搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时空耦合畸变对超快超强激光参数测试及性能评估的影响

龙天洋 李伟 许浩天 王逍

引用本文:
Citation:

时空耦合畸变对超快超强激光参数测试及性能评估的影响

龙天洋, 李伟, 许浩天, 王逍

Influence of spatiotemporal coupling distortion on evaluation of pulse-duration-charactrization and focused intensity of ultra-fast and ultra-intensity laser

Long Tian-Yang, Li Wei, Xu Hao-Tian, Wang Xiao
PDF
HTML
导出引用
  • 在大型超快超强激光系统中, 随着光谱带宽及光束口径的增加, 时空耦合畸变会变得越来越显著, 该效应不仅会使光束质量恶化、影响激光的聚焦功率密度, 而且会使常规的激光远场性能的评估手段失效. 本文以激光器中常用的扩束透镜组为例分析了时空耦合畸变给激光参数测量及激光性能评估带来的影响. 结果表明, 在一个超短脉冲激光系统中, 一对普通的扩束透镜组引入的时空耦合畸变不仅会使远场峰值功率密度急剧下降, 还会导致单次自相关仪在近场处测得的脉宽与远场处的实际脉宽相差超过10倍, 而这种情况下利用近场脉宽测试值估算远场处的聚焦功率密度会比真实值高出一个量级. 研究结果可以为激光器的优化设计、激光脉冲参数的精确表征以及相关的物理实验提供参考.
    In a large-scale ultra-fast and ultra-intensity laser system, with the increase of spectral bandwidth and beam aperture, the spatiotemporal coupling distortion will become more and more significant. This effect will not only degrade the beam quality and reduce the focusing intensity of the laser, but also invalidate the conventional evaluation method for laser far-field parameters. A pair of beam-expanding lenses, which may bring spatiotemporal coupling distortion to an ultrashort laser pulse, is taken as an example. And the influence of spatiotemporal coupling distortion on laser parameter measurement is analyzed in detail. It shows that in an ultrashort pulse laser system, an ordinary beam-expanding lens-pair can reduce the far-field peak intensity dramatically, and the actual pulse duration in the far field is more than 10 times longer than that measured at the near field by a single-shot autocorrelator. In this case, the focusing intensity estimated by using the measured value of near-field pulse width will be one order of magnitude bigger than the real value. It is expected that the results will be helpful in the optimal design of a laser system, the accurate characterization of an ultrafast laser pulse and relevant physical experiments.
      通信作者: 龙天洋, 1770095103@qq.com
    • 基金项目: 国家重点研发计划(批准号: 2018YFA0404804)资助的课题
      Corresponding author: Long Tian-Yang, 1770095103@qq.com
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFA0404804).
    [1]

    Perry M D, Pennington D, Stuart B C, Tietbohl G, Britten J A, Brown C, Herman S, Golick B, Kartz M, Miller J, Powell H T, Vergino M, Yanovsky V 1999 Opt. Lett. 24 160Google Scholar

    [2]

    Gaul E W, Ditmire T, Martinez M D, Douglas S, Gorski D, Hays G R, Henderson W, Erlandson A, Caird J, Ebbers C, Iovanovic I, Molander W 2005 Conference on Lasers and Electro-Optics Baltimore, Maryland United States, May 22–27, 2005 p2026

    [3]

    Danson C N, Brummitt P A, Clarke R J, Collier J L, Fell B, Frackiewicz A J, Hancock S, Hawkes S, Hernandez-Gomez C, Holligan P 2004 Nucl. Fusion 44 p239Google Scholar

    [4]

    彭翰生 2006 中国激光 33 865Google Scholar

    Peng H S 2006 Chin. J. Lasers 33 865Google Scholar

    [5]

    Center for Relativistic Laser Science, Ultrahigh Intensity Lasers https://www.ibs.re.kr/corels/ [2020-1-1]

    [6]

