搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZIFs纳米晶体中电子偶素的自旋转换

李重阳 李梦德 汪美 李涛 刘建党 叶邦角 陈志权

引用本文:
Citation:

ZIFs纳米晶体中电子偶素的自旋转换

李重阳, 李梦德, 汪美, 李涛, 刘建党, 叶邦角, 陈志权

Spin conversion of positronium of ZIFs nanocrystalline

Li Chong-Yang, Li Meng-De, Wang Mei, Li Tao, Liu Jian-Dang, Ye Bang-Jiao, Chen Zhi-Quan
PDF
HTML
导出引用
  • ZIFs晶体由咪唑基桥接单金属离子构成, 可通过咪唑酯连接物灵活选取合适的官能团对其结构进行调控, 因而被赋予更多新的性质和功能. ZIFs晶体中孔结构及其化学环境与其性能紧密相关. 本文采用静置法制备了ZIFs纳米晶体. X射线衍射结果证实制备的晶体为典型的ZIF-8晶体, 扫描电子显微镜图可观察到其规则的菱型结构. N2吸附-脱附测试表明ZIFs晶体具有较大的比表面积和孔容, 分别为2966.26 m2/g和3.01 cm3/g. 随着Co摩尔含量的增大, ZIFs晶体比表面积和孔体积逐渐减小, 但是其孔径大小几乎稳定保持在12 Å左右. 而N2吸附-脱附等温线计算得到的孔径分布未显示咪唑配体组成的六元环的超微孔信息(3.4 Å). 此外, 利用正电子湮没寿命和多普勒展宽对晶体的微观结构和表面性能进行了研究. 正电子的寿命谱有4个分量. 较长寿命$ {\tau }_{3} $, $ {\tau }_{4} $分别是o-Ps在其微孔区域和晶体规则棱角间隙处的湮没寿命. 随Co摩尔含量增大, 其寿命$ {\tau }_{3} $几乎没有变化, 而较长寿命$ {\tau }_{4} $从30.89 ns降至12.57 ns, 其对应强度$ {I}_{3} $, $ {I}_{4} $也分别从12.93%和8.15%急剧下降至3.68%和0.54%. 随Co摩尔含量的增大, 多普勒展宽得到的S参数呈连续上升趋势, 进一步多高斯拟合表明p-Ps强度也逐渐增大, 这主要是由于电子偶素发生了自旋转换效应. 因此, ZIFs纳米晶体中$ {\tau }_{4} $下降很可能是由于正电子偶素与晶体表面Co离子发生了自旋转换效应.
    ZIFs crystal is composed of imidazolidyl bridging single metal ions, and its structure can be adjusted by flexibly selecting functional groups of imidazolidyl ligands, thereby possessing more new properties and functions. While, the pore structure and chemical environment of ZIFs crystals are closely related to their properties. In this work, ZIF nanocrystals are prepared by static reaction. The X-ray diffraction results confirm that the prepared crystals are typical of ZIF-8 crystals, and the regular rhomboidal structure can be observed by scanning electron microscopy. The N2 adsorption-desorption test indicates that the ZIF crystal exhibits the larger specific surface area (2966.26 m2/g) and pore volume (3.01 cm3/g) . With the increase of Co content, specific surface area and pore volume of ZIFs crystal decrease, while the pore size remains nearly unchanged (around 12 Å). However, the pore size distribution calculated by N2 adsorption/desorption isothermal curve does not show the ultra-micropore information of the six-membered ring composed of imidazole ligands (3.4 Å). The microstructure and surface properties of the crystal are investigated by positron annihilation lifetime and Doppler broadening. The positron lifetime spectrum has four components. The longer lifetimes $ {\tau }_{3} $ and $ {\tau }_{4} $ are the annihilation lifetimes of o-Ps in the microporous region and the regular angular gap of the crystal, respectively. With the increase of Co content, the lifetime $ {\tau }_{3} $ hardly changes, while the longer lifetime $ {\tau }_{4} $ decreases from 30.89 ns to 12.57 ns, and the corresponding intensities $ {I}_{3} $ and $ {I}_{4} $ decrease sharply from 12.93% and 8.15% to 3.68% and 0.54%, respectively. With the increase of Co content, the S parameter obtained by doppler broadening shows a continuous upward trend, and the p-Ps intensity also increases gradually, which is mainly due to the self-rotation effect of the electron element. Therefore, the decrease of $ {\tau }_{4} $ in ZIFs nanocrystal is probably due to the self-rotation effect of positronium and Co ion on the crystal surface.
      通信作者: 刘建党, liujd@ustc.edu.cn ; 陈志权, chenzq@whu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFA0210000)和国家自然科学基金(批准号: 11875248, 12175232)资助的课题.
      Corresponding author: Liu Jian-Dang, liujd@ustc.edu.cn ; Chen Zhi-Quan, chenzq@whu.edu.cn
    • Funds: Project supported by the National Key R & D Program of China (Grant No. 2019YFA0210000) and the National Natural Science Foundation of China (Grant Nos. 11875248, 12175232).
    [1]

