搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同厚度Cr中间层对Gd/FeCo薄膜磁电阻效应转变的影响

张艺玮 宋恒博 李小燕 孙丽 刘晓莹 寇朝霞 张栋 费红阳 赵志斌 翟亚

引用本文:
Citation:

不同厚度Cr中间层对Gd/FeCo薄膜磁电阻效应转变的影响

张艺玮, 宋恒博, 李小燕, 孙丽, 刘晓莹, 寇朝霞, 张栋, 费红阳, 赵志斌, 翟亚

Influence of Cr interlayer with different thickness on transition of magnetoresistance effect of Gd/FeCo thin films

Zhang Yi-Wei, Song Heng-Bo, Li Xiao-Yan, Sun Li, Liu Xiao-Ying, Kou Zhao-Xia, Zhang Dong, Fei Hong-Yang, Zhao Zhi-Bin, Zhai Ya
PDF
HTML
导出引用
  • 磁电阻作为表征自旋阀结构最具代表性的特征之一, 是研究多层膜层间耦合作用的重要研究手段. 稀土/磁性过渡金属通过耦合和界面效应诱导室温下稀土具有磁性, 插入中间非磁金属层通过调控层间耦合作用实现自旋阀结构将有利于拓展稀土在自旋电子学领域的应用. 通过分析具有不同Cr层厚度(tCr)的Gd (4 nm)/Cr(tCr)/FeCo (5 nm)三层膜室温下面内磁电阻效应, 本文研究了薄膜的层间耦合和界面效应. 研究发现, 相对于FeCo薄膜, Gd/FeCo薄膜表现出更为明显的各向异性磁电阻. Cr的插入使得电流垂直于磁场时的磁电阻在低场峰值位置处出现一极小值, 且这个极小值随着tCr的增加变得更加明显. 当tCr = 3 nm时, 几乎完全表现为负自旋阀磁电阻效应. FeCo层与Cr/Gd形成的不同的自旋散射不对称是产生这一负自旋阀磁电阻效应的主要原因. 电流平行于磁场时磁电阻峰值随tCr的振荡和低温下的磁滞回线证实了低温和室温下层间耦合的存在.
    As one of the most representative features characterizing the spin valve structure, magnetoresistance is an important method to study the interlayer coupling in multilayers. Considering the induced magnetism of rare earth at room temperature due to the coupling and magnetic proximity effect in the structure of rare earth/magnetic transition metal, an intermediate nonmagnetic metal can be inserted to form the spin valve structure to regulate the interlayer coupling, which expands the scope of applications of rare earth in spintronics. In this work, the interlayer exchange coupling and interfacial effects of Gd (4 nm)/Cr (tCr)/FeCo (5 nm) trilayers with different Cr layer thickness (tCr) are studied by means of in plane magnetoresistance. Compared with FeCo film, Gd/FeCo film obtains more obvious anisotropic magnetoresistance. While the magnetoresistance value obtained for the configuration of IH shows a minimum value at the peak due to the insertion of Cr layer, and this minimum value becomes more pronounced with the increase of tCr. When tCr = 3 nm, the negative spin valve effect almost totally overcomes the anisotropic-magnetoresistance effect. Different spin asymmetries of scattering that are formed in FeCo layer and Cr/Gd layers are mainly responsible for creating the negative spin valve magnetoresistance, in which the resistance becomes smaller near the coercive, while the resistance becomes larger at high field parallel to magnetic moment. The oscillation of magnetoresistance with tCr at I // H and the hysteresis loops at 5 K further confirm the existence of interlayer coupling both at room temperature and 5 K.
      通信作者: 孙丽, lisun_2014@163.com
    • 基金项目: 海南省自然科学基金(批准号: 2019RC169, 117109, 114008)、国家自然科学基金(批准号: 12164016, 11364015)、海南省科协青年科技英才科技创新(批准号: QCXM201810)和海南省激光技术与光电功能材料重点实验室资助的课题.
      Corresponding author: Sun Li, lisun_2014@163.com
    • Funds: Project supported by the Natural Science Foundation of Hainan Province of China (Grant Nos. 2019RC169, 117109, 114008), the National Natural Science Foundation of China (Grant Nos. 12164016, 11364015), the Young Talents’ Science and Technology Innovation Project of Hainan Association for Science and Technology, China (Grant No. QCXM201810), and the Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, China.
    [1]

