搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

横向矩形微槽抑制高超声速第二模态扰动波的参数化研究

刘勇 涂国华 向星皓 李晓虎 郭启龙 万兵兵

引用本文:
Citation:

横向矩形微槽抑制高超声速第二模态扰动波的参数化研究

刘勇, 涂国华, 向星皓, 李晓虎, 郭启龙, 万兵兵

Parametrization of suppressing hypersonic second-mode waves by transverse rectangular microgrooves

Liu Yong, Tu Guo-Hua, Xiang Xing-Hao, Li Xiao-Hu, Guo Qi-Long, Wan Bing-Bing
PDF
HTML
导出引用
  • 针对高超声速飞行器边界层转捩控制问题, 以马赫数6平板边界层的第二模态扰动波为研究对象, 采用线性稳定性理论(LST)和直接数值模拟(DNS)分别开展了离散模态的同步模式研究和大尺寸(0.4 mm宽)横向矩形微槽开槽位置对第二模态扰动波的控制作用研究. LST分析表明: 涡/熵波会导致Mack第二模态和“mode I”模态(通常来源于快声波)的分支类型发生改变. 通过DNS发现, 开槽表面对基本流的影响程度与边界层流向位置(或厚度)相关, 随着开槽位置后移(边界层厚度增加), 开槽表面对基本流动的影响程度减弱, 摩擦阻力系数和压差阻力系数也逐渐减小. DNS结果还表明, 位于快/慢模态同步区间之前的开槽工况对第二模态扰动波依然有抑制效果, 这与文献中关于小尺寸(微米量级)微孔隙位置对第二模态控制作用的结论不同, 同时发现, 当矩形微槽布置在最大增长率区间范围内或快/慢模态同步区间位置时, 对第二模态扰动的抑制效果最佳.
    Aiming at delaying boundary-layer transition of hypersonic vehicles, the second-mode wave in the boundary layer of a Mach 6 flat plate is studied. Linear stability theory (LST) and direct numerical simulations (DNS) are used to investigate the discrete modes and the relation between the suppressing effect of second-mode wave and the location of transverse rectangular micro-groove (0.4 mm in width), respectively. The LST results show that vortex/entropy waves cause the branch types of Mack’s second mode and “mode I” modes (usually derived from fast acoustic waves) to change. The DNS results show that the influence of the grooved surface on the base flow depends on the streamwise location (or boundary-layer thickness). As the grooved surface shifts backward (or thickness increases), the influence of intensity on the base flow decreases, and the friction resistance coefficient $ C{d_{\text{f}}} $, differential pressure resistance coefficient $ C{d_{\text{p}}} $ and total resistance coefficient $ C{d_x} $ of the grooved surface also decrease. It is found that the grooves located in front of the synchronization region of the fast mode and slow mode still have an inhibitory effect on the second-mode wave, which is different from the effect of small-sized (micrometer scale) micro-pores reported in the literature. It is also found that the suppression effect on the second-mode wave is best when the grooves are arranged in the vicinity of the maximum growth-rate point or at the location of the synchronization interval of the fast mode and slow mode.
      通信作者: 涂国华, ghtu@skla.cardc.cn
    • 基金项目: 国家自然科学基金(批准号: 92052301)资助的课题.
      Corresponding author: Tu Guo-Hua, ghtu@skla.cardc.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 92052301).
    [1]

    Richie G 1999 AIAA 4435

    [2]

    Bertin J J, Cummings R M 2006 Annu. Rev. Fluid Mech 38 129Google Scholar

    [3]

    Whitehead A 1989 AIAA 5013

    [4]

    Morkovin M V 1994 Bull. Am. Phys. Soc 39 1882

    [5]

    Fedorov A 2011 Annu. Rev. Fluid Mech 43 79Google Scholar

    [6]

    Malmuth N, Fedorov A, Shalaev V, Cole J, Khokhlov A, Hites M, Williams D 1998 Theoretical Fluid Mechanics Meeting Albuquerque, NM, USA, June 15–18, 1998 p2695

    [7]

    Fedorov A V, Malmuth N D, Rasheed A, Hornung H G 2001 AIAA J 39 605Google Scholar

    [8]

    Rasheed A, Hornung H G, Fedorov A V, Malmuth N D 2002 AIAA J 40 481Google Scholar

    [9]

    Chokani N, Bountin D A, Shiplyuk A N, Maslov A A 2005 AIAA J 43 149Google Scholar

    [10]

    Egorov I V, Fedorov A V, Soudakov V G 2008 J. Fluid Mech 601 165Google Scholar

    [11]

    Egorov I V, Fedorov A V, Novikov A V, Soudakov V G 2007 AIAA 948

    [12]

    Dong M, Li C 2021 AIAA J 59 2368Google Scholar

    [13]

    Long T H, Dong Y, Zhao R, Wen Z Y 2021 Phys. Fluids 33 054105Google Scholar

    [14]

    Brès G A, Colonius T, Fedorov A V 2010 AIAA J 48 267Google Scholar

    [15]

    Zhao R, Liu T, Wen C Y, Zhu J, Chen L 2018 AIAA J 56 2942Google Scholar

    [16]

    涂国华, 陈坚强, 袁先旭, 杨强, 张毅锋 2018 空气动力学报 36 273

    Tu G H, Chen J Q, Yuan X X, Yang Q, Zhang Y F 2018 Acta Aerodyn. Sin. 36 273 (in Chinese)

    [17]