    彭雨, 吴依, 杨紫微, 李琳钰, 蒋华麟, 陈萍华 2020 广州化工 48 4Google Scholar

    Peng Y, Wu Y, Yang Z W, Li L Y, Jiang H L, Chen P H 2020 Guangzhou Chem. Indus. 48 4Google Scholar

    [2]

    韩臻, 陈元涛, 张炜, 许成, 胡广壮, 刘蓉 2021 应用化工 50 638Google Scholar

    Han Z, Chen Y T, Zhang W, Xu C, Hu G Z, Liu R 2021 Appl. Chem. Indus. 50 638Google Scholar

    [3]

    田龙, 豆维新, 杨玮婷, 王成 2021 应用化学 38 84Google Scholar

    Tian L, Dou W X, Yang W T Wang C 2021 Chin. J. Appl. Chem. 38 84Google Scholar

    [4]

    Sharma S K, Sudarshan K, Yadav A K, Jha S N, Bhattacharyya D, Pujari P K 2019 J. Phys. Chem. C 123 22273Google Scholar

    [5]

    He X, Chen D R, Wang W N 2020 Chem. Eng. J. 382 122825Google Scholar

    [6]

    Chu Q, Zhang S, Li X, Guo P, Fu A, Liu B, Wang Y Y 2021 Chem-Asian J. 16 1233Google Scholar

    [7]

    Ding R, Zheng W, Yang K, Dai Y, Ruan X, Yan X, He G 2020 Sep. Purif. Technol. 236 116209Google Scholar

    [8]

    Kumar S, Srivastava R, Koh J 2020 J. CO2 Util. 41 101251Google Scholar

    [9]

    Ralph F S C, Cohen S M, Yan W, Deng H X, Guillerm V, Eddaoudi M, Madden D G, Fairen-Jimenez D, Lyu H, Macreadie L K, Ji Z, Zhang Y Y, Wang B, Haase F, Wçll C, Zaremba O, Andreo J, Wuttke S, Diercks C S 2021 Angew. Chem. Int. Edit. 60 23946Google Scholar

    [10]

    Ran J, Jaroniec M, Qiao S Z 2018 Adv. Mater. 30 1704649Google Scholar

    [11]

    马生花, 马芙莲, 解玉龙 2020 硅酸盐通报 39 2993Google Scholar

    Ma S H, Ma F L, Xie Y L 2020 Bull. Chin. Ceramic Soc. 39 2993Google Scholar

    [12]

    Jin C X, Shang H B 2021 J. Solid State Chem. 297 122040Google Scholar

    [13]

    Nagarjun N, Arthy K, Dhakshinamoorthy A 2021 Eur. J. Inorg. Chem. 2021 2108Google Scholar

    [14]

