搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用于宽带中红外激光产生的啁啾周期极化铌酸锂晶体结构设计及数值模拟

李铭洲 李志远

引用本文:
Citation:

应用于宽带中红外激光产生的啁啾周期极化铌酸锂晶体结构设计及数值模拟

李铭洲, 李志远

Structure design and numerical simulation of chirped periodically polarized lithium niobate crystal for broadband mid-infrared laser generation

Li Ming-Zhou, Li Zhi-Yuan
PDF
HTML
导出引用
  • 中红外波段3—5 μm激光光源在医疗、基础科学、通信、工业等众多领域都有着重要的应用需求, 而受制于中红外波段的增益介质, 传统的激光产生及放大的方法如再生放大、多程放大、行波放大等已经不适用. 为了产生宽带且高能量的中红外激光, 本文结合准相位匹配技术和啁啾周期极化铌酸锂(CPPLN)晶体进行了理论分析. 通过计算分析铌酸锂晶体的色散关系曲线, 对CPPLN晶体的结构参数进行设计和调节. 结合非线性耦合波方程组与四阶龙格库塔法对该晶体在800 nm激光的抽运下, 与0.95—1.6 μm范围内的信号光进行准相位匹配差频转换进行了数值模拟. 研究表明, 在单块CPPLN晶体中, 结合准相位匹配技术, 能够高效产生覆盖1.6—5 μm的中红外激光. 对CPPLN晶体产生中红外激光的理论分析和数值模拟, 能够为进一步的实验探究等提供方案参考和理论支持.
    Mid-infrared band 3–5 ${\text{μm}}$ laser light source has important applications in many fields such as medical treatment, basic science, communication, and industry. Owing to the limitation to available efficient gain media in the mid-infrared band, the traditional methods of generating and amplifying lasers , such as regenerative amplification, are no longer applicable. In order to produce broadband and high-energy mid-infrared laser, in this work we combine quasi-phase matching technology and chirped periodically polarized lithium niobate (CPPLN) crystal for theoretical analysis and numerical design. The second-order nonlinear difference-frequency generation (DFG) process is used to implement the generation of mid-infrared laser via CPPLN. In the differential frequency process, the pump light used is 800 nm in wavelength and the wavelength range of signal light is 0.95–1.6 ${\text{μm}}$. By calculating the dispersion curve of CPPLN crystal, the phase mismatch of difference frequency generation processes with different light signals is obtained. Under the condition of quasi-phase matching, the CPPLN with deliberately poling structures is designed and used to provide phase mismatch compensation in a broad bandwidth. The designed structure can meet the generation of mid infrared laser in a 1.6–5$ {\text{μm}} $ band according to the numerical simulations. The conversion efficiencies of mid-infrared laser with different wavelengths at different positions in the crystal are obtained by using nonlinear coupled wave equations and fourth-order Runge-Kutta method. The results show that the mid-infrared laser in a wavelength range of 1.6–5 $ {\text{μm}} $ can be produced efficiently in a single CPPLN crystal, with an average conversion efficiency of about 15%. The theoretical analysis and numerical simulation for the designed CPPLN crystal can provide good schematic reference and theoretical support for further experimental exploration on generation of mid-infrared laser.
      通信作者: 李志远, phzyli@scut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974119)、广东省重点研发项目(批准号: 2020B010190001)、广东省引进创新创业团队项目(批准号: 2016ZT06C594)和国家重点研发项目(批准号: 2018YFA0306200)资助的课题.
      Corresponding author: Li Zhi-Yuan, phzyli@scut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11974119), Science and Technology Project of Guangdong, China (Grant No. 2020B010190001), Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2016ZT06C594), and National Key R&D Program of China (Grant No. 2018YFA0306200).
    [1]

    Ren T W, Wu C T, Yu Y G, Dai T Y, Chen F, Pan Q K 2021 Appl. Sci. 11 11451Google Scholar