    Lee J C T, Chess J J, Montoya S A, Shi X, Tamura N, Mishra S K, Fischer P, McMorran B J, Sinha S K, Fullerton E E, Kevan S D, Roy S 2016 Appl. Phys. Lett. 109 022402Google Scholar

    [2]

    Talapatra A, Chelvane J A, Satpati B, Kumar S, Mohanty J 2019 J. Alloy. Compd. 774 1059Google Scholar

    [3]

    Bhatt R C, Liao C M, Ye L X, Hai N T, Wu J C, Wu T H 2021 J. Magn. Magn. Mater. 526 167734Google Scholar

    [4]

    Inyang O, Rafiq A, Swindells C, Ali S, Atkinson D 2020 Sci. Rep. 10 9767Google Scholar

    [5]

    Kirk E, Bull C, Finizio S, et al. 2020 Phys. Rev. Mater. 4 074403Google Scholar

    [6]

    Huang M, Qiu Z, Wang F, Luo H, Zhang J 2022 J. Alloy. Compd. 901 163619Google Scholar

    [7]

    Ming X, Han X, Yang M, Yan G 2022 J. Magn. Magn. Mater. 550 169064Google Scholar

    [8]

    Jin H M 1983 J. Magn. Magn. Mater. 35 283Google Scholar

    [9]

    Elhamali S M, Ibrahim N B, Radiman S 2018 Mater. Chem. Phys. 208 1Google Scholar

    [10]

    Talapatra, Chelvane J A, Mohanty J 2021 J. Alloy. Compd. 861 157953Google Scholar

    [11]

    Wang K, Tang Y, Zhang K, Wang Y, Liu J 2021 Mater. Sci. Eng. B-Adv. 263 114848Google Scholar

    [12]

    Basumatary H, Chelvane J A, Rao D V S, Talapatra A, Mohanty J, Kumar D, Singh V, Kamat S V, Ranjan R 2021 J. Alloy. Compd. 869 159571Google Scholar

    [13]

    Bhatt R C, Ye L X, Hai N T, Wu J C, Wu T H 2021 J. Magn. Magn. Mater. 537 168196Google Scholar

    [14]

    Stanciu A E, Schinteie G, Kuncser A, Iacob N, Trupina L, Ionita I, Crisan O, Kuncser V 2020 J. Magn. Magn. Mater. 498 166173Google Scholar

    [15]

    Morishita T, Togami Y, Tsushima K 1986 J. Magn. Magn. Mater. 54–57 789Google Scholar

    [16]

    Frąckowiak Ł, Stobiecki F, Urbaniak M, Matczak M, Chaves-O`Flynn G D, Bilski M, Glenz A, Kuświk P 2022 J. Magn. Magn. Mater. 544 168682Google Scholar

    [17]

    Wang J, Li C, Wang Y, Tang R, Chai G, Jiang C 2021 Appl. Surf. Sci. 567 150527Google Scholar

    [18]

    Rebei A, Hohlfeld J 2006 Phys. Rev. Lett. 97 117601Google Scholar

    [19]

    高瑞鑫, 徐振, 陈达鑫, 徐初东, 陈志峰, 刘晓东, 周仕明, 赖天树 2009 物理学报 58 580Google Scholar

    Gao R X, Xu Z, Chen D X, Xu C D, Chen Z F, Liu X D, Zhou S M, Lai T S 2009 Acta Phys. Sin. 58 580Google Scholar

    [20]

    Sun L, Yue J J, Jiang S, Xu Y J, Li Q N, Chen Q, Zhou X C, Huang Z C, Yao Z Y, Zhai Y, Zhai H R 2017 J. Alloy. Compd. 695 1324Google Scholar

    [21]

    Guo H S, Li L Z, Wu X H, Zhong Z C, Tao Z X, Wang F H, Wang T 2021 J. Magn. Magn. Mater. 538 168249Google Scholar

    [22]

    Ceballos A, Pattabi A, El-Ghazaly A, Ruta S, Simon C P, Evans R F L, Ostler T, Chantrell R W, Kennedy E, Scott M, Bokor J, Hellman F 2021 Phys. Rev. B 103 024438Google Scholar

    [23]

    侯育花, 黄有林, 刘仲武, 曾德长 2015 物理学报 64 037501Google Scholar

    Hou Y H, Huang Y L, Liu Z W, Zeng D C 2015 Acta Phys. Sin. 64 037501Google Scholar

