-
分子激光冷却与磁光囚禁在超越标准模型的新物理与新机制探索、超冷化学与冷分子碰撞等诸多领域中有着广泛的应用前景. CaH分子的某些态之间具有高度对角化的弗兰克-康登因子, 因此早在2004年就被提出作为激光冷却与磁光囚禁的候选分子之一. 利用速率方程并考虑双频效应的影响, 本文计算了
$ {\mathrm{A}}^{2}{\mathrm{Π}}_{1/2}\leftarrow {\mathrm{X}}^{2}{\mathrm{Σ}}^{+} $ 与${\mathrm{B}}^{2}{\mathrm{Σ }}^{+}\leftarrow {\mathrm{X}}^{2}{\mathrm{Σ }}^{+}$ 跃迁中CaH分子磁光阱内阻尼力和囚禁力的大小, 分析了四频率组分和多频率组分激光设置下CaH分子磁光囚禁时的冷却和囚禁效果. 结果发现,$ {\mathrm{A}}^{2}{\mathrm{Π}}_{1/2}\leftarrow {\mathrm{X}}^{2}{\mathrm{Σ}}^{+} $ 跃迁中, CaH分子在多频率组分激光设置下可获得更大的阻尼力和囚禁力, 从而有利于实现CaH分子磁光阱. 以上工作不仅证明了CaH分子磁光囚禁的可行性以及为实验探索提供了必要的理论支持, 同时也为超冷分子碰撞、极性冷分子BEC、基于极性冷分子的精密测量物理(如电子电偶极矩精密测量)等奠定了重要的研究基础.Laser cooling and magneto-optical trapping of molecules is regarded as one of the state-of-the-art research fields in physics, which possesses broad applications in exploring fundamental physics beyond the Standard Model, quantum many-body physics, cold/ultracold chemistry and collision studies and so forth. Owing to the characteristic of highly diagonal Franck-Condon factors, lower saturation irradiance and larger scattering rate, the CaH molecule has been proposed as a promising candidate for laser cooling and magneto-optical trapping ever since 2004. Taking advantage of the multi-energy-level rate equation as well as the dual frequency effect, we evaluate the damping and trapping forces contained in the optical transitions of$ {\mathrm{A}}^{2}{\mathrm{Π}}_{1/2}\leftarrow {\mathrm{X}}^{2}{\mathrm{Σ }}^{+} $ and${\mathrm{B}}^{2}{\mathrm{Σ }}^{+}\leftarrow {\mathrm{X}}^{2}{\mathrm{Σ }}^{+}$ , analyze the cooling and trapping performance for different laser polarization sets, power values and detunings of four laser components, and determine the variations in the damping and trapping forces due to an additional frequency component. It is discovered that if the laser polarization is set to be σ-σ+σ+σ+σ+, the detuning for the second laser component is Γwhile the detuning of other components are set to be -2Γ, and the laser power is set to be 150 mW, one can obtain a damping acceleration of 28000 m/s2, and a trapping acceleration of 19000 m/s2 for the transition of $ {\mathrm{A}}^{2}{\mathrm{Π}}_{1/2}\leftarrow {\mathrm{X}}^{2}{\mathrm{Σ }}^{+} $ , both of which reach the optimal values under the current scope of the research and exhibit better performance than the CaF molecule. Our results, on one hand, not only offer an ideal method to comprehend the CaH MOT in theory but also help design the CaH MOT experiment or even achieve the Bose-Einstein condensation (BEC) of cold diatomic molecules. On the other hand, alkaline-earth-metal monohydrides (AEMHs) such as CaH, SrH and BaH are well-known for their permanent electric dipole moment, therefore these trapped diatomic molecules can be utilized to untangle the mechanism of dipole-dipole interaction, thus paving the way to realizing the molecular entanglement and quantum computing. More interestingly, current experimental systems for the non-zero measurement of the electron’s electric dipole moment (eEDM), including ThO, YbF and HfF+, still cannot be conducted