-
基于理查德-沃尔夫矢量衍射理论和逆法拉第效应, 提出一种在单轴晶体中产生高纯度纵向针形磁化场的方法. 该方法通过电偶极子对数N及其阵列多参数调控, 利用单轴晶体中的电偶极子反向辐射构建出优化的入瞳光场, 再正向紧聚焦获得所需目标磁化场. 模拟结果表明: 当N = 1时, 单轴晶体中产生的磁化场比在同性介质中焦深长度增加近1.4倍, 横向分辨率提高5%. 当N = 2和N = 3时, 单轴晶体中获得的纵向针形磁化场随着电偶极子对数增加, 轴向焦深增加了10%, 横向分辨率提高了18%. 随着磁化场轮廓表面值从0.1变化到1, 针形磁化场的纯度逐渐增大到1. 尤其当N = 2、轮廓表面值为0.1时, 磁化场纯度高达95%. 研究结果为在各向异性介质中生成更高纯度、针长更长的纵向磁化场提供了可行性方案, 也为全光磁记录、原子捕获和光刻等实际应用中入瞳光场的优化选取提供了理论指导.Based on the Richard-Wolf vector diffraction theory and the inverse Faraday effect, a method of generating a high-purity longitudinal needle-shaped magnetization field in the uniaxial crystal is proposed. In this method, the inverse radiation of the electric dipole in the uniaxial crystal is used to construct an optimal entry pupil light field through regulating the multi-parameter of the number of electric dipole pairs N and their array, and then the magnetization field of the desired target is obtained by forward tightly focusing. The simulation results show that when N = 1, the focal length of the magnetic field generated in the uniaxial crystal increases by 1.4 times and the lateral resolution increases by 5% compared with the counterparts in an isotropic medium. It can be further seen that when N = 2 and N = 3, with the increase of the number of electric dipole pairs, the focal length of the needle magnetic field generated in the uniaxial crystal increases by 10%, and the lateral resolution increases by 18%. The purity of the needle magnetic field gradually increases to 1 as the magnetization field profile surface value changes from 0.1 to 1. Especially when N = 2 and the contour surface value is 0.1, the magnetic field purity is as high as 95%. The results provide a feasible scheme for generating a longitudinal magnetization field with higher purity and longer focal length in an anisotropic medium, and also present the theoretical guidance for selecting optimal pupil beams in practical applications such as all-optical magnetic recording, atom capture and lithography.
-
Keywords:
- electric dipole /
- inverse Faraday effect /
- tight focus /
- uniaxial crystal
[1] Majors P D, Minard K R, Ackerman E J, Holtom G R, Hopkins D F, Parkinson C I, Weber T J, Wind R A 2002 Rev. Sci. Instrum. 73 4329Google Scholar
[2] Atutov S N, Calabrese R, Guidi V, Mai B, Rudavets A G, Scansani E, Tomassetti L, Biancalana V, Burchianti A, Marinelli C, Mariotti E, Moi L, Veronesi S 2003 Phys. Rev. A 67 053401Google Scholar
[3] Phelan C F, Hennessy T, Busch T 2013 Opt. Express 21 27093Google Scholar
[4] Grinolds M S, Warner M, De Greve K, Dovzhenko Y, Thiel L, Walsworth R L, Hong S, Maletinsky P, Yacoby A 2014 Nat. Nanotechnol. 9 279Google Scholar
[5] van der Ziel J P, Pershan P S, Malmstrom L D 1965 Phys. Rev. Lett. 15 190Google Scholar
[6] Weller D, Moser A 1999 IEEE Trans. Magn. 35 6Google Scholar
[7] Albrecht M, Rettner C T, Moser A, Best M E, Terris B D 2002 Appl. Phys. Lett. 81 2875Google Scholar