    [24]

    Hao A, Ismail M, He S, Qin N, Chen R, Rana A M, Bao D 2018 Mater. Sci. Eng. B-Adv. 229 86Google Scholar

    [25]

    Chakrabarty S, Sinha A, Dutta A, Pal M 2018 J. Magn. Magn. Mater. 468 215Google Scholar

    [26]

    Bulai G, Trandafir V, Irimiciuc S A, Ursu L, Focsa C, Gurlui S 2019 Ceram. Int. 45 20165Google Scholar

    [27]

    Bohr C, Yu P, Scigaj M, Hegemann C, Fischer T, Coll M, Mathur S 2020 Thin Solid Films 698 137848Google Scholar

    [28]

    Sharma S, Verma M K, Sharma N D, Choudhary N, Singh S, Singh D 2021 Ceram. Int. 47 17510Google Scholar

    [29]

    Li N, Tang J, Su L, Ke Y J, Zhang W, Xie Z K, Sun R, Zhang X Q, He W, Cheng Z H 2021 Chin. Phys. B 30 117502Google Scholar

    [30]

    Shan Z S, Sellmyer D J 1990 Phys. Rev. B 42 10433Google Scholar

    [31]

    Kim W S, Andrä W, Kleemann W 1998 Phys. Rev. B 58 6346Google Scholar

    [32]

    Schmidt T, Hoffmann H 2002 J. Magn. Magn. Mater. 248 181Google Scholar

    [33]

    Drovosekov A B, Savitsky A O, Kholin D I, Kreines N M, Proglyado V V, Makarova M V, Kravtsov E A, Ustinov V V 2019 J. Magn. Magn. Mater. 475 668Google Scholar

    [34]

    Xiang O, Xiong C, Wang Z, Zhang Y, Xu Y, Yi L, Piao H G, Pan L 2020 J. Magn. Magn. Mater. 516 167334Google Scholar

    [35]

    Basha M A, Prajapat C L, Bhatt H, Kumar Y, Gupta M, Kinane C J, Cooper J F K, Langridge S, Basu S, Singh S 2020 J. Magn. Magn. Mater. 516 167331Google Scholar

    [36]

    Mattson J E, Sowers C H, Berger A, Bader S D 1992 Phys Rev Lett. 68 3252Google Scholar

    [37]

    Bellouard C, George B, Marchal G, Maloufi N, Eugène J 1997 J. Magn. Magn. Mater. 165 312Google Scholar

    [38]

    Sun L, Li X Y, Zhao X C, Ban D M, Li G J, Yao Z H, Zhao Z B, Zhai Y, Cui X Y 2021 J Mater Sci: Mater Electron 32 28245Google Scholar

    [39]

    George J M, Pereira L G, Barthélémy A, Petroff F, Steren L, Duvail J L, Fert A, Loloee R, Holody P, Schroeder P A 1994 Phys. Rev. Lett. 72 408Google Scholar

    [40]

    Renard J P, Bruno P, Mégy R, Bartenlian B, Beauvillain P, Chappert C, Dupas C, Kolb E, Mulloy M, Veillet P, Vélu E 1995 Phys. Rev. B 51 12821Google Scholar

    [41]

    Sanyal B, Antoniak C, Burkert T, Krumme B, Warland A, Stromberg F, Praetorius C, Fauth K, Wende H, Eriksson O 2010 Phys. Rev. Lett. 104 156402Google Scholar

    [42]

    Scheunert G, Hendren W R, Ward C, Bowman R M 2012 App. Phys. Lett. 101 142407Google Scholar

    [43]

    Liu Y F, Cai J W, Sun L 2010 Appl. Phys. Lett. 96 092509Google Scholar

    [44]

    Jiao Z, Chen H, Jiang W, Wang J, Zhou Y, Yu S, Hou Y, Ye Q 2015 Mater. Lett. 158 241Google Scholar

    [45]

    Zhao W, Liu C, Huang W, Hou C, Chen Z, Luo Z, Yin Y, Li X 2019 Mater. Lett. 240 124Google Scholar

    [46]

    Peng C, Chen D, Dai D 1993 Solid State Commun. 87 161Google Scholar

    [47]

    Parkin S S P, More N, Roche K P 1990 Phys, Rev. Lett. 64 2304Google Scholar

    [48]

