-
神经形态电子学的迅速发展为生物神经系统仿生与模拟提供了有力支持. 具有三明治结构的两端人造突触电子器件不仅在结构上模拟了生物突触, 同时在类神经电脉冲信号的作用下可以完成对生物突触塑性的模拟与调控. 本文利用溶胶-凝胶法合成了具有层状结构的P3相Na2/3Ni1/3Mn2/3O2多元金属氧化物. 借助其晶体结构中Na+易于嵌入/脱出的特性, 设计并制备了基于Na2/3Ni1/3Mn2/3O2的离子迁移型人造突触, 器件在电脉冲信号的刺激下实现了对生物突触塑性的模拟, 并通过调校类神经尖峰脉冲信号, 成功对塑性行为进行了调控. 成功模拟了兴奋性突触后电流、双脉冲易化、脉冲数量依赖可塑性、脉冲频率依赖可塑性、脉冲电压幅值依赖可塑性和脉冲持续时间依赖可塑性. 同时, 器件实现了对摩斯电码指令的准确识别与响应.Neuromorphic electronics has received considerable attention recent years, and its basic functional units are synaptic electronic devices. A two-terminal artificial synapse with sandwiched structure emulates plasticity of the biological synapses under the action of nerve-like electrical impulse signals. In this paper, P3 phase Na2/3Ni1/3Mn2/3O2 multi-element metal oxides with layered structure are synthesized by sol-gel process. Owing to the fact that Na+ is easy to embed/eject into its crystal structure, an ion-migrating artificial synapse based on Na2/3Ni1/3Mn2/3O2 is designed and fabricated. The device emulates important synaptic plasticity, such as excitatory postsynaptic current, paired-pulse facilitation, spike-number dependent plasticity, spike-frequency dependent plasticity, spike-voltage amplitude dependent plasticity and spike-duration dependent plasticity. The device realizes the identification and response to Morse code commands.
-
Keywords:
- artificial synapses /
- ion transport /
- multi-metal oxides /
- synaptic plasticity
[1] Kuzum D, Yu S, Wong H P 2013 Nanotechnology 24 382001Google Scholar
[2] Ling H, Koutsouras D A, Kazemzadeh S, Van De Burgt Y, Yan F, Gkoupidenis P 2020 Appl. Phys. Rev. 7 011307Google Scholar
[3] Wang S, Zhang D W, Zhou P 2019 Sci. Bull. 64 1056Google Scholar
[4] Wei H, Shi R, Sun L, Yu H, Gong J, Liu C, Xu Z, Ni Y, Xu J, Xu W 2021 Nat. Commun. 12 1Google Scholar
[5] Choi D, Song M K, Sung T, Jang S, Kwon J Y 2020 Nano Energy 74 104912Google Scholar
[6] Xia Q, Yang J J 2019 Nat. Mater. 18 309Google Scholar
[7] Lu K, Li X, Sun Q, Pang X, Chen J, Minari T, Liu X, Song Y 2021 Mater. Horiz. 8 447Google Scholar
[8] Sun J, Fu Y, Wan Q 2018 J. Phys. D: Appl. Phys. 51 314004Google Scholar
[9] Gao J, Zheng Y, Yu W, Wang Y, Jin T, Pan X, Loh K P, Chen W 2021 Smart Mater. 2 88Google Scholar
[10] Jeong B, Gkoupidenis P, Asadi K 2021 Adv. Mater. 33 2104034Google Scholar
[11] Huang X, Li Q, Shi W, Liu K, Zhang Y, Liu Y, Wei X, Zhao Z, Guo Y, Liu Y 2021 Small 17 2102820Google Scholar
[12] Wang C, Liu H, Chen L, Zhu H, Ji L, Sun Q Q, Zhang D W 2021 IEEE Electron Device Lett. 42 1555Google Scholar
[13] Huang H, Liu L, Jiang C, Gong J, Ni Y, Xu Z, Wei H, Yu H, Xu W 2022 Neuromorph. Comput. Eng. 2 014004Google Scholar
[14] Keene S T, Lubrano C, Kazemzadeh S, Melianas A, Tuchman Y, Polino G, Scognamiglio P, Cina L, Salleo A, van de Burgt Y, Santoro F 2020 Nat. Mater. 19 969Google Scholar