    [2]

    Du Z H, Zhang S, Li J Y, Gao N, Tong K B 2019 Appl. Sci. 9 338Google Scholar

    [3]

    Pan Q K 2015 Chin. Opt. 8 557Google Scholar

    [4]

    钱俊宇, 彭宇杰, 李妍妍, 黎文开, 冯壬誉, 沈丽雅, 冷雨欣 2021 红外与激光工程 50 20210456Google Scholar

    Qian J Y, Peng Y J, Li Y Y, Li W K, Feng R Y, Shen L Y, Leng Y X 2021 Infrared Laser Engineer. 50 20210456Google Scholar

    [5]

    Maiman T H 1960 Nature 187 493Google Scholar

    [6]

    Franken P A, Hill A E, Peters C W, Weinreich G 1961 Phys. Rev. Lett. 7 118Google Scholar

    [7]

    Ghimire S, Reis D A 2019 Nat. Phys. 15 10Google Scholar

    [8]

    Armstrong J A, Bloembergen N, Docuing J, Pershan P S 1962 Phys. Rev. 127 1918Google Scholar

    [9]

    Shen Y R 1984 The Principles of Nonlinear Optics (New York: Wiley)

    [10]

    Masters B R, Boyd R W 2009 Nonlinear Optics (3rd Ed.) (Academic Press)

    [11]

    Markov A, Mazhorova A, Breitenborn H, Bruhacs A, Clerici M, Modotto D, Jedrkiewicz O, Trapani di P, Major A, Vidal F, Morandotti R 2018 Opt. Express 26 4448Google Scholar

    [12]

    Ishizuki H, Taira T, Kurimura S, Ro J H, Cha M 2003 Jpn. J. Appl. Phys. 42 L108Google Scholar

    [13]

    Lin L L, Li Z Y, Ho K M 2003 J. Appl. Phys. 94 811Google Scholar

    [14]

    Li J J, Li Z Y, and Zhang D Z 2008 Phys. Rev. B 77 195127Google Scholar

    [15]

    Vidal X, Martorell J 2006 Phys. Rev. Lett. 97 013902Google Scholar

    [16]

    Sheng Y, Dou J, Ma B, Cheng B, Zhang D 2007 Appl. Phys. Lett. 91 011101Google Scholar

    [17]

    Suchowski H, Oron D, Arie A, Silberberg Y 2008 Phys. Rev. A 78 063821Google Scholar

    [18]

    Margules P, Moses J, Suchowski H, Porat G 2021 J. Phys. Photonics 3 022011Google Scholar

    [19]

    Chen B Q, Zhang C, Liu R J, Li Z Y 2014 Appl. Phys. Lett. 105 151106Google Scholar

    [20]

    Arie A, Voloch N, Periodic 2010 Laser Photonics Rev., 4 355. Zhang Y, Sheng Y, Zhu S N, Xiao M, Krolikowski W 2021 Optica 8 372Google Scholar

    [21]

    Vyunishev A M, Arkhipkin V G 2020 Laser Phys. 30 045401Google Scholar

    [22]

    Chen B Q, Hong L H, Hu C Y, Zhang C, Liu R J, Li Z Y 2018 J. Opt. 20 034009Google Scholar

    [23]

    Hu C Y, Li Z Y 2017 J. Appl. Phys. 121 123110Google Scholar

    [24]

    Chen B Q, Ren M L, Liu R J, Zhang C, Sheng Y, Ma B Q, Li Z Y 2014 Light Sci. Appl. 3 e189Google Scholar

    [25]

    Chen B Q, Zhang C, Hu C Y, Liu R J, Li Z Y 2015 Phys. Rev. Lett. 115 83902Google Scholar

    [26]

    Chen B Q, Hong L H, Hu C Y, Li Z Y 2021 Research 2021 1

    [27]

    Zelmon D E, Small D L, Jundt D 1997 J. Opt. Soc. Am. B 14 3319Google Scholar

    [28]

    Deng C G, Ye L X, He C J, Xu G S, Zhai Q X, Luo H S, Liu Y W, Bell A J 2021 Adv. Mater. 33 2103013Google Scholar

  • 图 1  不同波长信号光差频得到的中红外激光波长

    Fig. 1.  Mid infrared laser wavelength obtained by optical difference frequency with different signal light wavelengths.