[8] Helseth L E 2011 Opt. Lett. 36 987Google Scholar
[9] Yan W, Nie Z, Liu X, Lan G, Zhang X, Wang Y, Song Y 2018 Opt. Express. 26 16824Google Scholar
[10] Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A, Rasing T 2007 Phys. Rev. Lett. 99 047601Google Scholar
[11] Zhang Y, Bai J 2008 Phys. Lett. A 372 6294Google Scholar
[12] Jiang Y, Li X, Gu M 2013 Opt. Lett. 38 2957Google Scholar
[13] Wang S, Cao Y, Li X 2017 Opt. Lett. 42 5050Google Scholar
[14] Luo J, Zhang H, Wang S, Shi L, Zhu Z, Gu B, Wang X, Li X 2019 Opt. Lett. 44 727Google Scholar
[15] Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M, Rasing T 2005 Nature 435 655Google Scholar
[16] Astakhov G V, Kimel A V, Schott G M, Tsvetkov A A, Kirilyuk A, Yakovlev D R, Karczewski G, Ossau W, Schmidt G, Molenkamp L W, Rasing T 2005 Appl. Phys. Lett. 86 152506Google Scholar
[17] Iihama S, Xu Y, Deb M, Malinowski G, Hehn M, Gorchon J, Fullerton E E, Mangin S 2018 Adv. Mater. 30 e1804004Google Scholar
[18] Balanis A 2005 Antenna Theory Analysis and Design (Wiley-Interscience)
[19] Chen W, Zhan Q 2009 Opt. Lett. 34 2444Google Scholar
[20] Chen W, Zhan Q 2010 J. Opt. 12 045707Google Scholar
[21] Chen W, Zhan Q 2011 Opt. Commun. 284 52Google Scholar
[22] Wang J, Chen W, Zhan Q 2012 J. Opt. 14 055004Google Scholar
[23] 李瑾, 冯晓毅, 王明军 2017 装备环境工程 14 18Google Scholar
Li J, Feng X Y, Wang M J 2017 Equip. Environ. Eng. 14 18Google Scholar
[24] Stallinga S 2001 J. Opt. Soc. Am. A 18 2846Google Scholar
[25] Volkov P V, Novikov M A 2002 Crystallogr. Rep. 47 824Google Scholar
[26] Aiello A, Lindlein N, Marquardt C, Leuchs G 2009 Phys. Rev. Lett. 103 100401Google Scholar
[27] 周志龙, 王朝玉, 兰国强, 柴志军, 聂仲泉, 孔德贵 2021 黑龙江大学自然科学学报 38 109Google Scholar
Zhou Z L, Wang Z Y, Lan G Q, Chai Z J, Nie Z Q, Kong D G 2021 J. Nat. Sci. Heilongjiang Univ. 38 109Google Scholar
-
图 5 针形磁化场强度分布图 (a1) N = 2和(a2) N = 3时所需的入瞳光场; (b1) N = 2和(b2) N = 3时x-z面总磁化强度分布; (c1) N = 2和(c2) N = 3时x-z面纵向磁化场分量强度分布; 针形磁化场沿 (d1) x轴和 (d2) z轴的归一化强度分布(红实线和黑虚线分别为N = 2条件下的总场和纵向磁化场分量, 黑实线和蓝点线分别为N = 3条件下的总场和纵向磁化场分量)
Fig. 5. Intensity distributions of the needle magnetic field: required entrance pupil light field when (a1) N = 2 and (a2) N = 3; total magnetization on the x-z plane when (b1) N = 2 and (b2) N = 3; longitudinal magnetization field component strength distribution of the x-z plane when (c1) N = 2 and (c2) N = 3; the normalized intensity distribution of the needle-shaped magnetization field along the (d1) x axis and (d2) z axis (The red solid line and the black dotted line are the total field and longitudinal magnetization field component under the condition of N = 2, respectively; the black solid line and the blue dotted line are the total field and the longitudinal magnetization field component under the condition of N = 3).
表 1 电偶极子对数N的仿真参数
Table 1. Simulation parameters for electric dipole logarithms N .