    Parkin S S P, Bhadra R, Roche K P 1991 Phys. Rev. Lett. 66 2152Google Scholar

  • 图 1  (a) Si(100)衬底上生长的Gd/Cr/FeCo结构示意图, 2 nm Ta作为保护层和缓冲层; (b)—(d) FeCo (5 nm)薄膜和不同厚度Gd层的Gd/Cr (1 nm)/FeCo (5 nm) 薄膜的 XRD图谱 (图1(c)插图是Ta (2 nm)/Gd (4 nm)/Ta (2 nm) 薄膜的Gd衍射峰)

    Fig. 1.  (a) Schematic diagram of the film structure for Gd/Cr/FeCo on Si(100) with Ta (2 nm) as the capping layer and buffering layer; (b)–(d) XRD patterns for the FeCo (5 nm) and Gd/Cr (1 nm)/FeCo (5 nm) films with different thickness of Gd layer. (The inset of Fig. 1(c) shows the diffraction peak of Gd for Ta (2 nm)/Gd (4 nm)/Ta (2 nm) film).

    图 2  (a)—(c) 具有代表性的薄膜在室温下的面内磁滞回线; (d) 室温和 5 K下不同厚度 Cr层的Gd (4 nm)/Cr (tCr)/FeCo (5 nm)薄膜的矫顽力Hc, 为便于比较, 其中包含FeCo薄膜室温下的矫顽力, 实线只是用来观察变化趋势

    Fig. 2.  (a)–(c) Typical in-plane magnetization hysteresis loops for films at room temperature; (d) the coercivity Hc of Gd (4 nm)/Cr (tCr)/FeCo (5 nm) films with different thickness of Cr layer at room temperature and 5 K, and the coercivity of FeCo film also presented for comparison. The solid lines only guide to the eye in panel (d).

    图 3  室温且IH时, FeCo薄膜(a)和不同Cr厚度Gd (4 nm)/Cr (tCr)/FeCo (5 nm)薄膜(b)—(h)的MR随磁场的变化 (a) FeCo; (b) tCr = 0; (c) tCr = 1.0 nm; (d) tCr = 1.5 nm; (e) tCr = 2.0 nm; (f) tCr = 2.5 nm; (g) tCr = 3.0 nm; (h) tCr = 3.5 nm (图3(a)右上角插图表示电流方向垂直于磁场方向, 磁场沿着薄膜平面内; 实心点表示磁场下降的分支, 空心点表示磁场上升的分支; 其余插图均为对应阴影部分的放大图)

    Fig. 3.  Variation of MR with the magnetic field for (a) FeCo film and (b)–(h) Gd (4 nm)/Cr (tCr)/FeCo (5 nm) films with different thickness of Cr at the room temperature and IH: (a) FeCo film; (b) tCr = 0; (c) tCr = 1.0 nm; (d) tCr = 1.5 nm; (e) tCr = 2.0 nm; (f) tCr = 2.5 nm; (g) tCr = 3.0 nm; (h) tCr = 3.5 nm (The current direction is perpendicular to the direction of magnetic field, and the magnetic field is along the in-plane of the film, as shown in top-right of Fig. 3(a). Solid dots indicate downwards branches, open dots indicate upwards branches. The other insets are the enlarged images of the corresponding shaded parts).

    图 4  室温且I//H时, FeCo薄膜(a)和不同Cr厚度Gd (4 nm)/Cr (tCr)/FeCo (5 nm)薄膜(b)—(h)的MR随磁场的变化 (a) FeCo; (b) tCr = 0; (c) tCr = 1.0 nm; (d) tCr = 1.5 nm; (e) tCr = 2.0 nm; (f) tCr = 2.5 nm; (g) tCr = 3.0 nm; (h) tCr = 3.5 nm (图4(a)左边插图表示电流方向平行于磁场方向, 磁场沿着薄膜平面内; 实心点表示磁场下降的分支, 空心点表示磁场上升的分支; 其余插入图均为对应阴影部分的放大图)

    Fig. 4.  Variation of MR with the magnetic field for (a) FeCo film and (b)–(h) Gd (4 nm)/Cr (tCr)/FeCo (5 nm) films with different thickness of Cr at the room temperature and I//H: (a) FeCo film; (b) tCr = 0; (c) tCr = 1.0 nm; (d) tCr = 1.5 nm; (e) tCr = 2.0 nm; (f) tCr = 2.5 nm; (g) tCr = 3.0 nm; (h) tCr = 3.5 nm (With current parallel to H, and the magnetic field is along the in-plane of the film, as illustrated the inset in the left of Fig. 4(a). Solid dots indicate downwards branches, open dots indicate upwards branches. The other insets are the enlarged images of the corresponding shaded parts).