    图 2  不同波长中红外激光产生所需要对应的(a)极化周期和(b)相位失配量

    Fig. 2.  The corresponding (a) polarization period and (b) phase mismatch required for mid infrared laser generation at different wavelengths.

    图 3  啁啾周期极化铌酸锂晶体的倒格矢分布与中红外激光产生的相位失配量

    Fig. 3.  Combined plots of the reverse lattice vector distribution of chirped periodically polarized lithium niobate crystal and phase mismatch of mid infrared laser generation.

    图 4  准相位匹配过程中非线性晶体内部各光波的光场随着相互作用距离的演化

    Fig. 4.  In the process of quasi phase matching, the light field of each light wave in the nonlinear crystal evolves with increase of the interaction distance.

    图 5  CPPLN晶体中差频转换过程示意图

    Fig. 5.  Schematic diagram of differential frequency conversion process in CPPLN crystal.

    图 6  中红外激光在CPPLN晶体中不同位置的转换效率 (a) 2 mm;(b) 5 mm; (c) 10 mm; (d) 15 mm; (e) 20 mm

    Fig. 6.  The conversion efficiency of mid infrared laser at: (a) 2 mm;(b) 5 mm; (c) 10 mm; (d) 15 mm; (e) 20 mm of the CPPLN crystal.

    图 7  不同波长中红外激光在CPPLN晶体中所有位置的转换效率

    Fig. 7.  The conversion efficiency of mid infrared laser with different wavelengths at all positions in CPPLN crystal.

  • [1]

    Ren T W, Wu C T, Yu Y G, Dai T Y, Chen F, Pan Q K 2021 Appl. Sci. 11 11451Google Scholar

    [2]

    Du Z H, Zhang S, Li J Y, Gao N, Tong K B 2019 Appl. Sci. 9 338Google Scholar

    [3]

    Pan Q K 2015 Chin. Opt. 8 557Google Scholar

    [4]

    钱俊宇, 彭宇杰, 李妍妍, 黎文开, 冯壬誉, 沈丽雅, 冷雨欣 2021 红外与激光工程 50 20210456Google Scholar

    Qian J Y, Peng Y J, Li Y Y, Li W K, Feng R Y, Shen L Y, Leng Y X 2021 Infrared Laser Engineer. 50 20210456Google Scholar

    [5]

    Maiman T H 1960 Nature 187 493Google Scholar

    [6]

    Franken P A, Hill A E, Peters C W, Weinreich G 1961 Phys. Rev. Lett. 7 118Google Scholar

    [7]

    Ghimire S, Reis D A 2019 Nat. Phys. 15 10Google Scholar

    [8]

    Armstrong J A, Bloembergen N, Docuing J, Pershan P S 1962 Phys. Rev. 127 1918Google Scholar

    [9]

    Shen Y R 1984 The Principles of Nonlinear Optics (New York: Wiley)

    [10]

    Masters B R, Boyd R W 2009 Nonlinear Optics (3rd Ed.) (Academic Press)

    [11]

    Markov A, Mazhorova A, Breitenborn H, Bruhacs A, Clerici M, Modotto D, Jedrkiewicz O, Trapani di P, Major A, Vidal F, Morandotti R 2018 Opt. Express 26 4448Google Scholar

    [12]

    Ishizuki H, Taira T, Kurimura S, Ro J H, Cha M 2003 Jpn. J. Appl. Phys. 42 L108Google Scholar

    [13]