simultaneously under the laser cooling and magneto-optical trapping technique while maintaining the ease of full polarization and internal co-magnetometry, all of which undoubtedly can increase the coherent measurement time and hence the statistical sensitivity, as well as the immunity to the systematic sensitivity. Previous studies reported that AEMHs share some similar characters with alkaline-earth-metal monofluorides (AEMFs) such as in electron correlation effects, however, the hyperfine energy level structures of AEMHs are relatively simpler than those of AEMFs, and AEMHs are prone to being polarized under the externally applied electric field. All of these lead to the trend that AEMHs may possess the dual character that it can be not only laser cooled and trapped in a MOT but also adopted as an candidate to measure the eEDM. Therefore, our work lays a substantial foundation for the theoretical and experimental study of SrH and BaH that inevitably will contribute to the exploration of the CP violation and new physics beyond the Standard Model on a scientific platform based on cold polar molecules, which is obviously different from large facilities such as the Large Hadron Collider.[1] Hudson E R, Lewandowski H, Sawyer B C, Ye J 2006 Phys. Rev. Lett. 96 143004Google Scholar
[2] Liu L, Hood J, Yu Y, Zhang J, Hutzler N, Rosenband T, Ni K K 2018 Science 360 900Google Scholar
[3] Yang T, Thomas A M, Dangi B B, Kaiser R I, Mebel A M, Millar T J 2018 Nat. Commun. 9 1Google Scholar
[4] Kerman A J, Sage J M, Sainis S, Bergeman T, DeMille D 2004 Phys. Rev. Lett. 92 153001Google Scholar
[5] Wang D, Qi J, Stone M, Nikolayeva O, Wang H, Hattaway B, Gensemer S, Gould P, Eyler E, Stwalley W 2004 Phys. Rev. Lett. 93 243005Google Scholar
[6] Ni K K, Ospelkaus S, De Miranda M, Pe'Er A, Neyenhuis B, Zirbel J, Kotochigova S, Julienne P, Jin D, Ye J 2008 Science 322 231Google Scholar
[7] 陈涛, 颜波 2019 物理学报 68 043701Google Scholar
Chen T, Yan B 2019 Acta Phys. Sin. 68 043701Google Scholar
[8] Bruzewicz C, Gustavsson M, Shimasaki T, DeMille D 2014 New. J. Phys. 16 023018Google Scholar
[9] Wu C H, Park J W, Ahmadi P, Will S, Zwierlein M W 2012 Phys. Rev. Lett. 109 085301Google Scholar
[10] Jin D S, Ye J 2011 Phys. Today 64 27
[11] Bethlem H L, Berden G, Meijer G 1999 Phys. Rev. Lett. 83 1558Google Scholar
[12] Barry J, McCarron D, Norrgard E, Steinecker M, DeMille D 2014 Nature 512 286Google Scholar
[13] Weinstein J D, Decarvalho R, Amar K, Boca A, Odom B C, Friedrich B, Doyle J M 1998 J. Chem. Phys. 109 2656Google Scholar
[14] 夏勇, 汪海玲, 许亮, 印建平 2018 物理学报 47 24Google Scholar
Xia Y, Wang H L, Xu L, Yin J P 2018 Acta Phys. Sin. 47 24Google Scholar
[15] Jochim S, Bartenstein M, Altmeyer A, Hendl G, Riedl S, Chin C, Hecker Denschlag J, Grimm R 2003 Science 302 2101Google Scholar
[16] Greiner M, Regal C A, Jin D S 2003 Nature 426 537Google Scholar
[17] Zhang Z, Chen L, Yao K X, Chin C 2021 Nature 592 708Google Scholar
[18] Steinecker M H, McCarron D J, Zhu Y, DeMille D 2016 ChemPhysChem 17 3664Google Scholar