    Bor Z 1989 Opt. Lett. 14 119Google Scholar

    [7]

    胡必龙 2020 硕士学位论文 (绵阳: 中国工程物理研究院) 第13页

    Hu B L 2020 M. S. Thesis (Mianyang: China Academy of Engineering Physics) p13 (in Chinese)

    [8]

    Kempe M, Rudolph W 1993 Opt. Lett. 18 137Google Scholar

    [9]

    俞胜清, 黄晓俊 2011 科技创新导报 2011 216Google Scholar

    Yu S Q, Huang X J 2011 Sci. Technol. Innov. Her. 2011 216Google Scholar

    [10]

    俞胜清, 王峰, 黄晓俊 2010 喀什大学学报 31 44Google Scholar

    Yu S Q, Wang F, Huang X J 2010 J. Kashgar Univ. 31 44Google Scholar

    [11]

    王小怀, 张庆 2005 实验室研究与探索 24 40Google Scholar

    Wang X H, Zhang Q 2005 Res. Explor. Lab. 24 40Google Scholar

    [12]

    王仕璠 2020 信息光学理论与应用(第四版)(北京: 北京邮电大学出版社) 第64页

    Wang S F 2020 Information Optics Theory and Applications (Vol. 4) (Beijing: Beijing University of Posts and Telecommunications Press) p64 (in Chinese)

    [13]

    郝欣, 朱启华, 王逍, 耿远超, 周凯南, 黄征, 王凤蕊 2008 中国激光 35 1553Google Scholar

    Hao X, Zhu Q H, Wang X, Geng Y C, Zhou K N, Huang Z, Wang F R 2008 Chin. J. Lasers 35 1553Google Scholar

    [14]

    Raghuramaiah M, Sharma A K, Naik P A, Gupta P D, Ganeev R A 2001 Sadhana 26 603Google Scholar

    [15]

    Zuo Y L, Zhou K N, Wu Z H, Wang X, Xie N, Su J Q, Zeng X M 2016 Laser Phys. Lett. 13 055302Google Scholar

    [16]

    李伟, 王逍, 母杰, 胡必龙, 曾小明, 左言磊, 吴朝辉, 王晓东, 李钊历, 粟敬钦 2021 物理学报 70 234201Google Scholar

    Li W, Wang X, Mu J, Hu B L, Zeng X M, Zuo Y L, Wu Z H, Wang X D, Li Z L, Su J Q 2021 Acta Phys. Sin. 70 234201Google Scholar

  • 图 1  (a) 光路示意图; (b) 计算示意图

    Fig. 1.  (a) Schematic of the optical path; (b) schematic of calculation.

    图 2  单次自相关测试原理及分析模型示意图

    Fig. 2.  Schematic diagram of the single-shot autocorrelation principle and analytical model.

    图 3  扩束透镜组引入的时空耦合畸变 (a1) 考虑透镜组色差时远场光斑; (a2) 理想情况下的远场光斑; (b1) 考虑透镜组色差时远场环围能量曲线; (b2) 理想情况下远场环围能量曲线; 理想情况下近场(c1)及远场(c2)的光场时空分布; 激光脉冲经过透镜组并依据近场中心点进行色散补偿后的近场(d1)及远场(d2)时空耦合畸变

    Fig. 3.  Spatiotemporal coupling distortion introduced by lens-pair: The far-field distribution with chromatic aberration of the lens-pair (a1) & without chromatic aberration (a2); circled energy graph of the far-field with chromatic aberration of the lens-pair (b1) & without chromatic aberration (b2); the spatio-temporal distribution of the laser pulse in the near-field (c1) and far-field (c2) without chromatic aberration; The spatio-temporal coupling distortion in the near-field (d1) and far-field (d2) in case of the laser pulse passing through the lens-pair with dispersion compensation according to the near-field centroid.