[15] Ku B, Koo B, Sokolov A S, Ko M J, Choi C 2020 J. Alloys Compd. 833 155064Google Scholar
[16] Yan Y, Chen Q, Wu X, Wang X, Li E, Ke Y, Liu Y, Chen H, Guo T 2020 ACS Appl. Mater. Interfaces 12 49915Google Scholar
[17] Wang H, Zhao Q, Ni Z, Li Q, Liu H, Yang Y, Wang L, Ran Y, Guo Y, Hu W 2018 Adv. Mater. 30 1803961Google Scholar
[18] Wei H, Yu H, Gong J, Li R, Han H, Ma M, Guo K, Xu W 2021 Mater. Chem. Front. 5 775Google Scholar
[19] Gao J, Hao Y, Xu S, Rong X, Lu Q, Zhu C, Hu Y S 2021 Electrochim. Acta 399 139421Google Scholar
[20] Wang D, Xu S, Wang J, Rong X, Zhou F, Wang L, Bai X, Lu B, Zhu C, Wang Y, Hu Y S 2022 Energy Storage Mater. 45 92Google Scholar
[21] Kong L, Tang C, Peng H J, Huang J Q, Zhang Q 2020 Smart Mater. 1 e1007Google Scholar
[22] Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Gu Q, Chou S 2019 J. Mater. Chem. A 7 9215Google Scholar
[23] Zhang S Y, Guo Y J, Zhou Y N, Zhang X D, Niu Y B, Wang E H, Huang L B, An P F, Zhang J, Yang X A 2021 Small 17 2007236Google Scholar
[24] Xian L, Li M, Qiu D, Qiu C, Yue C, Wang F, Yang R 2022 J. Alloys Compd. 905 163965Google Scholar
[25] Song T, Kendrick E 2021 J. Phys. :Mater. 4 032004Google Scholar
[26] Yu M, Liu F, Li J, Liu J, Zhang Y, Cheng F 2021 Adv. Energy Mater. 12 2100640Google Scholar
[27] Yang X, Specht C G 2019 Front. Mol. Neurosci. 12 161Google Scholar
[28] Lu L, Jia Y, Kirunda J B, Xu Y, Ge M, Pei Q, Yang L 2019 Nonlinear Dyn. 95 1673Google Scholar
[29] Beckstead M J, Grandy D K, Wickman K, Williams J T 2004 Neuron 42 939Google Scholar
[30] Shipman S L, Nicoll R A 2012 Proc. Natl. Acad. Sci. 109 19432Google Scholar
[31] Hayashi A, Masuzawa N, Yubuchi S, Tsuji F, Hotehama C, Sakuda A, Tatsumisago M 2019 Nat. Commun. 10 1Google Scholar
[32] Wei H, Yu H, Gong J, Zhang J, Han H, Ma M, Ni Y, Du Y, Zhang S, Liu L, Xu W 2019 ACS Appl. Electron. Mater. 2 316Google Scholar
[33] Wen Y, Wang B, Zeng G, Nogita K, Ye D, Wang L 2015 Chem. Asian J. 10 661Google Scholar
[34] Huang Q, Xu S, Xiao L, He P, Liu J, Yang Y, Wang P, Huang B, Wei W 2018 Inorg. Chem. 57 15584Google Scholar
[35] Magee J C, Grienberger C 2020 Annu. Rev. Neurosci. 43 95Google Scholar
[36] Li Y, Zhong Y, Zhang J, Xu L, Wang Q, Sun H, Tong H, Cheng X, Miao X 2014 Sci. Rep. 4 1Google Scholar
[37] Van Rossum M C, Bi G Q, Turrigiano G G 2000 J. Neurosci. 20 8812Google Scholar
[38] Fang L, Dai S, Zhao Y, Liu D, Huang J 2020 Adv. Electron. Mater. 6 1901217Google Scholar
[39] Yang K, Yang L, Wang Z, Guo B, Song Z, Fu Y, Ji Y, Liu M, Zhao W, Liu X 2021 Adv. Energy Mater. 11 2100601Google Scholar
[40] López J C 2001 Nat. Rev. Neurosci. 2 307Google Scholar
[41] Gong J, Yu H, Zhou X, Wei H, Ma M, Han H, Zhang S, Ni Y, Li Y, Xu W 2020 Adv. Funct. Mater. 30 2005413Google Scholar
[42] 郭科鑫, 于海洋, 韩弘, 卫欢欢, 龚江东, 刘璐, 黄茜, 高清运, 徐文涛 2020 物理学报 69 238501Google Scholar