[19] Tarbutt M, Steimle T 2015 Phys. Rev. A 92 053401Google Scholar
[20] Truppe S, Williams H, Hambach M, Caldwell L, Fitch N, Hinds E, Sauer B, Tarbutt M 2017 Nat. Phys. 13 1173Google Scholar
[21] Anderegg L, Augenbraun B L, Chae E, Hemmerling B, Hutzler N R, Ravi A, Collopy A, Ye J, Ketterle W, Doyle J M 2017 Phys. Rev. Lett. 119 103201Google Scholar
[22] Langin T K, Jorapur V, Zhu Y, Wang Q, DeMille D 2021 Phys. Rev. Lett. 127 163201Google Scholar
[23] Lu H I, Rasmussen J, Wright M J, Patterson D, Doyle J M 2011 Phys. Chem. Chem. Phys. 13 18986Google Scholar
[24] 尹俊豪, 杨涛, 印建平 2021 物理学报 70 163302Google Scholar
Yin J H, Yang T, Yin J P 2021 Acta Phys. Sin. 70 163302Google Scholar
[25] Collopy A L, Ding S, Wu Y, Finneran I A, Anderegg L, Augenbraun B L, Doyle J M, Ye J 2018 Phys. Rev. Lett. 121 213201Google Scholar
[26] Iwata G, McNally R, Zelevinsky T 2017 Phys. Rev. A 96 022509Google Scholar
[27] Chen T, Bu W, Yan B 2017 Phys. Rev. A 96 053401Google Scholar
[28] Gu R, Xia M, Yan K, Wu D, Wei J, Xu L, Xia Y, Yin J 2022 J. Quant. Spectrosc. Radiat. Transfer 278 108015Google Scholar
[29] Kozyryev I, Baum L, Matsuda K, Augenbraun B L, Anderegg L, Sedlack A P, Doyle J M 2017 Phys. Rev. Lett. 118 173201Google Scholar
[30] Baum L, Vilas N B, Hallas C, Augenbraun B L, Raval S, Mitra D, Doyle J M 2021 Phys. Rev. A 103 043111Google Scholar
[31] Fazil N, Prasannaa V, Latha K, Abe M, Das B 2018 Phys. Rev. A 98 032511Google Scholar
[32] Kozyryev I, Hutzler N R 2017 Phys. Rev. Lett. 119 133002Google Scholar
[33] Barbuy B, Schiavon R, Gregorio-Hetem J, Singh P, Batalha C 1993 Astron. Astrophys. Suppl. Ser. 101 409
[34] Lépine S, Rich R M, Shara M M 2003 Astrophys. J. 591 L49Google Scholar
[35] Barclay Jr W, Anderson M, Ziurys L M 1993 Astrophys. J. 408 L65Google Scholar
[36] Steimle T, Chen J, Gengler J 2004 J. Chem. Phys. 121 829Google Scholar
[37] Weinstein J D, DeCarvalho R, Guillet T, Friedrich B, Doyle J M 1998 Nature 395 148Google Scholar
[38] Singh V, Hardman K S, Tariq N, Lu M J, Ellis A, Morrison M J, Weinstein J D 2012 Phys. Rev. Lett. 108 203201Google Scholar
[39] Ramanaiah M, Lakshman S 1982 Physica 113C 263Google Scholar
[40] Nakagawa J, Domaille P J, Steimle T C, Harris D O 1978 J. Mol. Spectrosc. 70 374Google Scholar
[41] Shayesteh A, Ram R S, Bernath P F 2013 J. Mol. Spectrosc. 288 46Google Scholar
[42] Gao Y, Gao T 2014 Phys. Rev. A 90 052506Google Scholar
[43] Chen J, Gengler J, Steimle T, Brown J M 2006 Phys. Rev. A 73 012502Google Scholar
[44] Barry J F, McCarron D J, Norrgard E B, Steinecker M H, DeMille D 2014 Nature 512 286
[45] Xu S, Xia M, Gu R, Yin Y, Xu L, Xia Y, Yin J 2019 Phys. Rev. A 99 033408Google Scholar
[46] Tarbutt M 2015 New. J. Phys. 17 015007Google Scholar
[47] Liu M, Pauchard T, Sjödin M, Launila O, van der Meulen P, Berg L E 2009 J. Mol. Spectrosc. 257 105Google Scholar
[48] Xu L, Yin Y, Wei B, Xia Y, Yin J 2016 Phys. Rev. A 93 013408Google Scholar
[49] Steimle T C, Meyer T P, Al-Ramadin Y, Bernath P 1987 J. Mol. Spectrosc. 125 225Google Scholar
