-
中红外波段3—5 μm激光光源在医疗、基础科学、通信、工业等众多领域都有着重要的应用需求, 而受制于中红外波段的增益介质, 传统的激光产生及放大的方法如再生放大、多程放大、行波放大等已经不适用. 为了产生宽带且高能量的中红外激光, 本文结合准相位匹配技术和啁啾周期极化铌酸锂(CPPLN)晶体进行了理论分析. 通过计算分析铌酸锂晶体的色散关系曲线, 对CPPLN晶体的结构参数进行设计和调节. 结合非线性耦合波方程组与四阶龙格库塔法对该晶体在800 nm激光的抽运下, 与0.95—1.6 μm范围内的信号光进行准相位匹配差频转换进行了数值模拟. 研究表明, 在单块CPPLN晶体中, 结合准相位匹配技术, 能够高效产生覆盖1.6—5 μm的中红外激光. 对CPPLN晶体产生中红外激光的理论分析和数值模拟, 能够为进一步的实验探究等提供方案参考和理论支持.Mid-infrared band 3–5
${\text{μm}}$ laser light source has important applications in many fields such as medical treatment, basic science, communication, and industry. Owing to the limitation to available efficient gain media in the mid-infrared band, the traditional methods of generating and amplifying lasers , such as regenerative amplification, are no longer applicable. In order to produce broadband and high-energy mid-infrared laser, in this work we combine quasi-phase matching technology and chirped periodically polarized lithium niobate (CPPLN) crystal for theoretical analysis and numerical design. The second-order nonlinear difference-frequency generation (DFG) process is used to implement the generation of mid-infrared laser via CPPLN. In the differential frequency process, the pump light used is 800 nm in wavelength and the wavelength range of signal light is 0.95–1.6${\text{μm}}$ . By calculating the dispersion curve of CPPLN crystal, the phase mismatch of difference frequency generation processes with different light signals is obtained. Under the condition of quasi-phase matching, the CPPLN with deliberately poling structures is designed and used to provide phase mismatch compensation in a broad bandwidth. The designed structure can meet the generation of mid infrared laser in a 1.6–5$ {\text{μm}} $ band according to the numerical simulations. The conversion efficiencies of mid-infrared laser with different wavelengths at different positions in the crystal are obtained by using nonlinear coupled wave equations and fourth-order Runge-Kutta method. The results show that the mid-infrared laser in a wavelength range of 1.6–5$ {\text{μm}} $ can be produced efficiently in a single CPPLN crystal, with an average conversion efficiency of about 15%. The theoretical analysis and numerical simulation for the designed CPPLN crystal can provide good schematic reference and theoretical support for further experimental exploration on generation of mid-infrared laser.-
Keywords:
- nonlinear optics /
- quasi phase matching /
- chirped periodically polarized lithium niobate /
- ultra-broadband mid infrared light source
[1] Ren T W, Wu C T, Yu Y G, Dai T Y, Chen F, Pan Q K 2021 Appl. Sci. 11 11451Google Scholar
[2] Du Z H, Zhang S, Li J Y, Gao N, Tong K B 2019 Appl. Sci. 9 338Google Scholar
[3] Pan Q K 2015 Chin. Opt. 8 557Google Scholar
[4] 钱俊宇, 彭宇杰, 李妍妍, 黎文开, 冯壬誉, 沈丽雅, 冷雨欣 2021 红外与激光工程 50 20210456Google Scholar
Qian J Y, Peng Y J, Li Y Y, Li W K, Feng R Y, Shen L Y, Leng Y X 2021 Infrared Laser Engineer. 50 20210456Google Scholar
[5] Maiman T H 1960 Nature 187 493Google Scholar
[6] Franken P A, Hill A E, Peters C W, Weinreich G 1961 Phys. Rev. Lett. 7 118Google Scholar
[7] Ghimire S, Reis D A 2019 Nat. Phys. 15 10Google Scholar
[8] Armstrong J A, Bloembergen N, Docuing J, Pershan P S 1962 Phys. Rev. 127 1918Google Scholar
[9] Shen Y R 1984 The Principles of Nonlinear Optics (New York: Wiley)
[10] Masters B R, Boyd R W 2009 Nonlinear Optics (3rd Ed.) (Academic Press)
[11] Markov A, Mazhorova A, Breitenborn H, Bruhacs A, Clerici M, Modotto D, Jedrkiewicz O, Trapani di P, Major A, Vidal F, Morandotti R 2018 Opt. Express 26 4448Google Scholar
[12] Ishizuki H, Taira T, Kurimura S, Ro J H, Cha M 2003 Jpn. J. Appl. Phys. 42 L108Google Scholar
[13] Lin L L, Li Z Y, Ho K M 2003 J. Appl. Phys. 94 811Google Scholar
[14] Li J J, Li Z Y, and Zhang D Z 2008 Phys. Rev. B 77 195127Google Scholar