    图 5  室温下电流方向平行于磁场方向时, MR最大值(MRmax)和薄膜单位面积饱和磁化强度(Ms)与Cr层厚度的变化关系

    Fig. 5.  Relationship of the maximum magnetoresistance (MRmax) with the configuration of current parallel to the magnetic field and saturation magnetization per unit area (Ms) to the film and the thickness of the Cr layer at room temperature.

    图 6  5 K时, FeCo薄膜(a)和不同Cr厚度Gd (4 nm)/Cr (tCr)/FeCo (5 nm) 薄膜(b)—(h)的面内磁滞回线 (a) FeCo薄膜; (b) tCr = 0; (c) tCr = 1.0 nm; (d) tCr = 1.5 nm; (e) tCr = 2.0 nm; (f) tCr = 2.5 nm; (g) tCr = 3.0 nm; (h) tCr = 4.0 nm (虚线矩形方框是具有Cr中间层薄膜的磁滞回线中矩形度较好的部分)

    Fig. 6.  In-plane magnetization hysteresis loops for (a) FeCo film and (b)–(h) Gd (4 nm)/Cr(tCr)/FeCo (5 nm) films with different thickness of 5 K: (a) FeCo film; (b) tCr = 0; (c) tCr = 1.0 nm; (d) tCr = 1.5 nm; (e) tCr = 2.0 nm; (f) tCr = 2.5 nm; (g) tCr = 3.0 nm; (h) tCr = 4.0 nm (The easy magnetized parts are marked by rectangles in the hysteresis loop for films with Cr spacer layer).

    表 1  不同 Cr 层厚度的Gd/Cr/FeCo薄膜在5 K下的单位面积饱和磁化强度(MsLT)、 5 K下磁滞回线中间矩形度较好部分的磁矩(见图6矩形)占总薄膜磁矩的比例(R)、R部分的磁矩(MFeCo)、磁滞回线中缓慢磁化部分对应的磁矩(M)

    Table 1.  Saturation magnetization per area at 5 K (MsLT) for Gd/Cr/FeCo films with different thickness of Cr layer (tCr), the percentage (R) of the magnetic moment in the middle of the hysteresis loop with better squareness (represented by the rectangles in Fig. 6) to the total magnetic moment at 5 K, the magnetic moment (MFeCo) of R, and the magnetic moment (M) in the slowly magnetized part of the hysteresis loop.

    tCr/nmMsLT/(10–4 emu·cm–2)RMFeCo/(10–4 emu·cm–2)M/(10–4 emu·cm–2)
    07.52 ± 0.75
    1.011.30 ± 1.130.697.78 ± 0.784.02 ± 0.40
    1.511.65 ± 0.120.657.60 ± 0.764.37 ± 0.44
    2.015.30 ± 0.150.487.29 ± 0.738.02 ± 0.80
    2.517.03 ± 1.700.467.78 ± 0.789.75 ± 0.98
    3.010.87 ± 1.090.687.35 ± 0.743.59 ± 0.36
    4.010.56 ± 1.060.646.73 ± 0.673.28 ± 0.33
    下载: 导出CSV
  • [1]

    Lee J C T, Chess J J, Montoya S A, Shi X, Tamura N, Mishra S K, Fischer P, McMorran B J, Sinha S K, Fullerton E E, Kevan S D, Roy S 2016 Appl. Phys. Lett. 109 022402Google Scholar

    [2]

    Talapatra A, Chelvane J A, Satpati B, Kumar S, Mohanty J 2019 J. Alloy. Compd. 774 1059Google Scholar

    [3]

    Bhatt R C, Liao C M, Ye L X, Hai N T, Wu J C, Wu T H 2021 J. Magn. Magn. Mater. 526 167734Google Scholar

    [4]

    Inyang O, Rafiq A, Swindells C, Ali S, Atkinson D 2020 Sci. Rep. 10 9767Google Scholar

    [5]

    Kirk E, Bull C, Finizio S, et al. 2020 Phys. Rev. Mater. 4 074403Google Scholar

    [6]

