搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单轴晶体中产生的高纯度纵向针形磁化场

许琳茜 朱榕琪 朱竹青 贡丽萍 顾兵

引用本文:
Citation:

单轴晶体中产生的高纯度纵向针形磁化场

许琳茜, 朱榕琪, 朱竹青, 贡丽萍, 顾兵

High-purity longitudinal needle-shaped magnetization fields produced in uniaxial crystals

Xu Lin-Xi, Zhu Rong-Qi, Zhu Zhu-Qing, Gong Li-Ping, Gu Bing
PDF
HTML
导出引用
  • 基于理查德-沃尔夫矢量衍射理论和逆法拉第效应, 提出一种在单轴晶体中产生高纯度纵向针形磁化场的方法. 该方法通过电偶极子对数N及其阵列多参数调控, 利用单轴晶体中的电偶极子反向辐射构建出优化的入瞳光场, 再正向紧聚焦获得所需目标磁化场. 模拟结果表明: 当N = 1时, 单轴晶体中产生的磁化场比在同性介质中焦深长度增加近1.4倍, 横向分辨率提高5%. 当N = 2和N = 3时, 单轴晶体中获得的纵向针形磁化场随着电偶极子对数增加, 轴向焦深增加了10%, 横向分辨率提高了18%. 随着磁化场轮廓表面值从0.1变化到1, 针形磁化场的纯度逐渐增大到1. 尤其当N = 2、轮廓表面值为0.1时, 磁化场纯度高达95%. 研究结果为在各向异性介质中生成更高纯度、针长更长的纵向磁化场提供了可行性方案, 也为全光磁记录、原子捕获和光刻等实际应用中入瞳光场的优化选取提供了理论指导.
    Based on the Richard-Wolf vector diffraction theory and the inverse Faraday effect, a method of generating a high-purity longitudinal needle-shaped magnetization field in the uniaxial crystal is proposed. In this method, the inverse radiation of the electric dipole in the uniaxial crystal is used to construct an optimal entry pupil light field through regulating the multi-parameter of the number of electric dipole pairs N and their array, and then the magnetization field of the desired target is obtained by forward tightly focusing. The simulation results show that when N = 1, the focal length of the magnetic field generated in the uniaxial crystal increases by 1.4 times and the lateral resolution increases by 5% compared with the counterparts in an isotropic medium. It can be further seen that when N = 2 and N = 3, with the increase of the number of electric dipole pairs, the focal length of the needle magnetic field generated in the uniaxial crystal increases by 10%, and the lateral resolution increases by 18%. The purity of the needle magnetic field gradually increases to 1 as the magnetization field profile surface value changes from 0.1 to 1. Especially when N = 2 and the contour surface value is 0.1, the magnetic field purity is as high as 95%. The results provide a feasible scheme for generating a longitudinal magnetization field with higher purity and longer focal length in an anisotropic medium, and also present the theoretical guidance for selecting optimal pupil beams in practical applications such as all-optical magnetic recording, atom capture and lithography.
      通信作者: 朱竹青, zhuqingzhu@njnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174196, 12104288)资助的课题.
      Corresponding author: Zhu Zhu-Qing, zhuqingzhu@njnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174196, 12104288).
    [1]

    Majors P D, Minard K R, Ackerman E J, Holtom G R, Hopkins D F, Parkinson C I, Weber T J, Wind R A 2002 Rev. Sci. Instrum. 73 4329Google Scholar

    [2]

    Atutov S N, Calabrese R, Guidi V, Mai B, Rudavets A G, Scansani E, Tomassetti L, Biancalana V, Burchianti A, Marinelli C, Mariotti E, Moi L, Veronesi S 2003 Phys. Rev. A 67 053401Google Scholar

    [3]

    Phelan C F, Hennessy T, Busch T 2013 Opt. Express 21 27093Google Scholar

    [4]

    Grinolds M S, Warner M, De Greve K, Dovzhenko Y, Thiel L, Walsworth R L, Hong S, Maletinsky P, Yacoby A 2014 Nat. Nanotechnol. 9 279Google Scholar