[50] Williams H, Truppe S, Hambach M, Caldwell L, Fitch N, Hinds E, Sauer B, Tarbutt M 2017 New J. Phys. 19 113035Google Scholar
-
图 1 CaH分子
${\mathrm{{\rm X}}}^{2}{\mathrm{Σ }}^{+}(\upsilon =0, N=1)$ 电子态的塞曼分裂示意图. F表示总角动量, 括号里的数字是每一个超精细能级的g因子值Fig. 1. The Zeeman level structure for the
${{{\rm X}}}^{2}{{\Sigma }}^{+}(\upsilon = $ $ 0, N=1)$ state of the CaH molecule. F represents the total angular momentum, while numbers in parentheses indicate the g factor for each hyperfine energy level.图 2 (a) 双频效应原理图. 基态能级Fl = 2, gl = 0.5, 激发态能级Fu = 1, gu = 0.不同偏振的频率分量激发同一能级, 失谐量分别是
$ {\delta }_{1} $ 和$ {\delta }_{2} $ . (b) 囚禁频率与失谐量$ {\delta }_{2} $ 的曲线图; (c)阻尼系数与失谐量$ {\delta }_{2} $ 的曲线图Fig. 2. (a) Illustration of the dual-frequency effect with the ground energy level Fl = 2, gl = 0.5 and the excited energy level Fu = 1, gu = 0. Two transitions with oppositely polarized frequency components were driven, while the detunings are
$ {\delta }_{1} $ and$ {\delta }_{2} $ respectively. (b) Trap frequency versus$ {\delta }_{2} $ ; (c) Damping coefficient versus$ {\delta }_{2} $ .图 3 CaH分子MOT中
$ \mathrm{A}^{2}{\mathrm{Π}}_{1/2}\leftarrow {\mathrm{X}}^{2}{\mathrm{Σ}}^{+} $ 和${\mathrm{B}}^{2}{\mathrm{Σ }}^{+}\leftarrow {\mathrm{X}}^{2}{\mathrm{Σ }}^{+}$ 跃迁的频率分布方案Fig. 3. Frequency distribution schemes for
${\mathrm{A}}^{2}{\mathrm{Π}}_{1/2}\leftarrow $ $ {\mathrm{X}}^{2}{\mathrm{Σ }}^{+}$ and${\mathrm{B}}^{2}{\mathrm{Σ }}^{+}\leftarrow {\mathrm{X}}^{2}{\mathrm{Σ }}^{+}$ transitions in a MOT of CaH.图 4 不同偏振组态下的加速度与(a)速度和(b)位移的关系图. 其中激光功率均为150 mW, 失谐为–2Γ. 不同激光功率下的加速度与(c)速度和(d)位移关系图. 其中频率组分的偏振组态为(–+++), 失谐为–2Γ. 不同失谐量下的加速度与(e)速度和(f)位移关系图. 其中激光功率均为150 mW, 频率组分的偏振组态为(–+++)
Fig. 4. Acceleration versus (a) speed and (b) displacement under different polarization configurations where the power for lasers is set to be 150 mW and the detuning is –2Γ. Acceleration versus (c) speed and (d) displacement on different laser powers. The polarization configuration is (–+++), while the detuning is –2Γ. Acceleration versus (e) speed and (f) displacement on various detunings, where the laser power is set as 150 mW and the polarization configuration is (–+++).
图 5 加速度与(a)速度和(b)位移关系图. 激光频率偏振设置为插图中所示的情况, 其中激光功率均为150 mW. 除了额外加的频率失谐是Γ, 其他频率分量失谐都是–2Γ
Fig. 5. Acceleration versus (a) speed and (b) displacement using the set of detunings and polarizations illustrated in the inset. Here, the laser power is set to be 150 mW. The detuning is –2Γ apart from the additional component of Γ.
图 6 不同偏振组态下的加速度与(a)速度和(b)位移关系图. 其中激光功率均为40 mW, 失谐为–2Γ. 不同功率下的加速度与(c)和速度(d)位移关系图. 其中偏振组态为(+–––), 失谐为–2Γ. 不同失谐量下的加速度与(e)速度和(f)位移关系图. 其中激光功率均为40 mW, 偏振组态为(+–––)
Fig. 6. Acceleration versus (a) speed and (b) displacement under different polarization configurations where the power for lasers is set to be 40 mW and the detuning is –2Γ. Acceleration versus (c) speed and (d) displacement on different laser powers. The polarization configuration is (+–––), while the detuning is –2Γ. Acceleration versus (e) speed and (f) displacement on various detunings, where the laser power is set as 40 mW and the polarization configuration is (+–––).