    图 4  考虑色差(蓝色线)和不考虑色差(红色线)时远场脉宽、焦斑面积和远场功率密度随光束口径和带宽的变化 (a1) 远场脉宽随光束口径变化情况; (a2) 焦斑面积随光束口径变化情况; (a3) 远场功率密度随光束口径变化情况; (b1) 远场脉宽随带宽变化情况; (b2) 焦斑面积随带宽变化情况; (b3) 远场功率密度随带宽变化情况

    Fig. 4.  Variation of far-field pulse width, focal spot area and far-field power density with beam aperture and bandwidth (blue line: with chromatic aberration; red line: without chromatic aberration): (a1) The variation of far-field pulse with beam aperture; (a2) the variation of focal spot area with beam aperture; (a3) the variation of far-field power density with beam aperture; (b1) the variation of far-field pulse width with bandwidth; (b2) the variation of focal spot area with bandwidth; (b3) the variation of far-field power density with bandwidth.

    图 5  单次自相关脉宽测试分析对比 (a1) 有色差时基频光信号; (a2) 有色差时单次自相关倍频信号(空-时分布); (a3) 有色差时单次自相关仪信号; (b1) 理想条件下的基频信号; (b2) 理想条件下自相关倍频信号空-时分布; (b3) 理想条件下单次自相关仪信号; (c1) 通过透镜组后远场处(焦平面内)的积分通量时间波形; (c2) 通过理想无像差透镜组时远场处的积分通量时间波形

    Fig. 5.  Analysis and comparison between the results from single-autocorrelation method and the actual far-field pulse shape: Fundamental frequency signal (a1), second harmonic signal (a2) and signal of an auto-correlator (a3) in case of the pulse passing through the lens-pair with chromatic aberration; fundamental frequency signal (b1), second harmonic signal (b2) and signal of an auto-correlator (b-3) in case of ideal condition without chromatic aberration; (c1) actual temporal shape of the pulse at the far field with chromatic aberration of lens-pair; (c2) actual temporal shape of the pulse at the far field without chromatic aberration of lens-pair

    表 1  计算参数

    Table 1.  Parameters for calculation.

    对象项目具体参数
    输入光束口径/m0.12 × 0.12
    中心波长/nm800
    光谱范围/nm± 80
    近场超高斯分布阶数6
    频谱超高斯分布阶数6
    透镜1尺寸/m0.2 × 0.2
    材料K9
    前球面曲率半径
    后球面曲率半径/m1.1789
    中心厚度/m0.03
    透镜2尺寸/m0.4 × 0.4
    材料K9
    前球面曲率半径/m3.5367
    后球面曲率半径
    中心厚度/m0.05
    抛物聚焦镜尺寸/m0.5 × 0.5
    焦距/m1
    下载: 导出CSV
  • [1]

    Perry M D, Pennington D, Stuart B C, Tietbohl G, Britten J A, Brown C, Herman S, Golick B, Kartz M, Miller J, Powell H T, Vergino M, Yanovsky V 1999 Opt. Lett. 24 160Google Scholar

    [2]

    Gaul E W, Ditmire T, Martinez M D, Douglas S, Gorski D, Hays G R, Henderson W, Erlandson A, Caird J, Ebbers C, Iovanovic I, Molander W 2005 Conference on Lasers and Electro-Optics Baltimore, Maryland United States, May 22–27, 2005 p2026

    [3]

    Danson C N, Brummitt P A, Clarke R J, Collier J L, Fell B, Frackiewicz A J, Hancock S, Hawkes S, Hernandez-Gomez C, Holligan P 2004 Nucl. Fusion 44 p239Google Scholar

    [4]

    彭翰生 2006 中国激光 33 865Google Scholar

    Peng H S 2006 Chin. J. Lasers 33 865Google Scholar

    [5]

    Center for Relativistic Laser Science, Ultrahigh Intensity Lasers https://www.ibs.re.kr/corels/ [2020-1-1]

    [6]

    Bor Z 1989 Opt. Lett. 14 119Google Scholar

    [7]