    邹伦妃, 马振超, 王苏龙, 白宇森, 王亚珍 2021 电源技术 45 512Google Scholar

    Zou L F, Ma Z C, Wang S L, Bai Y S, Wang Y Z 2021 Power Technology 45 512Google Scholar

    [15]

    Yao B, Lua S K, Lim H S, Zhang Q, Cui X, White T J, Ting V P, Dong Z 2021 Micropor. Mesopor. Mat. 314 110777Google Scholar

    [16]

    Barrett E P, Joyner L G, Halenda P P 1951 J. Am. Chem. Soc. 73 373Google Scholar

    [17]

    Brunauer S, Emmett P H, Teller E 1938 J. Am. Chem. Soc. 60 309Google Scholar

    [18]

    Jean Y C 2003 Principles and Applications of Positron & Positronium Chemistry (World Scientific Pub Co Inc. (March 31)) p267

    [19]

    Tao S J 1972 J. Chem. Phys. 56 5499Google Scholar

    [20]

    Eldrup M, Lightbody D, Sherwood J N 1981 Chem. Phys. 63 51Google Scholar

    [21]

    Goworek T, Ciesielski K, Jasinska B, Wawryszczuk J 1998 Chem. Phys. 230 305Google Scholar

    [22]

    Dull T L, Frieze W E, Gidley D W 2001 J. Phys. Chem. B 105 4657Google Scholar

    [23]

    Li C Y, Qi N, Liu Z W, Zhou B, Chen Z Q, Wang Z 2016 Appl. Surf. Sci. 363 445Google Scholar

    [24]

    王少阶, 陈志权, 王波, 吴奕初, 方鹏飞, 张永学 2008 应用正电子谱学 (湖北: 湖北科学技术出版社) 第198页

    Wang S J, Chen Z Q, Wang B, Wu Y C, Fang P F, Zhang Y X 2008 Applied Positron Spectroscopy (Hubei: Hubei Science and Technology Press) p198 (in Chinese)

    [25]

    Jean Y C, Lu X, Lou Y, Bharathi A, Sundar C S, Lyu Y, Hor P H, Chu C W 1992 Phys. Rev. B 45 12126Google Scholar

    [26]

    Matthias T, Katsumi K, Alexander V N, James P O, Francisco R R, Jean R, Kenneth S W S 2015 Pure Appl. Chem. 87 1051Google Scholar

    [27]

    Davis M E 2002 Nature 417 813Google Scholar

    [28]

    Paulin R, Ambrosino G 1968 J. Phys. France 29 263Google Scholar

    [29]

    Lahtinen J, Hautojärvi P 1997 J. Phys. Chem. B 101 1609Google Scholar

    [30]

    Eldrup M, Vehanen A, Schultz P J, Lynn K G 1984 Phys. Rev. Lett. 53 954Google Scholar

    [31]

    Ito K, Nakanishi H, Ujihira Y 1999 J. Phys. Chem. B 103 4555Google Scholar

    [32]

    Zhang H J, Chen Z Q, Wang S J, Kawasuso A, Morishita N 2010 Phys. Rev. B 82 035439Google Scholar

    [33]

    Zhang H J, Liu Z W, Chen Z Q, Wang S J 2011 Chin. Phys. Lett. 28 017802Google Scholar

    [34]

    Chen Z Q, Kawasuso A, Xu Y, Naramoto H, Yuan X L, Sekiguchi T, Suzuki R, Ohdaira T 2005 Phys. Rev. B 71 115213Google Scholar

    [35]

    Lazzarini A L F, Lazzarini E, Mariani M 1993 J. Chem. Soc. Faraday Trans. 89 3737Google Scholar

    [36]

    Lazzarini A L F, Lazzarini E, Mariani M 1994 J. Chem. Soc. Faraday Trans. 90 423Google Scholar

  • 图 1  ZIF-Zn, ZIF-Co0.05Zn0.95, ZIF-Co0.3Zn0.7和ZIF-Co的X射线衍射谱图

    Fig. 1.  X-ray diffraction patterns measured for ZIF-Zn, ZIF-Co0.05Zn0.95, ZIF-Co0.3Zn0.7 and ZIF-Co.