    [5]

    van der Ziel J P, Pershan P S, Malmstrom L D 1965 Phys. Rev. Lett. 15 190Google Scholar

    [6]

    Weller D, Moser A 1999 IEEE Trans. Magn. 35 6Google Scholar

    [7]

    Albrecht M, Rettner C T, Moser A, Best M E, Terris B D 2002 Appl. Phys. Lett. 81 2875Google Scholar

    [8]

    Helseth L E 2011 Opt. Lett. 36 987Google Scholar

    [9]

    Yan W, Nie Z, Liu X, Lan G, Zhang X, Wang Y, Song Y 2018 Opt. Express. 26 16824Google Scholar

    [10]

    Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A, Rasing T 2007 Phys. Rev. Lett. 99 047601Google Scholar

    [11]

    Zhang Y, Bai J 2008 Phys. Lett. A 372 6294Google Scholar

    [12]

    Jiang Y, Li X, Gu M 2013 Opt. Lett. 38 2957Google Scholar

    [13]

    Wang S, Cao Y, Li X 2017 Opt. Lett. 42 5050Google Scholar

    [14]

    Luo J, Zhang H, Wang S, Shi L, Zhu Z, Gu B, Wang X, Li X 2019 Opt. Lett. 44 727Google Scholar

    [15]

    Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M, Rasing T 2005 Nature 435 655Google Scholar

    [16]

    Astakhov G V, Kimel A V, Schott G M, Tsvetkov A A, Kirilyuk A, Yakovlev D R, Karczewski G, Ossau W, Schmidt G, Molenkamp L W, Rasing T 2005 Appl. Phys. Lett. 86 152506Google Scholar

    [17]

    Iihama S, Xu Y, Deb M, Malinowski G, Hehn M, Gorchon J, Fullerton E E, Mangin S 2018 Adv. Mater. 30 e1804004Google Scholar

    [18]

    Balanis A 2005 Antenna Theory Analysis and Design (Wiley-Interscience)

    [19]

    Chen W, Zhan Q 2009 Opt. Lett. 34 2444Google Scholar

    [20]

    Chen W, Zhan Q 2010 J. Opt. 12 045707Google Scholar

    [21]

    Chen W, Zhan Q 2011 Opt. Commun. 284 52Google Scholar

    [22]

    Wang J, Chen W, Zhan Q 2012 J. Opt. 14 055004Google Scholar

    [23]

    李瑾, 冯晓毅, 王明军 2017 装备环境工程 14 18Google Scholar

    Li J, Feng X Y, Wang M J 2017 Equip. Environ. Eng. 14 18Google Scholar

    [24]

    Stallinga S 2001 J. Opt. Soc. Am. A 18 2846Google Scholar

    [25]

    Volkov P V, Novikov M A 2002 Crystallogr. Rep. 47 824Google Scholar

    [26]

    Aiello A, Lindlein N, Marquardt C, Leuchs G 2009 Phys. Rev. Lett. 103 100401Google Scholar

    [27]

    周志龙, 王朝玉, 兰国强, 柴志军, 聂仲泉, 孔德贵 2021 黑龙江大学自然科学学报 38 109Google Scholar

    Zhou Z L, Wang Z Y, Lan G Q, Chai Z J, Nie Z Q, Kong D G 2021 J. Nat. Sci. Heilongjiang Univ. 38 109Google Scholar

  • 图 1  单轴晶体中的电偶极子阵列反向辐射构建入瞳光场示意图

    Fig. 1.  Schematic diagram of the incoming pupil light field constructed by the inverse radiation of electric dipole array in the uniaxial crystal.

    图 2  辐射场在分界面处的折射情况示意图

    Fig. 2.  Schematic diagram of the refraction of radiation field at the interface.

    图 3  (a1)—(c1) 各向同性介质和(a2)—(c2) 单轴晶体中获得的磁化场强度分布图 (a1), (a2) x-z面; (b1), (b2) y-z面; (c1), (c2) x-y

    Fig. 3.  The magnetization field intensity distributions obtained in the (a1)–(c1) isotropic medium and (a2)–(c2) uniaxial crystal: (a1), (a2) x-z plane; (b1), (b2) y-z plane; (c1), (c2) x-y plane.