Guo K X, Yu H Y, Han H, Wei H H, Gong J D, Liu L, Huang Q, Gao Q Y, Xu W T 2020 Acta Phys. Sin. 69 238501Google Scholar
[43] Zhang S, Guo J, Liu L, Ruan H, Kong C, Yuan X, Zhang B, Gu G, Cui P, Cheng G 2022 Nano Energy 91 106660Google Scholar
[44] Lee Y, Oh J Y, Xu W, Kim O, Kim T R, Kang J, Kim Y, Son D, Tok J B H, Park M J 2018 Sci. Adv. 4 eaat7387Google Scholar
[45] Shim H, Jang S, Jang J G, Rao Z, Hong J I, Sim K, Yu C 2022 Nano Res. 15 758Google Scholar
[46] Yang F, Sun L, Duan Q, Dong H, Jing Z, Yang Y, Li R, Zhang X, Hu W, Chua L 2021 Smart Mater. 2 99Google Scholar
-
图 2 (a) Na2/3Ni1/3Mn2/3O2粉末X射线衍射测试图; (b) Na2/3Ni1/3Mn2/3O2粉末扫描电子显微镜测试图; (c) Na2/3Ni1/3Mn2/3O2粉末X射线能谱分析图; (d) Na2/3Ni1/3Mn2/3O2活性层扫描电子显微镜表面形貌测试图; (e) 底电极铝箔、Na2/3Ni1/3Mn2/3O2活性层与PEO-Na电解质薄层扫描电子显微镜断面形貌测试图; (f) Na2/3Ni1/3Mn2/3O2活性层原子力显微镜测试图
Fig. 2. (a) X-ray diffraction test diagram of Na2/3Ni1/3Mn2/3O2 powder; (b) scanning electron microscope test diagram of Na2/3Ni1/3Mn2/3O2 powder; (c) EDS test diagram of Na2/3Ni1/3Mn2/3O2 powder; (d) surface topography test diagram of Na2/3Ni1/3Mn2/3O2 active layer scanning electron microscope ; (e) bottom electrode Al foil, Na2/3Ni1/3Mn2/3O2 active layer and PEO-Na electrolyte thin layer scanning electron microscope cross-sectional morphology test diagram; (f) atom force microscope test diagram of Na2/3Ni1/3Mn2/3O2 active layer.
图 3 (a) 单次阻变特性测试; (b) 连续50次阻变特性稳定能力测试; (c) 对器件施加单个幅值为0.2 V的电脉冲信号所产生的EPSC; (d) 对器件连续施加两个幅值为0.2 V的电脉冲信号所产生的PPF; 对器件施加多对时间间隔不同幅值为0.2 V的电脉冲信号所产生的(e) PPF以及(f) PPF指数
Fig. 3. (a) Single resistance characteristic test; (b) 50 consecutive tests of resistance characteristic stability; (c) EPSC generated by applying a single electrical pulse signal with an amplitude of 0.2 V to the device; (d) PPF generated by continuously applying two electrical pulse signals with an amplitude of 0.2 V to the device; (e) PPF and (f) PPF index generated by applying multiple pairs of electrical pulse signals with different amplitudes of 0.2 V to the device.
图 4 对器件连续施加10个幅值为0.2 V的电脉冲信号所产生的 (a) SNDP以及(b) SNDP 指数; (c) 对器件施加幅值从0 V—4 V—0 V变化的10组电脉冲信号循环所产生的SVDP; 对器件施加多个脉冲宽度不同幅值为0.2 V的电脉冲信号所产生的(d) SDDP以及(e) SDDP 指数; (f) 对器件连续施加多组频率不同幅值为0.2 V的电脉冲信号所产生的SFDP
Fig. 4. (a) SNDP and (b) SNDP index generated by continuously applying 10 electrical pulse signals with an amplitude of 0.2 V to the device; (c) 10 groups of amplitudes varying from 0 V to 4 V to 0 V are applied to the device SVDP generated by electrical pulse signal cycle; (d) SDDP and (e) SDDP index generated by applying multiple electrical pulse signals with different pulse widths and amplitudes of 0.2 V to the device; (f) SFDP generated by continuously applying multiple groups of electrical pulse signals with the different frequencies and amplitudes of 0.2 V to the device.