图 7 加速度与(a)速度和(b)位移关系图. 激光频率偏振设置为插图中所示的情况, 其中激光功率均为40 mW. 除了额外加的频率失谐是1.5Γ, 其他频率分量失谐都是–2Γ
Fig. 7. Acceleration versus (a) speed and (b) displacement using the set of detunings and polarizations illustrated in the inset. Here, the laser power is set to be 40 mW. The detuning is –2Γ apart from the additional component of 1.5Γ.
图 A1
${\mathrm{A}}^{2}{{\Pi }}_{1/2}\leftarrow {\mathrm{X}}^{2}{{\Sigma }}^{+}$ 跃迁中不同偏振组态下的加速度与(a)速度和(b)位移的关系图. 其中激光功率均为40 mW, 失谐为–2Γ. 不同激光功率下的加速度与(c)速度和(d)位移关系图. 其中四个频率组分的偏振组态为(–+++), 失谐为–2Γ. 不同失谐量下的加速度与(e)速度和(f)位移关系图. 其中激光功率均为40 mW, 频率组分的偏振组态为(–+++)Fig. A1. Acceleration versus (a) speed and (b) displacement under different polarization configurations in the
$ {\mathrm{A}}^{2}{{\Pi }}_{1/2}\leftarrow {\mathrm{X}}^{2}{{\Sigma }}^{+} $ transition, where the power for lasers is set to be 40 mW and the detuning is –2Γ. Acceleration versus (c) speed and (d) displacement on different laser powers. The polarization configuration is (–+++), while the detuning is –2Γ. Acceleration versus (e) speed and (f) displacement on various detunings, where the laser power is set as 40 mW and the polarization configuration is (–+++).图 A2
$ {\mathrm{A}}^{2}{{\Pi }}_{1/2}\leftarrow {\mathrm{X}}^{2}{{\Sigma }}^{+} $ 跃迁中加速度与(a)速度和(b)位移关系图. 激光频率偏振设置为插图中所示的情况, 其中激光功率均为40 mW.除了额外加的频率失谐是Γ, 其他频率分量失谐都是–2ΓFig. A2. Acceleration versus (a) speed and (b) displacement in the
$ {\mathrm{A}}^{2}{{\Pi }}_{1/2}\leftarrow {\mathrm{X}}^{2}{{\Sigma }}^{+} $ transition, using the set of detunings and polarizations illustrated in the inset. Here, the laser power is set to be 40 mW. The detuning is –2Γ apart from the additional component of Γ.图 A3
${\mathrm{A}}^{2}{{\Pi }}_{1/2}\leftarrow {\mathrm{X}}^{2}{{\Sigma }}^{+}$ 跃迁中不同偏振组态下, 加速度与(a)速度和(b)位移的关系图. 其中激光功率均为80 mW, 失谐为–2Γ. 不同激光功率下的加速度与(c)速度和(d)位移关系图. 其中频率组分的偏振组态为(–+++), 失谐为–2Γ. 不同失谐量下的加速度与(e)速度和(f)位移关系图. 其中激光功率均为80 mW, 频率组分的偏振组态为(–+++)Fig. A3. Acceleration versus (a) speed and (b) displacement under different polarization configurations in the
$ {\mathrm{A}}^{2}{{\Pi }}_{1/2}\leftarrow {\mathrm{X}}^{2}{{\Sigma }}^{+} $ transition, where the power for lasers is set to be 80 mW and the detuning is –2Γ. Acceleration versus (c) speed and (d) displacement on different laser powers. The polarization configuration is (–+++), while the detuning is –2Γ. Acceleration versus (e) speed and (f) displacement on various detunings, where the laser power is set as 80 mW and the polarization configuration is (–+++).图 A4
${\mathrm{A}}^{2}{{\Pi }}_{1/2}\leftarrow {\mathrm{X}}^{2}{{\Sigma }}^{+}$ 跃迁中加速度与(a)速度和(b)位移关系图. 激光频率偏振设置为插图中所示的情况, 其中激光功率均为80 mW. 除了额外加的频率失谐是Γ, 其他频率分量失谐都是–2ΓFig. A4. Acceleration versus (a) speed and (b) displacement in the