    图 4  不同介质中的磁化场沿 (a) x轴和 (b) z轴的归一化强度分布(红实线为各向同性介质, 黑虚线为单轴晶体介质)

    Fig. 4.  Normalized intensity distribution of magnetization field along the (a) x axis and (b) z axis in different media (Red lines refer isotropic media, black dotted lines are uniaxial crystal media).

    图 5  针形磁化场强度分布图 (a1) N = 2和(a2) N = 3时所需的入瞳光场; (b1) N = 2和(b2) N = 3时x-z面总磁化强度分布; (c1) N = 2和(c2) N = 3时x-z面纵向磁化场分量强度分布; 针形磁化场沿 (d1) x轴和 (d2) z轴的归一化强度分布(红实线和黑虚线分别为N = 2条件下的总场和纵向磁化场分量, 黑实线和蓝点线分别为N = 3条件下的总场和纵向磁化场分量)

    Fig. 5.  Intensity distributions of the needle magnetic field: required entrance pupil light field when (a1) N = 2 and (a2) N = 3; total magnetization on the x-z plane when (b1) N = 2 and (b2) N = 3; longitudinal magnetization field component strength distribution of the x-z plane when (c1) N = 2 and (c2) N = 3; the normalized intensity distribution of the needle-shaped magnetization field along the (d1) x axis and (d2) z axis (The red solid line and the black dotted line are the total field and longitudinal magnetization field component under the condition of N = 2, respectively; the black solid line and the blue dotted line are the total field and the longitudinal magnetization field component under the condition of N = 3).

    图 6  磁化取向纯度对轮廓表面的依赖关系 (a) 轮廓表面值示意图; (b) 取向纯度与轮廓表面值变化曲线图

    Fig. 6.  Dependence of the magnetic orientation purity on the contour surface: (a) Schematic diagram of contour surface values; (b) change curve of orientation purity and contour surface value.

    表 1  电偶极子对数N的仿真参数

    Table 1.  Simulation parameters for electric dipole logarithms N .

    电偶极子对数N${A_n}$${d_n}$${\beta _n}$
    N = 2${A_1} = 1.00$${d_1} = {\text{3}}{\text{.00}}\lambda $${\beta _1} = {\text{5}}{\text{.00\pi }}$
    ${A_2} = {\text{1}}{\text{.04}}$${d_2} = {\text{4}}{\text{.99}}\lambda $${\beta _2} = {\text{5.01\pi } }$
    N = 3
    ${A_1} = {\text{0}}{\text{.99}}$${d_1} = {\text{3}}{\text{.06}}\lambda $${\beta _1} = {\text{5}}{\text{.00\pi }}$
    ${A_2} = {\text{1}}{\text{.01}}$${d_2} = {\text{1}}{\text{.00}}\lambda $${\beta _2} = {\text{4}}{\text{.97\pi }}$
    ${A_{\text{3}}} = {\text{1}}{\text{.00}}$${d_3} = {\text{1}}{\text{.01}}\lambda $${\beta _{\text{3}}} = {\text{5}}{\text{.00\pi }}$
    下载: 导出CSV
  • [1]

    Majors P D, Minard K R, Ackerman E J, Holtom G R, Hopkins D F, Parkinson C I, Weber T J, Wind R A 2002 Rev. Sci. Instrum. 73 4329Google Scholar

    [2]

    Atutov S N, Calabrese R, Guidi V, Mai B, Rudavets A G, Scansani E, Tomassetti L, Biancalana V, Burchianti A, Marinelli C, Mariotti E, Moi L, Veronesi S 2003 Phys. Rev. A 67 053401Google Scholar

    [3]

    Phelan C F, Hennessy T, Busch T 2013 Opt. Express 21 27093Google Scholar

    [4]

    Grinolds M S, Warner M, De Greve K, Dovzhenko Y, Thiel L, Walsworth R L, Hong S, Maletinsky P, Yacoby A 2014 Nat. Nanotechnol. 9 279Google Scholar

    [5]

    van der Ziel J P, Pershan P S, Malmstrom L D 1965 Phys. Rev. Lett. 15 190Google Scholar