    图 2  ZIF-Co-Zn纳米晶体的扫描电子显微镜图 (a) ZIF-Zn; (b) ZIF-Co0.05Zn0.95; (c) ZIF-Co0.3Zn0.7; (d) ZIF-Co

    Fig. 2.  Scanning electron microscopy of ZIF-Co-Zn: (a) ZIF-Zn; (b) ZIF-Co0.05Zn0.95; (c) ZIF-Co0.3Zn0.7; (d) ZIF-Co.

    图 3  ZIF-Co-Zn纳米晶体的(a) N2吸附-脱附等温线(STP, 标准状况)及其(b)孔径分布

    Fig. 3.  N2 adsorption and desorption isothermal (a) and its pore size distribution (b) of ZIF-Co-Zn nanocrystalline. STP, standard temperature and pressure.

    图 4  经归一化峰处理后ZIF-Zn, ZIF-Co0.05Zn0.95和ZIF-Co的正电子湮没寿命谱图

    Fig. 4.  Peak-normalized positron lifetime spectrum measured for ZIF-Zn, ZIF-Co0.05Zn0.95, ZIF-Co.

    图 5  ZIF-Co-Zn中正电子寿命随Co摩尔含量的变化 (a) $ {\tau }_{1} $, $ {\tau }_{2} $; (b) $ {\tau }_{3} $, $ {\tau }_{4} $

    Fig. 5.  Variation of positron lifetime as a function of Co molar content: (a) $ {\tau }_{1} $, $ {\tau }_{2} $; (b) $ {\tau }_{3} $, $ {\tau }_{4} $.

    图 6  ZIF-Co-Zn中o-Ps强度$ {I}_{3} $, $ {I}_{4} $随Co摩尔含量的变化

    Fig. 6.  Variation of o-Ps intensity $ {I}_{3} $, $ {I}_{4} $ of ZIF-Co-Zn as a function of Co molar content.

    图 7  ZIF-Co-Zn中多普勒展宽S参数随Co摩尔含量的变化

    Fig. 7.  Variation of doppler broadening S-parameter of ZIF-Co-Zn as a function of Co molar content.

    图 8  ZIF-Co-Zn中o-Ps和p-Ps强度随Co摩尔含量的变化

    Fig. 8.  Variation of o-Ps and p-Ps intensity of ZIF-Co-Zn as a function of Co molar content.

    图 9  ZIF-Co-Zn中S-W曲线

    Fig. 9.  S-W plot measured for the ZIF-Co-Zn porous material.

    表 1  ZIF-Co-Zn纳米晶体中孔结构信息

    Table 1.  Pore structure parameters of ZIF-Co-Zn crystals

    Sample$ {S}_{\mathrm{B}\mathrm{E}\mathrm{T}}/ $ $({\mathrm{m} }^{2}{\cdot}{\mathrm{g} }^{-1})$$ {S}_{\mathrm{m}\mathrm{i}\mathrm{c}\mathrm{r}\mathrm{o}}/ $ $({\mathrm{m} }^{2}{\cdot}{\mathrm{g} }^{-1})$$ {V}_{\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{l}} $/ $\left({\mathrm{c}\mathrm{m} }^{3}{\cdot\mathrm{g} }^{-1}\right)$
    B12966.262523.563.01
    B22644.632330.562.39
    B33110.942734.412.96
    B43101.992684.392.99
    B53149.702798.982.71
    B63019.412753.461.70
    B72250.852139.031.00
    注: B1—B7依次代表制备的ZIF-Zn, ZIF-Co0.025-Zn0.975, ZIF-Co0.5-Zn0.95, ZIF-Co0.15-Zn0.85, ZIF-Co0.3-Zn0.7, ZIF-Co0.7-Zn0.3及ZIF-Co.
    下载: 导出CSV
  • [1]

