(2): 1233-1236. doi: 10.7498/aps.59.1233
    [9] 王春江, 苑轶, 王强, 刘铁, 娄长胜, 赫冀成. 强磁场条件下金属凝固过程中第二相的迁移行为. 物理学报, 2010, 59(5): 3116-3122. doi: 10.7498/aps.59.3116
    [10] 陈云, 康秀红, 肖纳敏, 郑成武, 李殿中. 多晶材料晶粒生长粗化过程的相场方法模拟. 物理学报, 2009, 58(13): 124-S131. doi: 10.7498/aps.58.124
    [11] 宗亚平, 王明涛, 郭巍. 再结晶和外力场下第二相析出的相场法模拟. 物理学报, 2009, 58(13): 161-S168. doi: 10.7498/aps.58.161
    [12] 耿翠玉, 王崇愚, 朱 弢. 镍基单晶高温合金γ/γ′(001)相界面上原子构型的分子动力学研究. 物理学报, 2005, 54(3): 1320-1324. doi: 10.7498/aps.54.1320
    [13] 柴志刚, 孟繁玲, 邹青. Al-Li合金时效-回归-再时效析出δ′相的行为. 物理学报, 2001, 50(7): 1401-1404. doi: 10.7498/aps.50.1401
    [14] 胡金元. 第二相Ba6Ti17O40形成动力学的研究. 物理学报, 1991, 40(9): 1485-1491. doi: 10.7498/aps.40.1485
    [15] 南策文. 含分散第二相的离子导体导电理论. 物理学报, 1987, 36(2): 191-198. doi: 10.7498/aps.36.191
    [16] 陈立泉, 赵宗源, 王超英, 李子荣. 分散第二相γ-Al2O3对β-Li2SO4离子导电性的影响. 物理学报, 1985, 34(8): 1027-1033. doi: 10.7498/aps.34.1027
    [17] 赖宗和, 吴玉琨, 郭可信. 非晶Ni-P合金的晶化相. 物理学报, 1984, 33(8): 1182-1186. doi: 10.7498/aps.33.1182
    [18] 赵宗源, 王超英, 陈立泉. 含分散第二相粒子的离子导体AgI的电学性质. 物理学报, 1984, 33(9): 1205-1212. doi: 10.7498/aps.33.1205
    [19] 王文魁, 何寿安, 岩崎博, 庄野安彦, 后藤恒昭. 高温高压下非晶Co80B20合金的相稳定性. 物理学报, 1984, 33(7): 914-920. doi: 10.7498/aps.33.914
    [20] 沈中毅, 张云, 殷岫君, 何寿安, 吴谦, 吴自勤. (Fe0.1Co0.55Ni0.35)78Si8B14金属玻璃的晶化过程及压力的影响(Ⅰ)——晶化时的相析出过程. 物理学报, 1983, 32(9): 1159-1169. doi: 10.7498/aps.32.1159
计量
  • 文章访问数:  4664
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-31
  • 修回日期:  2022-02-12
  • 上网日期:  2022-05-28
  • 刊出日期:  2022-06-05

/

返回文章
返回