    [6]

    Weller D, Moser A 1999 IEEE Trans. Magn. 35 6Google Scholar

    [7]

    Albrecht M, Rettner C T, Moser A, Best M E, Terris B D 2002 Appl. Phys. Lett. 81 2875Google Scholar

    [8]

    Helseth L E 2011 Opt. Lett. 36 987Google Scholar

    [9]

    Yan W, Nie Z, Liu X, Lan G, Zhang X, Wang Y, Song Y 2018 Opt. Express. 26 16824Google Scholar

    [10]

    Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A, Rasing T 2007 Phys. Rev. Lett. 99 047601Google Scholar

    [11]

    Zhang Y, Bai J 2008 Phys. Lett. A 372 6294Google Scholar

    [12]

    Jiang Y, Li X, Gu M 2013 Opt. Lett. 38 2957Google Scholar

    [13]

    Wang S, Cao Y, Li X 2017 Opt. Lett. 42 5050Google Scholar

    [14]

    Luo J, Zhang H, Wang S, Shi L, Zhu Z, Gu B, Wang X, Li X 2019 Opt. Lett. 44 727Google Scholar

    [15]

    Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M, Rasing T 2005 Nature 435 655Google Scholar

    [16]

    Astakhov G V, Kimel A V, Schott G M, Tsvetkov A A, Kirilyuk A, Yakovlev D R, Karczewski G, Ossau W, Schmidt G, Molenkamp L W, Rasing T 2005 Appl. Phys. Lett. 86 152506Google Scholar

    [17]

    Iihama S, Xu Y, Deb M, Malinowski G, Hehn M, Gorchon J, Fullerton E E, Mangin S 2018 Adv. Mater. 30 e1804004Google Scholar

    [18]

    Balanis A 2005 Antenna Theory Analysis and Design (Wiley-Interscience)

    [19]

    Chen W, Zhan Q 2009 Opt. Lett. 34 2444Google Scholar

    [20]

    Chen W, Zhan Q 2010 J. Opt. 12 045707Google Scholar

    [21]

    Chen W, Zhan Q 2011 Opt. Commun. 284 52Google Scholar

    [22]

    Wang J, Chen W, Zhan Q 2012 J. Opt. 14 055004Google Scholar

    [23]

    李瑾, 冯晓毅, 王明军 2017 装备环境工程 14 18Google Scholar

    Li J, Feng X Y, Wang M J 2017 Equip. Environ. Eng. 14 18Google Scholar

    [24]

    Stallinga S 2001 J. Opt. Soc. Am. A 18 2846Google Scholar

    [25]

    Volkov P V, Novikov M A 2002 Crystallogr. Rep. 47 824Google Scholar

    [26]

    Aiello A, Lindlein N, Marquardt C, Leuchs G 2009 Phys. Rev. Lett. 103 100401Google Scholar

    [27]

    周志龙, 王朝玉, 兰国强, 柴志军, 聂仲泉, 孔德贵 2021 黑龙江大学自然科学学报 38 109Google Scholar

    Zhou Z L, Wang Z Y, Lan G Q, Chai Z J, Nie Z Q, Kong D G 2021 J. Nat. Sci. Heilongjiang Univ. 38 109Google Scholar