    彭雨, 吴依, 杨紫微, 李琳钰, 蒋华麟, 陈萍华 2020 广州化工 48 4Google Scholar

    Peng Y, Wu Y, Yang Z W, Li L Y, Jiang H L, Chen P H 2020 Guangzhou Chem. Indus. 48 4Google Scholar

    [2]

    韩臻, 陈元涛, 张炜, 许成, 胡广壮, 刘蓉 2021 应用化工 50 638Google Scholar

    Han Z, Chen Y T, Zhang W, Xu C, Hu G Z, Liu R 2021 Appl. Chem. Indus. 50 638Google Scholar

    [3]

    田龙, 豆维新, 杨玮婷, 王成 2021 应用化学 38 84Google Scholar

    Tian L, Dou W X, Yang W T Wang C 2021 Chin. J. Appl. Chem. 38 84Google Scholar

    [4]

    Sharma S K, Sudarshan K, Yadav A K, Jha S N, Bhattacharyya D, Pujari P K 2019 J. Phys. Chem. C 123 22273Google Scholar

    [5]

    He X, Chen D R, Wang W N 2020 Chem. Eng. J. 382 122825Google Scholar

    [6]

    Chu Q, Zhang S, Li X, Guo P, Fu A, Liu B, Wang Y Y 2021 Chem-Asian J. 16 1233Google Scholar

    [7]

    Ding R, Zheng W, Yang K, Dai Y, Ruan X, Yan X, He G 2020 Sep. Purif. Technol. 236 116209Google Scholar

    [8]

    Kumar S, Srivastava R, Koh J 2020 J. CO2 Util. 41 101251Google Scholar

    [9]

    Ralph F S C, Cohen S M, Yan W, Deng H X, Guillerm V, Eddaoudi M, Madden D G, Fairen-Jimenez D, Lyu H, Macreadie L K, Ji Z, Zhang Y Y, Wang B, Haase F, Wçll C, Zaremba O, Andreo J, Wuttke S, Diercks C S 2021 Angew. Chem. Int. Edit. 60 23946Google Scholar

    [10]

    Ran J, Jaroniec M, Qiao S Z 2018 Adv. Mater. 30 1704649Google Scholar

    [11]

    马生花, 马芙莲, 解玉龙 2020 硅酸盐通报 39 2993Google Scholar

    Ma S H, Ma F L, Xie Y L 2020 Bull. Chin. Ceramic Soc. 39 2993Google Scholar

    [12]

    Jin C X, Shang H B 2021 J. Solid State Chem. 297 122040Google Scholar

    [13]

    Nagarjun N, Arthy K, Dhakshinamoorthy A 2021 Eur. J. Inorg. Chem. 2021 2108Google Scholar

    [14]

    邹伦妃, 马振超, 王苏龙, 白宇森, 王亚珍 2021 电源技术 45 512Google Scholar

    Zou L F, Ma Z C, Wang S L, Bai Y S, Wang Y Z 2021 Power Technology 45 512Google Scholar

    [15]

    Yao B, Lua S K, Lim H S, Zhang Q, Cui X, White T J, Ting V P, Dong Z 2021 Micropor. Mesopor. Mat. 314 110777Google Scholar

    [16]

    Barrett E P, Joyner L G, Halenda P P 1951 J. Am. Chem. Soc. 73 373Google Scholar

    [17]

    Brunauer S, Emmett P H, Teller E 1938 J. Am. Chem. Soc. 60 309Google Scholar

    [18]

    Jean Y C 2003 Principles and Applications of Positron & Positronium Chemistry (World Scientific Pub Co Inc. (March 31)) p267

    [19]

    Tao S J 1972 J. Chem. Phys. 56 5499Google Scholar

    [20]

    Eldrup M, Lightbody D, Sherwood J N 1981 Chem. Phys. 63 51Google Scholar

    [21]