[15] Vidal X, Martorell J 2006 Phys. Rev. Lett. 97 013902Google Scholar
[16] Sheng Y, Dou J, Ma B, Cheng B, Zhang D 2007 Appl. Phys. Lett. 91 011101Google Scholar
[17] Suchowski H, Oron D, Arie A, Silberberg Y 2008 Phys. Rev. A 78 063821Google Scholar
[18] Margules P, Moses J, Suchowski H, Porat G 2021 J. Phys. Photonics 3 022011Google Scholar
[19] Chen B Q, Zhang C, Liu R J, Li Z Y 2014 Appl. Phys. Lett. 105 151106Google Scholar
[20] Arie A, Voloch N, Periodic 2010 Laser Photonics Rev., 4 355. Zhang Y, Sheng Y, Zhu S N, Xiao M, Krolikowski W 2021 Optica 8 372Google Scholar
[21] Vyunishev A M, Arkhipkin V G 2020 Laser Phys. 30 045401Google Scholar
[22] Chen B Q, Hong L H, Hu C Y, Zhang C, Liu R J, Li Z Y 2018 J. Opt. 20 034009Google Scholar
[23] Hu C Y, Li Z Y 2017 J. Appl. Phys. 121 123110Google Scholar
[24] Chen B Q, Ren M L, Liu R J, Zhang C, Sheng Y, Ma B Q, Li Z Y 2014 Light Sci. Appl. 3 e189Google Scholar
[25] Chen B Q, Zhang C, Hu C Y, Liu R J, Li Z Y 2015 Phys. Rev. Lett. 115 83902Google Scholar
[26] Chen B Q, Hong L H, Hu C Y, Li Z Y 2021 Research 2021 1
[27] Zelmon D E, Small D L, Jundt D 1997 J. Opt. Soc. Am. B 14 3319Google Scholar
[28] Deng C G, Ye L X, He C J, Xu G S, Zhai Q X, Luo H S, Liu Y W, Bell A J 2021 Adv. Mater. 33 2103013Google Scholar
-
-
[1] Ren T W, Wu C T, Yu Y G, Dai T Y, Chen F, Pan Q K 2021 Appl. Sci. 11 11451Google Scholar
[2] Du Z H, Zhang S, Li J Y, Gao N, Tong K B 2019 Appl. Sci. 9 338Google Scholar
[3] Pan Q K 2015 Chin. Opt. 8 557Google Scholar
[4] 钱俊宇, 彭宇杰, 李妍妍, 黎文开, 冯壬誉, 沈丽雅, 冷雨欣 2021 红外与激光工程 50 20210456Google Scholar
Qian J Y, Peng Y J, Li Y Y, Li W K, Feng R Y, Shen L Y, Leng Y X 2021 Infrared Laser Engineer. 50 20210456Google Scholar
[5] Maiman T H 1960 Nature 187 493Google Scholar
[6] Franken P A, Hill A E, Peters C W, Weinreich G 1961 Phys. Rev. Lett. 7 118Google Scholar
[7] Ghimire S, Reis D A 2019 Nat. Phys. 15 10Google Scholar
[8] Armstrong J A, Bloembergen N, Docuing J, Pershan P S 1962 Phys. Rev. 127 1918Google Scholar
[9] Shen Y R 1984 The Principles of Nonlinear Optics (New York: Wiley)
[10] Masters B R, Boyd R W 2009 Nonlinear Optics (3rd Ed.) (Academic Press)
[11] Markov A, Mazhorova A, Breitenborn H, Bruhacs A, Clerici M, Modotto D, Jedrkiewicz O, Trapani di P, Major A, Vidal F, Morandotti R 2018 Opt. Express 26 4448Google Scholar
[12] Ishizuki H, Taira T, Kurimura S, Ro J H, Cha M 2003 Jpn. J. Appl. Phys. 42 L108Google Scholar
[13] Lin L L, Li Z Y, Ho K M 2003 J. Appl. Phys. 94 811Google Scholar
[14] Li J J, Li Z Y, and Zhang D Z 2008 Phys. Rev. B 77 195127Google Scholar
[15] Vidal X, Martorell J 2006 Phys. Rev. Lett. 97 013902Google Scholar
[16] Sheng Y, Dou J, Ma B, Cheng B, Zhang D 2007 Appl. Phys. Lett. 91 011101Google Scholar
[17] Suchowski H, Oron D, Arie A, Silberberg Y 2008 Phys. Rev. A 78 063821Google Scholar
[18] Margules P, Moses J, Suchowski H, Porat G 2021 J. Phys. Photonics 3 022011Google Scholar
[19] Chen B Q, Zhang C, Liu R J, Li Z Y 2014 Appl. Phys. Lett. 105 151106Google Scholar
[20] Arie A, Voloch N, Periodic 2010 Laser Photonics Rev., 4 355. Zhang Y, Sheng Y, Zhu S N, Xiao M, Krolikowski W 2021 Optica 8 372Google Scholar
[21] Vyunishev A M, Arkhipkin V G 2020 Laser Phys. 30 045401Google Scholar
[22] Chen B Q, Hong L H, Hu C Y, Zhang C, Liu R J, Li Z Y 2018 J. Opt. 20 034009Google Scholar
[23] Hu C Y, Li Z Y 2017 J. Appl. Phys. 121 123110Google Scholar
[24] Chen B Q, Ren M L, Liu R J, Zhang C, Sheng Y, Ma B Q, Li Z Y 2014 Light Sci. Appl. 3 e189Google Scholar
[25] Chen B Q, Zhang C, Hu C Y, Liu R J, Li Z Y 2015 Phys. Rev. Lett. 115 83902Google Scholar
[26] Chen B Q, Hong L H, Hu C Y, Li Z Y 2021 Research 2021 1
[27] Zelmon D E, Small D L, Jundt D 1997 J. Opt. Soc. Am. B 14 3319Google Scholar
[28] Deng C G, Ye L X, He C J, Xu G S, Zhai Q X, Luo H S, Liu Y W, Bell A J 2021 Adv. Mater. 33 2103013Google Scholar
计量
- 文章访问数: 4895
- PDF下载量: 131
- 被引次数: 0