电偶极子对数N ${A_n}$ ${d_n}$ ${\beta _n}$ N = 2 ${A_1} = 1.00$ ${d_1} = {\text{3}}{\text{.00}}\lambda $ ${\beta _1} = {\text{5}}{\text{.00\pi }}$ ${A_2} = {\text{1}}{\text{.04}}$ ${d_2} = {\text{4}}{\text{.99}}\lambda $ ${\beta _2} = {\text{5.01\pi } }$ N = 3 ${A_1} = {\text{0}}{\text{.99}}$ ${d_1} = {\text{3}}{\text{.06}}\lambda $ ${\beta _1} = {\text{5}}{\text{.00\pi }}$ ${A_2} = {\text{1}}{\text{.01}}$ ${d_2} = {\text{1}}{\text{.00}}\lambda $ ${\beta _2} = {\text{4}}{\text{.97\pi }}$ ${A_{\text{3}}} = {\text{1}}{\text{.00}}$ ${d_3} = {\text{1}}{\text{.01}}\lambda $ ${\beta _{\text{3}}} = {\text{5}}{\text{.00\pi }}$ -
[1] Majors P D, Minard K R, Ackerman E J, Holtom G R, Hopkins D F, Parkinson C I, Weber T J, Wind R A 2002 Rev. Sci. Instrum. 73 4329Google Scholar
[2] Atutov S N, Calabrese R, Guidi V, Mai B, Rudavets A G, Scansani E, Tomassetti L, Biancalana V, Burchianti A, Marinelli C, Mariotti E, Moi L, Veronesi S 2003 Phys. Rev. A 67 053401Google Scholar
[3] Phelan C F, Hennessy T, Busch T 2013 Opt. Express 21 27093Google Scholar
[4] Grinolds M S, Warner M, De Greve K, Dovzhenko Y, Thiel L, Walsworth R L, Hong S, Maletinsky P, Yacoby A 2014 Nat. Nanotechnol. 9 279Google Scholar
[5] van der Ziel J P, Pershan P S, Malmstrom L D 1965 Phys. Rev. Lett. 15 190Google Scholar
[6] Weller D, Moser A 1999 IEEE Trans. Magn. 35 6Google Scholar
[7] Albrecht M, Rettner C T, Moser A, Best M E, Terris B D 2002 Appl. Phys. Lett. 81 2875Google Scholar
[8] Helseth L E 2011 Opt. Lett. 36 987Google Scholar
[9] Yan W, Nie Z, Liu X, Lan G, Zhang X, Wang Y, Song Y 2018 Opt. Express. 26 16824Google Scholar
[10] Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A, Rasing T 2007 Phys. Rev. Lett. 99 047601Google Scholar
[11] Zhang Y, Bai J 2008 Phys. Lett. A 372 6294Google Scholar
[12] Jiang Y, Li X, Gu M 2013 Opt. Lett. 38 2957Google Scholar
[13] Wang S, Cao Y, Li X 2017 Opt. Lett. 42 5050Google Scholar
[14] Luo J, Zhang H, Wang S, Shi L, Zhu Z, Gu B, Wang X, Li X 2019 Opt. Lett. 44 727Google Scholar
[15] Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M, Rasing T 2005 Nature 435 655Google Scholar
[16] Astakhov G V, Kimel A V, Schott G M, Tsvetkov A A, Kirilyuk A, Yakovlev D R, Karczewski G, Ossau W, Schmidt G, Molenkamp L W, Rasing T 2005 Appl. Phys. Lett. 86 152506Google Scholar
[17] Iihama S, Xu Y, Deb M, Malinowski G, Hehn M, Gorchon J, Fullerton E E, Mangin S 2018 Adv. Mater. 30 e1804004Google Scholar
[18] Balanis A 2005 Antenna Theory Analysis and Design (Wiley-Interscience)
[19] Chen W, Zhan Q 2009 Opt. Lett. 34 2444Google Scholar
[20] Chen W, Zhan Q 2010 J. Opt. 12 045707Google Scholar
[21] Chen W, Zhan Q 2011 Opt. Commun. 284 52Google Scholar
[22] Wang J, Chen W, Zhan Q 2012 J. Opt. 14 055004Google Scholar
[23] 李瑾, 冯晓毅, 王明军 2017 装备环境工程 14 18Google Scholar
Li J, Feng X Y, Wang M J 2017 Equip. Environ. Eng. 14 18Google Scholar
[24] Stallinga S 2001 J. Opt. Soc. Am. A 18 2846Google Scholar
[25] Volkov P V, Novikov M A 2002 Crystallogr. Rep. 47 824Google Scholar
[26] Aiello A, Lindlein N, Marquardt C, Leuchs G 2009 Phys. Rev. Lett. 103 100401Google Scholar
[27] 周志龙, 王朝玉, 兰国强, 柴志军, 聂仲泉, 孔德贵 2021 黑龙江大学自然科学学报 38 109Google Scholar
Zhou Z L, Wang Z Y, Lan G Q, Chai Z J, Nie Z Q, Kong D G 2021 J. Nat. Sci. Heilongjiang Univ. 38 109Google Scholar
计量
- 文章访问数: 4348
- PDF下载量: 103
- 被引次数: 0