    Goworek T, Ciesielski K, Jasinska B, Wawryszczuk J 1998 Chem. Phys. 230 305Google Scholar

    [22]

    Dull T L, Frieze W E, Gidley D W 2001 J. Phys. Chem. B 105 4657Google Scholar

    [23]

    Li C Y, Qi N, Liu Z W, Zhou B, Chen Z Q, Wang Z 2016 Appl. Surf. Sci. 363 445Google Scholar

    [24]

    王少阶, 陈志权, 王波, 吴奕初, 方鹏飞, 张永学 2008 应用正电子谱学 (湖北: 湖北科学技术出版社) 第198页

    Wang S J, Chen Z Q, Wang B, Wu Y C, Fang P F, Zhang Y X 2008 Applied Positron Spectroscopy (Hubei: Hubei Science and Technology Press) p198 (in Chinese)

    [25]

    Jean Y C, Lu X, Lou Y, Bharathi A, Sundar C S, Lyu Y, Hor P H, Chu C W 1992 Phys. Rev. B 45 12126Google Scholar

    [26]

    Matthias T, Katsumi K, Alexander V N, James P O, Francisco R R, Jean R, Kenneth S W S 2015 Pure Appl. Chem. 87 1051Google Scholar

    [27]

    Davis M E 2002 Nature 417 813Google Scholar

    [28]

    Paulin R, Ambrosino G 1968 J. Phys. France 29 263Google Scholar

    [29]

    Lahtinen J, Hautojärvi P 1997 J. Phys. Chem. B 101 1609Google Scholar

    [30]

    Eldrup M, Vehanen A, Schultz P J, Lynn K G 1984 Phys. Rev. Lett. 53 954Google Scholar

    [31]

    Ito K, Nakanishi H, Ujihira Y 1999 J. Phys. Chem. B 103 4555Google Scholar

    [32]

    Zhang H J, Chen Z Q, Wang S J, Kawasuso A, Morishita N 2010 Phys. Rev. B 82 035439Google Scholar

    [33]

    Zhang H J, Liu Z W, Chen Z Q, Wang S J 2011 Chin. Phys. Lett. 28 017802Google Scholar

    [34]

    Chen Z Q, Kawasuso A, Xu Y, Naramoto H, Yuan X L, Sekiguchi T, Suzuki R, Ohdaira T 2005 Phys. Rev. B 71 115213Google Scholar

    [35]

    Lazzarini A L F, Lazzarini E, Mariani M 1993 J. Chem. Soc. Faraday Trans. 89 3737Google Scholar

    [36]

    Lazzarini A L F, Lazzarini E, Mariani M 1994 J. Chem. Soc. Faraday Trans. 90 423Google Scholar