-
[1] Kuzum D, Yu S, Wong H P 2013 Nanotechnology 24 382001Google Scholar
[2] Ling H, Koutsouras D A, Kazemzadeh S, Van De Burgt Y, Yan F, Gkoupidenis P 2020 Appl. Phys. Rev. 7 011307Google Scholar
[3] Wang S, Zhang D W, Zhou P 2019 Sci. Bull. 64 1056Google Scholar
[4] Wei H, Shi R, Sun L, Yu H, Gong J, Liu C, Xu Z, Ni Y, Xu J, Xu W 2021 Nat. Commun. 12 1Google Scholar
[5] Choi D, Song M K, Sung T, Jang S, Kwon J Y 2020 Nano Energy 74 104912Google Scholar
[6] Xia Q, Yang J J 2019 Nat. Mater. 18 309Google Scholar
[7] Lu K, Li X, Sun Q, Pang X, Chen J, Minari T, Liu X, Song Y 2021 Mater. Horiz. 8 447Google Scholar
[8] Sun J, Fu Y, Wan Q 2018 J. Phys. D: Appl. Phys. 51 314004Google Scholar
[9] Gao J, Zheng Y, Yu W, Wang Y, Jin T, Pan X, Loh K P, Chen W 2021 Smart Mater. 2 88Google Scholar
[10] Jeong B, Gkoupidenis P, Asadi K 2021 Adv. Mater. 33 2104034Google Scholar
[11] Huang X, Li Q, Shi W, Liu K, Zhang Y, Liu Y, Wei X, Zhao Z, Guo Y, Liu Y 2021 Small 17 2102820Google Scholar
[12] Wang C, Liu H, Chen L, Zhu H, Ji L, Sun Q Q, Zhang D W 2021 IEEE Electron Device Lett. 42 1555Google Scholar
[13] Huang H, Liu L, Jiang C, Gong J, Ni Y, Xu Z, Wei H, Yu H, Xu W 2022 Neuromorph. Comput. Eng. 2 014004Google Scholar
[14] Keene S T, Lubrano C, Kazemzadeh S, Melianas A, Tuchman Y, Polino G, Scognamiglio P, Cina L, Salleo A, van de Burgt Y, Santoro F 2020 Nat. Mater. 19 969Google Scholar
[15] Ku B, Koo B, Sokolov A S, Ko M J, Choi C 2020 J. Alloys Compd. 833 155064Google Scholar
[16] Yan Y, Chen Q, Wu X, Wang X, Li E, Ke Y, Liu Y, Chen H, Guo T 2020 ACS Appl. Mater. Interfaces 12 49915Google Scholar
[17] Wang H, Zhao Q, Ni Z, Li Q, Liu H, Yang Y, Wang L, Ran Y, Guo Y, Hu W 2018 Adv. Mater. 30 1803961Google Scholar
[18] Wei H, Yu H, Gong J, Li R, Han H, Ma M, Guo K, Xu W 2021 Mater. Chem. Front. 5 775Google Scholar
[19] Gao J, Hao Y, Xu S, Rong X, Lu Q, Zhu C, Hu Y S 2021 Electrochim. Acta 399 139421Google Scholar
[20] Wang D, Xu S, Wang J, Rong X, Zhou F, Wang L, Bai X, Lu B, Zhu C, Wang Y, Hu Y S 2022 Energy Storage Mater. 45 92Google Scholar
[21] Kong L, Tang C, Peng H J, Huang J Q, Zhang Q 2020 Smart Mater. 1 e1007Google Scholar
[22] Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Gu Q, Chou S 2019 J. Mater. Chem. A 7 9215Google Scholar
[23] Zhang S Y, Guo Y J, Zhou Y N, Zhang X D, Niu Y B, Wang E H, Huang L B, An P F, Zhang J, Yang X A 2021 Small 17 2007236Google Scholar