${\mathrm{A}}^{2}{{\Pi }}_{1/2}\leftarrow {\mathrm{X}}^{2}{{\Sigma }}^{+}$ transition, using the set of detunings and polarizations illustrated in the inset. Here, the laser power is set to be 80 mW. The detuning is –2Γ apart from the additional component of Γ.图 A5
$ {\mathrm{B}}^{2}{{\Sigma }}^{+}\leftarrow {\mathrm{X}}^{2}{{\Sigma }}^{+} $ 跃迁中不同偏振组态下的加速度与(a)速度和(b)位移的关系图. 其中激光功率均为15 mW, 失谐为–2Γ. 不同激光功率下的加速度与(c)速度和(d)位移关系图. 其中频率组分的偏振组态为(+–––), 失谐为–2Γ. 不同失谐量下的加速度与(e)速度和(f)位移关系图. 其中激光功率均为15 mW, 频率组分的偏振组态为(+–––)Fig. A5. Acceleration versus (a) speed and (b) displacement under different polarization configurations in the
$ {\mathrm{B}}^{2}{{\Sigma }}^{+}\leftarrow {\mathrm{X}}^{2}{{\Sigma }}^{+} $ transition, where the power for lasers is set to be 15 mW and the detuning is –2Γ. Acceleration versus (c) speed and (d) displacement on different laser powers. The polarization configuration is (+–––), while the detuning is –2Γ. Acceleration versus (e) speed and (f) displacement on various detunings, where the laser power is set as 15 mW and the polarization configuration is (+–––).图 A6
$ {\mathrm{B}}^{2}{{\Sigma }}^{+}\leftarrow {\mathrm{X}}^{2}{{\Sigma }}^{+} $ 跃迁中加速度与(a)速度和(b)位移关系图. 激光频率偏振设置为插图中所示的情况, 其中激光功率均为15 mW. 除了额外加的频率失谐是1.5Γ, 其他频率分量失谐都是–2ΓFig. A6. Acceleration versus (a) speed and (b) displacement in the
$ {\mathrm{B}}^{2}{{\Sigma }}^{+}\leftarrow {\mathrm{X}}^{2}{{\Sigma }}^{+} $ transition, using the set of detunings and polarizations illustrated in the inset. Here, the laser power is set to be 15 mW. The detuning is –2Γ apart from the additional component of 1.5Γ.图 A7
$ {\mathrm{B}}^{2}{{\Sigma }}^{+}\leftarrow {\mathrm{X}}^{2}{{\Sigma }}^{+} $ 跃迁中不同偏振组态下的加速度与(a)速度和(b)位移的关系图. 其中激光功率均为80 mW, 失谐为–2Γ. 不同激光功率下的加速度与(c)速度和(d)位移关系图. 其中频率组分的偏振组态为(+–––), 失谐为–2Γ. 不同失谐量下的加速度与(e)速度和(f)位移关系图. 其中激光功率均为80 mW, 频率组分的偏振组态为(+–––)Fig. A7. Acceleration versus (a) speed and (b) displacement under different polarization configurations in the
$ {\mathrm{B}}^{2}{{\Sigma }}^{+}\leftarrow {\mathrm{X}}^{2}{{\Sigma }}^{+} $ transition, where the power for lasers is set to be 80 mW and the detuning is –2Γ. Acceleration versus (c) speed and (d) displacement on different laser powers. The polarization configuration is (+–––), while the detuning is –2Γ. Acceleration versus (e) speed and (f) displacement on various detunings, where the laser power is set as 80 mW and the polarization configuration is (+–––).图 A8
$ {\mathrm{B}}^{2}{{\Sigma }}^{+}\leftarrow {\mathrm{X}}^{2}{{\Sigma }}^{+} $ 跃迁中加速度与(a)速度和(b)位移关系图. 激光频率偏振设置为插图中所示的情况, 其中激光功率均为80 mW. 除了额外加的频率失谐是1.5Γ, 其他频率分量失谐都是–2ΓFig. A8. Acceleration versus (a) speed and (b) displacement in the