    Huang M, Qiu Z, Wang F, Luo H, Zhang J 2022 J. Alloy. Compd. 901 163619Google Scholar

    [7]

    Ming X, Han X, Yang M, Yan G 2022 J. Magn. Magn. Mater. 550 169064Google Scholar

    [8]

    Jin H M 1983 J. Magn. Magn. Mater. 35 283Google Scholar

    [9]

    Elhamali S M, Ibrahim N B, Radiman S 2018 Mater. Chem. Phys. 208 1Google Scholar

    [10]

    Talapatra, Chelvane J A, Mohanty J 2021 J. Alloy. Compd. 861 157953Google Scholar

    [11]

    Wang K, Tang Y, Zhang K, Wang Y, Liu J 2021 Mater. Sci. Eng. B-Adv. 263 114848Google Scholar

    [12]

    Basumatary H, Chelvane J A, Rao D V S, Talapatra A, Mohanty J, Kumar D, Singh V, Kamat S V, Ranjan R 2021 J. Alloy. Compd. 869 159571Google Scholar

    [13]

    Bhatt R C, Ye L X, Hai N T, Wu J C, Wu T H 2021 J. Magn. Magn. Mater. 537 168196Google Scholar

    [14]

    Stanciu A E, Schinteie G, Kuncser A, Iacob N, Trupina L, Ionita I, Crisan O, Kuncser V 2020 J. Magn. Magn. Mater. 498 166173Google Scholar

    [15]

    Morishita T, Togami Y, Tsushima K 1986 J. Magn. Magn. Mater. 54–57 789Google Scholar

    [16]

    Frąckowiak Ł, Stobiecki F, Urbaniak M, Matczak M, Chaves-O`Flynn G D, Bilski M, Glenz A, Kuświk P 2022 J. Magn. Magn. Mater. 544 168682Google Scholar

    [17]

    Wang J, Li C, Wang Y, Tang R, Chai G, Jiang C 2021 Appl. Surf. Sci. 567 150527Google Scholar

    [18]

    Rebei A, Hohlfeld J 2006 Phys. Rev. Lett. 97 117601Google Scholar

    [19]

    高瑞鑫, 徐振, 陈达鑫, 徐初东, 陈志峰, 刘晓东, 周仕明, 赖天树 2009 物理学报 58 580Google Scholar

    Gao R X, Xu Z, Chen D X, Xu C D, Chen Z F, Liu X D, Zhou S M, Lai T S 2009 Acta Phys. Sin. 58 580Google Scholar

    [20]

    Sun L, Yue J J, Jiang S, Xu Y J, Li Q N, Chen Q, Zhou X C, Huang Z C, Yao Z Y, Zhai Y, Zhai H R 2017 J. Alloy. Compd. 695 1324Google Scholar

    [21]

    Guo H S, Li L Z, Wu X H, Zhong Z C, Tao Z X, Wang F H, Wang T 2021 J. Magn. Magn. Mater. 538 168249Google Scholar

    [22]

    Ceballos A, Pattabi A, El-Ghazaly A, Ruta S, Simon C P, Evans R F L, Ostler T, Chantrell R W, Kennedy E, Scott M, Bokor J, Hellman F 2021 Phys. Rev. B 103 024438Google Scholar

    [23]

    侯育花, 黄有林, 刘仲武, 曾德长 2015 物理学报 64 037501Google Scholar

    Hou Y H, Huang Y L, Liu Z W, Zeng D C 2015 Acta Phys. Sin. 64 037501Google Scholar

    [24]

    Hao A, Ismail M, He S, Qin N, Chen R, Rana A M, Bao D 2018 Mater. Sci. Eng. B-Adv. 229 86Google Scholar

    [25]

    Chakrabarty S, Sinha A, Dutta A, Pal M 2018 J. Magn. Magn. Mater. 468 215Google Scholar

    [26]

    Bulai G, Trandafir V, Irimiciuc S A, Ursu L, Focsa C, Gurlui S 2019 Ceram. Int. 45 20165Google Scholar

    [27]

    Bohr C, Yu P, Scigaj M, Hegemann C, Fischer T, Coll M, Mathur S 2020 Thin Solid Films 698 137848Google Scholar

    [28]

    Sharma S, Verma M K, Sharma N D, Choudhary N, Singh S, Singh D 2021 Ceram. Int. 47 17510Google Scholar

    [29]