  • [1] 叶凤娇, 张鹏, 张红强, 况鹏, 于润升, 王宝义, 曹兴忠. 正电子湮没符合多普勒展宽技术的材料学研究进展. 物理学报, 2024, 73(7): 077801. doi: 10.7498/aps.73.20231487
    [2] 李重阳, 赵宾, 张俊伟. 电子偶素在OMC/SBA-15, OMC@SBA-15及CuO@SBA-15催化剂中的化学猝灭. 物理学报, 2022, 71(6): 067805. doi: 10.7498/aps.71.20211814
    [3] 李裕, 罗江山, 王柱, 杨蒙生, 邢丕峰, 易勇, 雷海乐. 铝纳米晶的正电子湮没研究. 物理学报, 2014, 63(24): 247803. doi: 10.7498/aps.63.247803
    [4] 张艳辉, 李彦龙, 谷月, 晁月盛. 中频磁脉冲处理Fe52Co34Hf7B6Cu1非晶合金的正电子湮没研究. 物理学报, 2012, 61(16): 167502. doi: 10.7498/aps.61.167502
    [5] 晁月盛, 郭红, 高翔宇, 罗丽平, 朱涵娴. 退火处理Fe43Co43Hf7B6Cu1非晶合金的正电子湮没研究. 物理学报, 2011, 60(1): 017504. doi: 10.7498/aps.60.017504
    [6] 张杰, 陈祥磊, 郝颖萍, 叶邦角, 杜淮江. 闪锌矿结构晶体的正电子体寿命计算. 物理学报, 2010, 59(8): 5828-5832. doi: 10.7498/aps.59.5828
    [7] 郝颖萍, 陈祥磊, 成斌, 孔伟, 许红霞, 杜淮江, 叶邦角. SmFeAsO材料的正电子寿命研究. 物理学报, 2010, 59(4): 2789-2794. doi: 10.7498/aps.59.2789
    [8] 李卓昕, 王丹妮, 王宝义, 薛德胜, 魏龙, 秦秀波. 不同气氛下多孔硅中电子偶素湮没行为研究. 物理学报, 2010, 59(9): 6647-6652. doi: 10.7498/aps.59.6647
    [9] 魏 强, 刘 海, 何世禹, 郝小鹏, 魏 龙. 质子辐照铝膜反射镜的慢正电子湮没研究. 物理学报, 2006, 55(10): 5525-5530. doi: 10.7498/aps.55.5525
    [10] 吴世亮, 陈叶清, 吴奕初, 王少阶, 温熙宇, 翟同广. AA 2037新型连铸铝合金热轧板退火的正电子湮没研究. 物理学报, 2006, 55(11): 6129-6135. doi: 10.7498/aps.55.6129
    [11] 王 波, 李淑静, 常 宏, 武海斌, 谢常德, 王 海. 三能级原子系统中单光子频率失谐对光减速的影响. 物理学报, 2005, 54(9): 4136-4140. doi: 10.7498/aps.54.4136
    [12] 李丽君, 王作新, 吴锦雷. Hg1-xCdxTe晶体缺陷的正电子湮没寿命. 物理学报, 1998, 47(5): 844-850. doi: 10.7498/aps.47.844
    [13] 吴奕初, 朱梓英, 伊东芳子, 伊藤泰男. 镍中氢与缺陷互作用的正电子寿命和多普勒展宽研究. 物理学报, 1997, 46(2): 406-410. doi: 10.7498/aps.46.406
    [14] 马建国, 郭应焕, 王蕴玉. 正电子湮没寿命谱分析的快速傅里叶变换解法. 物理学报, 1994, 43(4): 547-554. doi: 10.7498/aps.43.547
    [15] 韩荣典, 郭学哲, 翁惠民, 石星军, 谢力. 真空电子偶素原子的产生. 物理学报, 1991, 40(2): 205-209. doi: 10.7498/aps.40.205
    [16] 用正电子湮没寿命谱研究凝聚态甲烷的温度关系. 物理学报, 1990, 39(7): 106-111. doi: 10.7498/aps.39.106
    [17] 王蕴玉, 潘孝良, 雷振玺, 杨巨华. 用正电子湮没方法研究快离子导体. 物理学报, 1987, 36(4): 514-517. doi: 10.7498/aps.36.514
    [18] 杨洪宁, 林步镇, 方俊鑫. 准正电子偶素弛豫机制的研究. 物理学报, 1986, 35(6): 697-703. doi: 10.7498/aps.35.697
    [19] 苏昉, 郁伟中, 戴道扬, 赵宗源. 非晶离子导体B2O3-0.7Li2O-0.7LiCl-xAl2O3晶化过程的正电子湮没寿命谱和扫描电子显微镜研究. 物理学报, 1985, 34(5): 622-627. doi: 10.7498/aps.34.622
    [20] 何元金, 曹必松. 正电子湮没寿命谱的傅里叶变换分析法. 物理学报, 1984, 33(12): 1745-1752. doi: 10.7498/aps.33.1745
计量
  • 文章访问数:  4300
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-20
  • 修回日期:  2022-04-17
  • 上网日期:  2022-07-25
  • 刊出日期:  2022-08-05

/

返回文章
返回