$ {\mathrm{B}}^{2}{{\Sigma }}^{+}\leftarrow {\mathrm{X}}^{2}{{\Sigma }}^{+} $ transition, using the set of detunings and polarizations illustrated in the inset. Here, the laser power is set to be 80 mW. The detuning is –2Γ apart from the additional component of 1.5Γ. -
[1] Hudson E R, Lewandowski H, Sawyer B C, Ye J 2006 Phys. Rev. Lett. 96 143004Google Scholar
[2] Liu L, Hood J, Yu Y, Zhang J, Hutzler N, Rosenband T, Ni K K 2018 Science 360 900Google Scholar
[3] Yang T, Thomas A M, Dangi B B, Kaiser R I, Mebel A M, Millar T J 2018 Nat. Commun. 9 1Google Scholar
[4] Kerman A J, Sage J M, Sainis S, Bergeman T, DeMille D 2004 Phys. Rev. Lett. 92 153001Google Scholar
[5] Wang D, Qi J, Stone M, Nikolayeva O, Wang H, Hattaway B, Gensemer S, Gould P, Eyler E, Stwalley W 2004 Phys. Rev. Lett. 93 243005Google Scholar
[6] Ni K K, Ospelkaus S, De Miranda M, Pe'Er A, Neyenhuis B, Zirbel J, Kotochigova S, Julienne P, Jin D, Ye J 2008 Science 322 231Google Scholar
[7] 陈涛, 颜波 2019 物理学报 68 043701Google Scholar
Chen T, Yan B 2019 Acta Phys. Sin. 68 043701Google Scholar
[8] Bruzewicz C, Gustavsson M, Shimasaki T, DeMille D 2014 New. J. Phys. 16 023018Google Scholar
[9] Wu C H, Park J W, Ahmadi P, Will S, Zwierlein M W 2012 Phys. Rev. Lett. 109 085301Google Scholar
[10] Jin D S, Ye J 2011 Phys. Today 64 27
[11] Bethlem H L, Berden G, Meijer G 1999 Phys. Rev. Lett. 83 1558Google Scholar
[12] Barry J, McCarron D, Norrgard E, Steinecker M, DeMille D 2014 Nature 512 286Google Scholar
[13] Weinstein J D, Decarvalho R, Amar K, Boca A, Odom B C, Friedrich B, Doyle J M 1998 J. Chem. Phys. 109 2656Google Scholar
[14] 夏勇, 汪海玲, 许亮, 印建平 2018 物理学报 47 24Google Scholar
Xia Y, Wang H L, Xu L, Yin J P 2018 Acta Phys. Sin. 47 24Google Scholar
[15] Jochim S, Bartenstein M, Altmeyer A, Hendl G, Riedl S, Chin C, Hecker Denschlag J, Grimm R 2003 Science 302 2101Google Scholar
[16] Greiner M, Regal C A, Jin D S 2003 Nature 426 537Google Scholar
[17] Zhang Z, Chen L, Yao K X, Chin C 2021 Nature 592 708Google Scholar
[18] Steinecker M H, McCarron D J, Zhu Y, DeMille D 2016 ChemPhysChem 17 3664Google Scholar
[19] Tarbutt M, Steimle T 2015 Phys. Rev. A 92 053401Google Scholar
[20] Truppe S, Williams H, Hambach M, Caldwell L, Fitch N, Hinds E, Sauer B, Tarbutt M 2017 Nat. Phys. 13 1173Google Scholar
[21] Anderegg L, Augenbraun B L, Chae E, Hemmerling B, Hutzler N R, Ravi A, Collopy A, Ye J, Ketterle W, Doyle J M 2017 Phys. Rev. Lett. 119 103201Google Scholar
[22] Langin T K, Jorapur V, Zhu Y, Wang Q, DeMille D 2021 Phys. Rev. Lett. 127 163201Google Scholar
[23] Lu H I, Rasmussen J, Wright M J, Patterson D, Doyle J M 2011 Phys. Chem. Chem. Phys. 13 18986Google Scholar