    胡必龙 2020 硕士学位论文 (绵阳: 中国工程物理研究院) 第13页

    Hu B L 2020 M. S. Thesis (Mianyang: China Academy of Engineering Physics) p13 (in Chinese)

    [8]

    Kempe M, Rudolph W 1993 Opt. Lett. 18 137Google Scholar

    [9]

    俞胜清, 黄晓俊 2011 科技创新导报 2011 216Google Scholar

    Yu S Q, Huang X J 2011 Sci. Technol. Innov. Her. 2011 216Google Scholar

    [10]

    俞胜清, 王峰, 黄晓俊 2010 喀什大学学报 31 44Google Scholar

    Yu S Q, Wang F, Huang X J 2010 J. Kashgar Univ. 31 44Google Scholar

    [11]

    王小怀, 张庆 2005 实验室研究与探索 24 40Google Scholar

    Wang X H, Zhang Q 2005 Res. Explor. Lab. 24 40Google Scholar

    [12]

    王仕璠 2020 信息光学理论与应用(第四版)(北京: 北京邮电大学出版社) 第64页

    Wang S F 2020 Information Optics Theory and Applications (Vol. 4) (Beijing: Beijing University of Posts and Telecommunications Press) p64 (in Chinese)

    [13]

    郝欣, 朱启华, 王逍, 耿远超, 周凯南, 黄征, 王凤蕊 2008 中国激光 35 1553Google Scholar

    Hao X, Zhu Q H, Wang X, Geng Y C, Zhou K N, Huang Z, Wang F R 2008 Chin. J. Lasers 35 1553Google Scholar

    [14]

    Raghuramaiah M, Sharma A K, Naik P A, Gupta P D, Ganeev R A 2001 Sadhana 26 603Google Scholar

    [15]

    Zuo Y L, Zhou K N, Wu Z H, Wang X, Xie N, Su J Q, Zeng X M 2016 Laser Phys. Lett. 13 055302Google Scholar

    [16]

    李伟, 王逍, 母杰, 胡必龙, 曾小明, 左言磊, 吴朝辉, 王晓东, 李钊历, 粟敬钦 2021 物理学报 70 234201Google Scholar

    Li W, Wang X, Mu J, Hu B L, Zeng X M, Zuo Y L, Wu Z H, Wang X D, Li Z L, Su J Q 2021 Acta Phys. Sin. 70 234201Google Scholar