    Li N, Tang J, Su L, Ke Y J, Zhang W, Xie Z K, Sun R, Zhang X Q, He W, Cheng Z H 2021 Chin. Phys. B 30 117502Google Scholar

    [30]

    Shan Z S, Sellmyer D J 1990 Phys. Rev. B 42 10433Google Scholar

    [31]

    Kim W S, Andrä W, Kleemann W 1998 Phys. Rev. B 58 6346Google Scholar

    [32]

    Schmidt T, Hoffmann H 2002 J. Magn. Magn. Mater. 248 181Google Scholar

    [33]

    Drovosekov A B, Savitsky A O, Kholin D I, Kreines N M, Proglyado V V, Makarova M V, Kravtsov E A, Ustinov V V 2019 J. Magn. Magn. Mater. 475 668Google Scholar

    [34]

    Xiang O, Xiong C, Wang Z, Zhang Y, Xu Y, Yi L, Piao H G, Pan L 2020 J. Magn. Magn. Mater. 516 167334Google Scholar

    [35]

    Basha M A, Prajapat C L, Bhatt H, Kumar Y, Gupta M, Kinane C J, Cooper J F K, Langridge S, Basu S, Singh S 2020 J. Magn. Magn. Mater. 516 167331Google Scholar

    [36]

    Mattson J E, Sowers C H, Berger A, Bader S D 1992 Phys Rev Lett. 68 3252Google Scholar

    [37]

    Bellouard C, George B, Marchal G, Maloufi N, Eugène J 1997 J. Magn. Magn. Mater. 165 312Google Scholar

    [38]

    Sun L, Li X Y, Zhao X C, Ban D M, Li G J, Yao Z H, Zhao Z B, Zhai Y, Cui X Y 2021 J Mater Sci: Mater Electron 32 28245Google Scholar

    [39]

    George J M, Pereira L G, Barthélémy A, Petroff F, Steren L, Duvail J L, Fert A, Loloee R, Holody P, Schroeder P A 1994 Phys. Rev. Lett. 72 408Google Scholar

    [40]

    Renard J P, Bruno P, Mégy R, Bartenlian B, Beauvillain P, Chappert C, Dupas C, Kolb E, Mulloy M, Veillet P, Vélu E 1995 Phys. Rev. B 51 12821Google Scholar

    [41]

    Sanyal B, Antoniak C, Burkert T, Krumme B, Warland A, Stromberg F, Praetorius C, Fauth K, Wende H, Eriksson O 2010 Phys. Rev. Lett. 104 156402Google Scholar

    [42]

    Scheunert G, Hendren W R, Ward C, Bowman R M 2012 App. Phys. Lett. 101 142407Google Scholar

    [43]

    Liu Y F, Cai J W, Sun L 2010 Appl. Phys. Lett. 96 092509Google Scholar

    [44]

    Jiao Z, Chen H, Jiang W, Wang J, Zhou Y, Yu S, Hou Y, Ye Q 2015 Mater. Lett. 158 241Google Scholar

    [45]

    Zhao W, Liu C, Huang W, Hou C, Chen Z, Luo Z, Yin Y, Li X 2019 Mater. Lett. 240 124Google Scholar

    [46]

    Peng C, Chen D, Dai D 1993 Solid State Commun. 87 161Google Scholar

    [47]

    Parkin S S P, More N, Roche K P 1990 Phys, Rev. Lett. 64 2304Google Scholar

    [48]