[24] 尹俊豪, 杨涛, 印建平 2021 物理学报 70 163302Google Scholar
Yin J H, Yang T, Yin J P 2021 Acta Phys. Sin. 70 163302Google Scholar
[25] Collopy A L, Ding S, Wu Y, Finneran I A, Anderegg L, Augenbraun B L, Doyle J M, Ye J 2018 Phys. Rev. Lett. 121 213201Google Scholar
[26] Iwata G, McNally R, Zelevinsky T 2017 Phys. Rev. A 96 022509Google Scholar
[27] Chen T, Bu W, Yan B 2017 Phys. Rev. A 96 053401Google Scholar
[28] Gu R, Xia M, Yan K, Wu D, Wei J, Xu L, Xia Y, Yin J 2022 J. Quant. Spectrosc. Radiat. Transfer 278 108015Google Scholar
[29] Kozyryev I, Baum L, Matsuda K, Augenbraun B L, Anderegg L, Sedlack A P, Doyle J M 2017 Phys. Rev. Lett. 118 173201Google Scholar
[30] Baum L, Vilas N B, Hallas C, Augenbraun B L, Raval S, Mitra D, Doyle J M 2021 Phys. Rev. A 103 043111Google Scholar
[31] Fazil N, Prasannaa V, Latha K, Abe M, Das B 2018 Phys. Rev. A 98 032511Google Scholar
[32] Kozyryev I, Hutzler N R 2017 Phys. Rev. Lett. 119 133002Google Scholar
[33] Barbuy B, Schiavon R, Gregorio-Hetem J, Singh P, Batalha C 1993 Astron. Astrophys. Suppl. Ser. 101 409
[34] Lépine S, Rich R M, Shara M M 2003 Astrophys. J. 591 L49Google Scholar
[35] Barclay Jr W, Anderson M, Ziurys L M 1993 Astrophys. J. 408 L65Google Scholar
[36] Steimle T, Chen J, Gengler J 2004 J. Chem. Phys. 121 829Google Scholar
[37] Weinstein J D, DeCarvalho R, Guillet T, Friedrich B, Doyle J M 1998 Nature 395 148Google Scholar
[38] Singh V, Hardman K S, Tariq N, Lu M J, Ellis A, Morrison M J, Weinstein J D 2012 Phys. Rev. Lett. 108 203201Google Scholar
[39] Ramanaiah M, Lakshman S 1982 Physica 113C 263Google Scholar
[40] Nakagawa J, Domaille P J, Steimle T C, Harris D O 1978 J. Mol. Spectrosc. 70 374Google Scholar
[41] Shayesteh A, Ram R S, Bernath P F 2013 J. Mol. Spectrosc. 288 46Google Scholar
[42] Gao Y, Gao T 2014 Phys. Rev. A 90 052506Google Scholar
[43] Chen J, Gengler J, Steimle T, Brown J M 2006 Phys. Rev. A 73 012502Google Scholar
[44] Barry J F, McCarron D J, Norrgard E B, Steinecker M H, DeMille D 2014 Nature 512 286
[45] Xu S, Xia M, Gu R, Yin Y, Xu L, Xia Y, Yin J 2019 Phys. Rev. A 99 033408Google Scholar
[46] Tarbutt M 2015 New. J. Phys. 17 015007Google Scholar
[47] Liu M, Pauchard T, Sjödin M, Launila O, van der Meulen P, Berg L E 2009 J. Mol. Spectrosc. 257 105Google Scholar
[48] Xu L, Yin Y, Wei B, Xia Y, Yin J 2016 Phys. Rev. A 93 013408Google Scholar
[49] Steimle T C, Meyer T P, Al-Ramadin Y, Bernath P 1987 J. Mol. Spectrosc. 125 225Google Scholar
[50] Williams H, Truppe S, Hambach M, Caldwell L, Fitch N, Hinds E, Sauer B, Tarbutt M 2017 New J. Phys. 19 113035Google Scholar
计量
- 文章访问数: 3751
- PDF下载量: 61
- 被引次数: 0