    Lin L L, Li Z Y, Ho K M 2003 J. Appl. Phys. 94 811Google Scholar

    [14]

    Li J J, Li Z Y, and Zhang D Z 2008 Phys. Rev. B 77 195127Google Scholar

    [15]

    Vidal X, Martorell J 2006 Phys. Rev. Lett. 97 013902Google Scholar

    [16]

    Sheng Y, Dou J, Ma B, Cheng B, Zhang D 2007 Appl. Phys. Lett. 91 011101Google Scholar

    [17]

    Suchowski H, Oron D, Arie A, Silberberg Y 2008 Phys. Rev. A 78 063821Google Scholar

    [18]

    Margules P, Moses J, Suchowski H, Porat G 2021 J. Phys. Photonics 3 022011Google Scholar

    [19]

    Chen B Q, Zhang C, Liu R J, Li Z Y 2014 Appl. Phys. Lett. 105 151106Google Scholar

    [20]

    Arie A, Voloch N, Periodic 2010 Laser Photonics Rev., 4 355. Zhang Y, Sheng Y, Zhu S N, Xiao M, Krolikowski W 2021 Optica 8 372Google Scholar

    [21]

    Vyunishev A M, Arkhipkin V G 2020 Laser Phys. 30 045401Google Scholar

    [22]

    Chen B Q, Hong L H, Hu C Y, Zhang C, Liu R J, Li Z Y 2018 J. Opt. 20 034009Google Scholar

    [23]

    Hu C Y, Li Z Y 2017 J. Appl. Phys. 121 123110Google Scholar

    [24]

    Chen B Q, Ren M L, Liu R J, Zhang C, Sheng Y, Ma B Q, Li Z Y 2014 Light Sci. Appl. 3 e189Google Scholar

    [25]

    Chen B Q, Zhang C, Hu C Y, Liu R J, Li Z Y 2015 Phys. Rev. Lett. 115 83902Google Scholar

    [26]

    Chen B Q, Hong L H, Hu C Y, Li Z Y 2021 Research 2021 1

    [27]

    Zelmon D E, Small D L, Jundt D 1997 J. Opt. Soc. Am. B 14 3319Google Scholar

    [28]

    Deng C G, Ye L X, He C J, Xu G S, Zhai Q X, Luo H S, Liu Y W, Bell A J 2021 Adv. Mater. 33 2103013Google Scholar