[24] Xian L, Li M, Qiu D, Qiu C, Yue C, Wang F, Yang R 2022 J. Alloys Compd. 905 163965Google Scholar
[25] Song T, Kendrick E 2021 J. Phys. :Mater. 4 032004Google Scholar
[26] Yu M, Liu F, Li J, Liu J, Zhang Y, Cheng F 2021 Adv. Energy Mater. 12 2100640Google Scholar
[27] Yang X, Specht C G 2019 Front. Mol. Neurosci. 12 161Google Scholar
[28] Lu L, Jia Y, Kirunda J B, Xu Y, Ge M, Pei Q, Yang L 2019 Nonlinear Dyn. 95 1673Google Scholar
[29] Beckstead M J, Grandy D K, Wickman K, Williams J T 2004 Neuron 42 939Google Scholar
[30] Shipman S L, Nicoll R A 2012 Proc. Natl. Acad. Sci. 109 19432Google Scholar
[31] Hayashi A, Masuzawa N, Yubuchi S, Tsuji F, Hotehama C, Sakuda A, Tatsumisago M 2019 Nat. Commun. 10 1Google Scholar
[32] Wei H, Yu H, Gong J, Zhang J, Han H, Ma M, Ni Y, Du Y, Zhang S, Liu L, Xu W 2019 ACS Appl. Electron. Mater. 2 316Google Scholar
[33] Wen Y, Wang B, Zeng G, Nogita K, Ye D, Wang L 2015 Chem. Asian J. 10 661Google Scholar
[34] Huang Q, Xu S, Xiao L, He P, Liu J, Yang Y, Wang P, Huang B, Wei W 2018 Inorg. Chem. 57 15584Google Scholar
[35] Magee J C, Grienberger C 2020 Annu. Rev. Neurosci. 43 95Google Scholar
[36] Li Y, Zhong Y, Zhang J, Xu L, Wang Q, Sun H, Tong H, Cheng X, Miao X 2014 Sci. Rep. 4 1Google Scholar
[37] Van Rossum M C, Bi G Q, Turrigiano G G 2000 J. Neurosci. 20 8812Google Scholar
[38] Fang L, Dai S, Zhao Y, Liu D, Huang J 2020 Adv. Electron. Mater. 6 1901217Google Scholar
[39] Yang K, Yang L, Wang Z, Guo B, Song Z, Fu Y, Ji Y, Liu M, Zhao W, Liu X 2021 Adv. Energy Mater. 11 2100601Google Scholar
[40] López J C 2001 Nat. Rev. Neurosci. 2 307Google Scholar
[41] Gong J, Yu H, Zhou X, Wei H, Ma M, Han H, Zhang S, Ni Y, Li Y, Xu W 2020 Adv. Funct. Mater. 30 2005413Google Scholar
[42] 郭科鑫, 于海洋, 韩弘, 卫欢欢, 龚江东, 刘璐, 黄茜, 高清运, 徐文涛 2020 物理学报 69 238501Google Scholar
Guo K X, Yu H Y, Han H, Wei H H, Gong J D, Liu L, Huang Q, Gao Q Y, Xu W T 2020 Acta Phys. Sin. 69 238501Google Scholar
[43] Zhang S, Guo J, Liu L, Ruan H, Kong C, Yuan X, Zhang B, Gu G, Cui P, Cheng G 2022 Nano Energy 91 106660Google Scholar
[44] Lee Y, Oh J Y, Xu W, Kim O, Kim T R, Kang J, Kim Y, Son D, Tok J B H, Park M J 2018 Sci. Adv. 4 eaat7387Google Scholar
[45] Shim H, Jang S, Jang J G, Rao Z, Hong J I, Sim K, Yu C 2022 Nano Res. 15 758Google Scholar
[46] Yang F, Sun L, Duan Q, Dong H, Jing Z, Yang Y, Li R, Zhang X, Hu W, Chua L 2021 Smart Mater. 2 99Google Scholar
计量
- 文章访问数: 5477
- PDF下载量: 252
- 被引次数: 0