    Parkin S S P, Bhadra R, Roche K P 1991 Phys. Rev. Lett. 66 2152Google Scholar

  • [1] 郑明, 杨健, 张怡笑, 关朋飞, 程奥, 范贺良. Sm3+掺杂0.94Bi0.5Na0.5TiO3-0.06BaTiO3无机多功能陶瓷的储能行为和光致发光性质. 物理学报, 2023, 72(17): 177801. doi: 10.7498/aps.72.20230685
    [2] 郭瑞平, 俞弘毅. 二维半导体莫尔超晶格中随位置与动量变化的层间耦合. 物理学报, 2023, 72(2): 027302. doi: 10.7498/aps.72.20222046
    [3] 包黎红, 陶如玉, 特古斯, 黄颖楷, 冷华倩, Anne de Visser. 单晶CeB6发射性能及磁电阻各向异性研究. 物理学报, 2017, 66(18): 186102. doi: 10.7498/aps.66.186102
    [4] 熊辉辉, 张慧宁. 稀土元素在α-Fe和Fe3C中分配行为的第一性原理研究. 物理学报, 2016, 65(24): 248101. doi: 10.7498/aps.65.248101
    [5] 刘恩华, 陈钊, 温晓莉, 陈长乐. 顺磁性La2/3Sr1/3MnO3层对Bi0.8Ba0.2FeO3薄膜多铁性能的影响. 物理学报, 2016, 65(11): 117701. doi: 10.7498/aps.65.117701
    [6] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 第一性原理研究稀土掺杂ZnO结构的光电性质. 物理学报, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [7] 孟振华, 李俊斌, 郭永权, 王义. 稀土元素的价电子结构和熔点、结合能的关联性. 物理学报, 2012, 61(10): 107101. doi: 10.7498/aps.61.107101
    [8] 王威, 周文政, 韦尚江, 李小娟, 常志刚, 林铁, 商丽燕, 韩奎, 段俊熙, 唐宁, 沈波, 褚君浩. GaN/AlxGa1-xN异质结二维电子气的磁电阻研究. 物理学报, 2012, 61(23): 237302. doi: 10.7498/aps.61.237302
    [9] 江阔. Co掺杂对铁磁金属La0.8Sr0.2MnO3磁电阻影响机理. 物理学报, 2010, 59(4): 2801-2807. doi: 10.7498/aps.59.2801
    [10] 任俊峰, 王玉梅, 原晓波, 胡贵超. 有机自旋阀的磁电阻性质研究. 物理学报, 2010, 59(9): 6580-6584. doi: 10.7498/aps.59.6580
    [11] 秦伟, 张玉滨, 解士杰. 有机Co/Alq3/La1-xSrxMnO3(LSMO)器件磁电阻的温度效应研究. 物理学报, 2010, 59(5): 3494-3498. doi: 10.7498/aps.59.3494
    [12] 许小勇, 钱丽洁, 胡经国. 铁磁多层膜中的力致磁电阻效应. 物理学报, 2009, 58(3): 2023-2029. doi: 10.7498/aps.58.2023
    [13] 俞 莹, 吕树臣, 周百斌, 辛显双. 纳米晶ZrO2:Er3+-Yb3+的制备及其室温上转换发射. 物理学报, 2006, 55(8): 4332-4336. doi: 10.7498/aps.55.4332
    [14] 丁庆磊, 肖思国, 张向华, 夏艳琴, 刘政威. 980 nm激发下Er3+/Yb3+共掺杂ZrO2-Al2O3粉末的上转换发光特性. 物理学报, 2006, 55(10): 5140-5144. doi: 10.7498/aps.55.5140
    [15] 刘贵立, 李荣德. ZA27合金晶界处铁、稀土元素的有序化与交互作用. 物理学报, 2006, 55(2): 776-779. doi: 10.7498/aps.55.776
    [16] 刘贵立. 稀土对镁合金应力腐蚀影响电子理论研究. 物理学报, 2006, 55(12): 6570-6573. doi: 10.7498/aps.55.6570
    [17] 刘贵立, 李荣德. ZA27合金中稀土及铁的晶界偏聚与交互作用. 物理学报, 2004, 53(10): 3482-3486. doi: 10.7498/aps.53.3482
    [18] 倪 经, 蔡建旺, 赵见高, 颜世申, 梅良模, 朱世富. Fe/Si多层膜的层间耦合与界面扩散. 物理学报, 2004, 53(11): 3920-3923. doi: 10.7498/aps.53.3920
    [19] 许北雪, 吴锦雷, 邵庆益, 张兆祥, 刘惟敏, 薛增泉, 吴全德. 稀土镧对薄膜中银纳米粒子的细化作用. 物理学报, 2002, 51(5): 1103-1107. doi: 10.7498/aps.51.1103
    [20] 许北雪, 吴锦雷, 刘惟敏, 杨海, 邵庆益, 刘盛, 薛增泉, 吴全德. 稀土对金属纳米粒子-介质复合薄膜(Ag-BaO)光电发射性能的增强. 物理学报, 2001, 50(5): 977-980. doi: 10.7498/aps.50.977
计量
  • 文章访问数:  2711
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-15
  • 修回日期:  2022-06-28
  • 上网日期:  2022-10-22
  • 刊出日期:  2022-11-05

/

返回文章
返回