  • [1] 刘励强, 苏伟伦, 刘峻铭, 邹娱, 洪丽红, 李志远. 应用于1064 nm倍频实验的啁啾周期极化铌酸锂晶体的结构设计与角度鲁棒性测试. 物理学报, 2024, 73(17): 174204. doi: 10.7498/aps.73.20240778
    [2] 熊霄, 曹启韬, 肖云峰. 铌酸锂集成光子器件的发展与机遇. 物理学报, 2023, 72(23): 234201. doi: 10.7498/aps.72.20231295
    [3] 许凡, 赵妍, 吴宇航, 王文驰, 金雪莹. 高阶色散下双耦合微腔中克尔光频梳的稳定性和非线性动力学分析. 物理学报, 2022, 71(18): 184204. doi: 10.7498/aps.71.20220691
    [4] 李庚霖, 贾曰辰, 陈峰. 绝缘体上铌酸锂薄膜片上光子学器件的研究进展. 物理学报, 2020, 69(15): 157801. doi: 10.7498/aps.69.20200302
    [5] 徐昕, 金雪莹, 胡晓鸿, 黄新宁. 光学微腔中倍频光场演化和光谱特性. 物理学报, 2020, 69(2): 024203. doi: 10.7498/aps.69.20191294
    [6] 陈卫军, 卢克清, 惠娟利, 张宝菊. 饱和非线性介质中艾里-高斯光束的传输与交互作用. 物理学报, 2016, 65(24): 244202. doi: 10.7498/aps.65.244202
    [7] 蒋建, 常建华, 冯素娟, 毛庆和. 基于光纤激光器的中红外差频多波长激光产生. 物理学报, 2010, 59(11): 7892-7898. doi: 10.7498/aps.59.7892
    [8] 任爱红, 刘正颖, 张蓉竹, 刘静伦, 孙年春. 准相位匹配倍频系统的带宽性质研究. 物理学报, 2010, 59(10): 7050-7054. doi: 10.7498/aps.59.7050
    [9] 任继刚, 张涵, 蔡昕东, 印娟, 周飞, 彭承志. 基于周期极化KTiOPO4晶体的高亮度纠缠源研制. 物理学报, 2009, 58(8): 5169-5173. doi: 10.7498/aps.58.5169
    [10] 姜永亮, 赵保真, 梁晓燕, 冷雨欣, 李儒新, 徐至展, 胡小鹏, 祝世宁. 基于周期极化LiTaO3晶体的高增益简并啁啾脉冲参量放大. 物理学报, 2007, 56(5): 2709-2713. doi: 10.7498/aps.56.2709
    [11] 杨义胜, 郑万国, 韩 伟, 车雅良, 谭吉春, 向 勇, 贾怀庭. 宽带三倍频混频过程的群速匹配关系. 物理学报, 2007, 56(11): 6468-6472. doi: 10.7498/aps.56.6468
    [12] 张百钢, 姚建铨, 路 洋, 纪 峰, 张铁犁, 徐德刚, 王 鹏, 徐可欣. 抽运光角度调谐准相位匹配光学参量振荡器的研究. 物理学报, 2006, 55(3): 1231-1236. doi: 10.7498/aps.55.1231
    [13] 季玲玲, 吴令安. 光学超晶格中级联参量过程制备纠缠光子对. 物理学报, 2005, 54(2): 736-741. doi: 10.7498/aps.54.736
    [14] 马红亮, 卫 栋, 叶晨光, 张 靖, 彭堃墀. 利用周期性极化KTiOPO4晶体参量缩小过程产生明亮振幅压缩光. 物理学报, 2005, 54(8): 3637-3640. doi: 10.7498/aps.54.3637
    [15] 陈云琳, 袁建伟, 闫卫国, 周斌斌, 罗勇锋, 郭 娟. 准相位匹配PPLN倍频理论研究与优化设计. 物理学报, 2005, 54(5): 2079-2083. doi: 10.7498/aps.54.2079
    [16] 王 霆, 马博琴, 盛 艳, 程丙英, 张道中. 周期极化LiNbO3晶体中电极布置对反转畴扩张的影响. 物理学报, 2005, 54(10): 4761-4764. doi: 10.7498/aps.54.4761
    [17] 倪培根, 马博琴, 程丙英, 张道中. 二维LiNbO3非线性光子晶体. 物理学报, 2003, 52(8): 1925-1928. doi: 10.7498/aps.52.1925
    [18] 李永民, 吴迎瑞, 张宽收, 彭墀. 利用准相位匹配光学参量振荡器获得可调谐强度差压缩光. 物理学报, 2003, 52(4): 849-852. doi: 10.7498/aps.52.849
    [19] 薛挺, 于建, 杨天新, 倪文俊, 谭莉, 李世忱. 周期性极化铌酸锂晶体光参量振荡调谐与容差特性分析. 物理学报, 2002, 51(11): 2528-2535. doi: 10.7498/aps.51.2528
    [20] 薛挺, 于建, 杨天新, 倪文俊, 李世忱. 周期性极化铌酸锂波导全光开关特性分析. 物理学报, 2002, 51(7): 1521-1529. doi: 10.7498/aps.51.1521
计量
  • 文章访问数:  4895
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-05
  • 修回日期:  2022-03-17
  • 上网日期:  2022-06-22
  • 刊出日期:  2022-07-05

/

返回文章
返回