  • [1] 李聘滨, 滕浩, 田文龙, 黄振文, 朱江峰, 钟诗阳, 运晨霞, 刘文军, 魏志义. 基于平凹多通腔的非线性脉冲压缩技术. 物理学报, 2024, 73(12): 124206. doi: 10.7498/aps.73.20240110
    [2] 易友建, 丁福财, 朱坪, 张栋俊, 梁潇, 孙美智, 郭爱林, 杨庆伟, 康海涛, 姚修宇, 李兆良, 谢兴龙, 朱健强. 波长编码的单次高时空分辨全光学探针. 物理学报, 2023, 72(22): 220602. doi: 10.7498/aps.72.20230727
    [3] 韦芊屹, 倪洁蕾, 李灵, 张聿全, 袁小聪, 闵长俊. 超高时空分辨显微成像技术研究进展. 物理学报, 2023, 72(17): 178701. doi: 10.7498/aps.72.20230733
    [4] 汪洋, 刘煜, 吴成印. 固体高次谐波产生、调控及应用. 物理学报, 2022, 71(23): 234205. doi: 10.7498/aps.71.20221319
    [5] 李伟, 王逍, 洪义麟, 曾小明, 母杰, 胡必龙, 左言磊, 吴朝辉, 王晓东, 李钊历, 粟敬钦. 基于空谱干涉和频域分割的超快激光时空耦合特性的单次测量方法. 物理学报, 2022, 71(3): 034203. doi: 10.7498/aps.71.20211665
    [6] 盛泉, 王盟, 史朝督, 田浩, 张钧翔, 刘俊杰, 史伟, 姚建铨. 基于锯齿波脉冲抑制自相位调制的高功率窄线宽单频脉冲光纤激光放大器. 物理学报, 2021, 70(21): 214202. doi: 10.7498/aps.70.20210496
    [7] 李伟, 王逍, 母杰, 胡必龙, 曾小明, 左言磊, 吴朝辉, 王晓东, 李钊历, 粟敬钦. 基于空谱干涉扫描法测量超宽带激光时空耦合特性. 物理学报, 2021, 70(23): 234201. doi: 10.7498/aps.70.20210996
    [8] 李伟, 王逍, 洪义麟, 曾小明, 母杰, 胡必龙, 左言磊, 吴朝辉, 王晓东, 李钊历, 粟敬钦. 基于空谱干涉和频域分割的超快激光时空耦合特性的单次测量方法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211665
    [9] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器. 物理学报, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [10] 牛璐, 王鹿霞. 外场对分子纳米结电流-电压特性的影响. 物理学报, 2018, 67(2): 027304. doi: 10.7498/aps.67.20171604
    [11] 杨超, 顾澄琳, 刘洋, 王超, 李江, 李文雪. 双重复频率锁模Yb:YAG陶瓷激光器. 物理学报, 2018, 67(9): 094206. doi: 10.7498/aps.67.20172345
    [12] 夏彦文, 申淼, 孙志红, 彭志涛, 卢宗贵, 周松, 张波, 粟敬钦. 超短激光脉冲波形的单次测量技术. 物理学报, 2017, 66(4): 044204. doi: 10.7498/aps.66.044204
    [13] 张同伟, 杨坤德, 马远良, 汪勇. 一种基于单水听器宽带信号自相关函数的水下目标定位稳健方法. 物理学报, 2015, 64(2): 024303. doi: 10.7498/aps.64.024303
    [14] 王胭脂, 邵建达, 易葵, 齐红基, 王玎, 冷雨欣. 宽带啁啾镜对的设计和制备. 物理学报, 2013, 62(20): 204207. doi: 10.7498/aps.62.204207
    [15] 刘华刚, 黄见洪, 翁文, 李锦辉, 郑晖, 戴殊韬, 赵显, 王继扬, 林文雄. 高功率全正色散锁模掺Yb3+双包层光纤飞秒激光器. 物理学报, 2012, 61(15): 154210. doi: 10.7498/aps.61.154210
    [16] 牛海亮, 章岳光, 沈伟东, 余鹏, 李旸晖, 刘旭. 飞秒激光器中超宽带色散补偿啁啾镜对的设计. 物理学报, 2012, 61(1): 014211. doi: 10.7498/aps.61.014211
    [17] 邓玉强, 孙青, 于靖. 光学元件群延迟的直接测量. 物理学报, 2011, 60(2): 028102. doi: 10.7498/aps.60.028102
    [18] 高瑞鑫, 徐振, 陈达鑫, 徐初东, 陈志峰, 刘晓东, 周仕明, 赖天树. GdFeCo磁光薄膜中RE-TM反铁磁耦合与激光感应超快磁化翻转动力学研究. 物理学报, 2009, 58(1): 580-584. doi: 10.7498/aps.58.580
    [19] 范 燕, 夏光琼, 吴正茂. 光注入下外光反馈半导体激光器输出自相关特性研究. 物理学报, 2008, 57(12): 7663-7667. doi: 10.7498/aps.57.7663
    [20] 张肇源, 曲林杰, 刘承惠, 霍崇儒. 超短光脉冲的单延迟三次相关测试. 物理学报, 1982, 31(2): 213-219. doi: 10.7498/aps.31.213
计量
  • 文章访问数:  4253
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-28
  • 修回日期:  2022-04-21
  • 上网日期:  2022-08-25
  • 刊出日期:  2022-09-05

/

返回文章
返回