  • [1] 周丽丽, 胡欣悦, 穆中林, 张蕤, 郑悦. 任意方向电偶极子在水平分层受限空间中的远区辐射场求解. 物理学报, 2022, 71(20): 200301. doi: 10.7498/aps.71.20220545
    [2] 钟哲强, 母杰, 王逍, 张彬. 基于紧聚焦方式的阵列光束相干合成特性分析. 物理学报, 2020, 69(9): 094204. doi: 10.7498/aps.69.20200034
    [3] 曹重阳, 陆健能, 张恒闻, 朱竹青, 王晓雷, 顾兵. 紧聚焦角向偏振分数阶涡旋光诱导磁化场特性. 物理学报, 2020, 69(16): 167802. doi: 10.7498/aps.69.20200269
    [4] 陆云清, 呼斯楞, 陆懿, 许吉, 王瑾. 径向偏振光下的长焦、紧聚焦表面等离子体激元透镜. 物理学报, 2015, 64(9): 097301. doi: 10.7498/aps.64.097301
    [5] 耿远超, 刘兰琴, 王文义, 张颖, 黄晚晴, 粟敬钦, 李平. 利用晶体相位板同时实现焦斑整形和偏振匀滑. 物理学报, 2013, 62(14): 145201. doi: 10.7498/aps.62.145201
    [6] 赵维谦, 唐芳, 邱丽荣, 刘大礼. 轴对称矢量光束聚焦特性研究现状及其应用. 物理学报, 2013, 62(5): 054201. doi: 10.7498/aps.62.054201
    [7] 董丽娟, 杜桂强, 杨成全, 石云龙. 厚金属Ag膜的磁光法拉第旋转效应的增强. 物理学报, 2012, 61(16): 164210. doi: 10.7498/aps.61.164210
    [8] 杨一鸣, 屈绍波, 王甲富, 赵静波, 柏鹏, 李哲, 夏颂, 徐卓. 基于介质谐振器原理的左手材料设计. 物理学报, 2011, 60(7): 074201. doi: 10.7498/aps.60.074201
    [9] 黄永超, 张廷蓉, 陈森会, 宋宏远, 李艳桃, 张伟林. 椭圆高斯光束在单轴晶体中垂直于光轴的传输特性. 物理学报, 2011, 60(7): 074212. doi: 10.7498/aps.60.074212
    [10] 金钻明, 郭飞云, 马红, 王立华, 马国宏, 陈建中. 飞秒光诱导铽镓石榴石晶体中的磁化响应研究. 物理学报, 2011, 60(8): 087803. doi: 10.7498/aps.60.087803
    [11] 吴重庆, 赵 爽. 电偶极子源定位问题的研究. 物理学报, 2007, 56(9): 5180-5184. doi: 10.7498/aps.56.5180
    [12] 曹 伟, 兰鹏飞, 陆培祥. 紧聚焦激光束作用于电子实现单个阿秒脉冲输出. 物理学报, 2006, 55(5): 2115-2121. doi: 10.7498/aps.55.2115
    [13] 张春福, 郝 跃, 游海龙, 张金凤, 周小伟. 界面电偶极子对GaN/AlGaN/GaN光电探测器紫外/太阳光选择比的影响. 物理学报, 2005, 54(8): 3810-3814. doi: 10.7498/aps.54.3810
    [14] 罗海陆, 胡 巍, 易煦农, 朱 静. 傍轴光束在单轴晶体中传输的矢量性质. 物理学报, 2004, 53(9): 2947-2952. doi: 10.7498/aps.53.2947
    [15] 陈 莹, 邱锡钧. 细胞骨架微管中水的电偶极集体辐射. 物理学报, 2003, 52(6): 1554-1560. doi: 10.7498/aps.52.1554
    [16] 罗时荣, 吕百达. 平顶高斯光束在单轴晶体中的传输. 物理学报, 2003, 52(12): 3061-3067. doi: 10.7498/aps.52.3061
    [17] 郭旗, 石智伟. 金属包层对称平面单轴晶体波导的模式场(Ⅱ). 物理学报, 2002, 51(8): 1716-1723. doi: 10.7498/aps.51.1716
    [18] 刘公强, 朱莲根, 卫邦达, 张宁杲. 动态法拉第效应及其损耗机制. 物理学报, 1997, 46(3): 604-611. doi: 10.7498/aps.46.604
    [19] 刘公强, 黄燕萍. 顺磁性物质中法拉第磁光效应及其温度特性的量子理论. 物理学报, 1988, 37(10): 1626-1632. doi: 10.7498/aps.37.1626
    [20] 王焕元, 贾惟义, 沈建祥. Bi4Ge3O12晶体的磁光法拉第旋转. 物理学报, 1985, 34(1): 126-128. doi: 10.7498/aps.34.126
计量
  • 文章访问数:  4348
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-21
  • 修回日期:  2022-03-26
  • 上网日期:  2022-07-05
  • 刊出日期:  2022-07-20

/

返回文章
返回