    郭启龙, 涂国华, 陈坚强, 袁先旭, 万兵兵 2020 航空动力学报 35 135

    Guo Q L, Tu G H, Chen J Q, Yuan X X, Wan B B 2020 J. Aerosp. Power 35 135 (in Chinese)

    [18]

    Guo Q L, Li C, Tu G H, Chen J J, Wan B B, Liu Y 2021 Asia Conference on Mechanical and Aerospace Engineering, Athens, Greece, July 14–17, 2020 p012053

    [19]

    Wang X W, Zhong X L 2008 AIAA 4382

    [20]

    Wang X W, Zhong X L 2012 Phys. Fluids 24 1441

    [21]

    Lukashevich S V, Morozov S O, Shiplyuk A N 2016 J. Appl. Mech. Tech. Phys 57 873Google Scholar

    [22]

    Zhao R, Wen C Y, Long T H, Tian X D, Zhou L, Wu Y 2019 AIAA J 57 5061Google Scholar

    [23]

    孔维萱, 闫超, 赵瑞 2013 航空学报 34 2249

    Kong W X, Yan C, Zhao R 2013 Acta Aeronaut. Astronaut. Sin. 34 2249 (in Chinese)

    [24]

    Brès G A, Inkman M, Colonius T, Fedorov A V 2013 J. Fluid Mech 726 312Google Scholar

    [25]

    Zhao R, Liu T, Wen C Y, Zhu J, Chen L 2019 Phys. Rev. Appl 11 044015Google Scholar

    [26]

    Zhao R, Dong Y, Zhang X X, Wen Z Y, Long T H, Wu Y 2021 AIAA J 59 1893Google Scholar

    [27]

    Ma Y B, Zhong X L 2003 J. Fluid Mech 488 31Google Scholar

    [28]

    Tumin A, Wang X W, Zhong X L 2011 AIAA J 49 463Google Scholar

    [29]

    Liu Y, Guo Q L, Tu G H, Yang Q, Yuan X X, Wan B B 2021 International Conference on Mechanical Engineering and Automation Science, Seoul, South Korea, October 28–30, 2021 p132

    [30]

    Zhang H X, Zhang L P, Zhang S H, Li Q 2017 Comput. Fluids 154 371Google Scholar

    [31]

    Sandham N D, Lüdeke H 2009 AIAA 1288

    [32]

    Tullio N D, Sandham N D 2010 Phys. Fluids 22 094105Google Scholar

    [33]

    Zhao R, Wen C Y, Tian X D, Yuan W 2018 Int. J. Heat Mass Transfer 121 986Google Scholar

    [34]

    Wartemann V, Lüdeke H, Sandham N 2009 AIAA 7202

    [35]

    Fedorov A V, Tumin A 2010 AIAA 5003

    [36]

    Liu Z Y, Yu M 2017 AIAA 2247

    [37]

    Deng X G, Mao M L, Tu G H, Zhang H X, Zhang Y F 2012 Commun. Comput. Phys 11 1081Google Scholar

  • 图 1  增长率$ - {\alpha _{\text{i}}}$随频率${\omega _{\text{r}}}$的变化

    Fig. 1.  Growth rate $ - {\alpha _{\text{i}}}$ versus frequency ${\omega _{\text{r}}}$.

    图 2  马赫数6平板边界层离散模态的流向演化; (a) $ x = 50 $mm, (b) $ x = 200 $mm, (c) $ x = 1000 $mm

    Fig. 2.  Streamwise evolution of discrete modes of the Ma6 flat plate boundary layer: (a) $ x = 50 $mm, (b) $ x = 200 $mm, (c) $ x = $$ 1000 $mm.

    图 3  不同流向位置的离散谱和连续谱分 (a) $ x = 50 $mm; (b) $ x = 200 $mm; (c) $ x = 1000 $mm

    Fig. 3.  Discrete and continuum spectrum at different streamwise locations: (a) $ x = 50 $mm; (b) $ x = 200 $mm; (c) $ x = 1000 $mm.

    图 4  Mack模态的线性稳定性分析 (a) 中性曲线; (b) N值曲线

    Fig. 4.  Linear stability analysis of Mack modes: (a) Neutral curves; (b) N-value curves.

    图 5  扰动型函数 (a) 流向速度实部和虚部; (b) 温度实部和虚部

    Fig. 5.  Perturbation shape function: (a) Streamwise velocity real and imaginary parts; (b) temperature real and imaginary parts.

    图 6  400 kHz的Mack模态沿流向发展情况 (a) 增长率$ - {\alpha _{\text{i}}}$; (b) 相速度$c$

    Fig. 6.  Development of the 400 kHz Mack mode perturbation along the flow direction: (a) Growth rate $ - {\alpha _{\text{i}}}$; (b) phase velocity $c$.

    图 7  开槽位置

    Fig. 7.  Grooving locations.

    图 8  流向140 mm处基本流剖面 (a) 无量纲流向速度; (b) 无量纲温度

    Fig. 8.  Basic flow profile at the 140 mm streamwise location: (a) Dimensionless streamwise velocity; (b) dimensionless temperature.

    图 9  施加第二模态扰动后的瞬态压力云图 (a) 标准网格; (b) 加密网格

    Fig. 9.  Transient pressure contours after imposing the second-mode perturbation: (a) Standard grid; (b) fine grids.

    图 10  标准网格和加密网格上400 kHz第二模态扰动幅值沿流向演化.

    Fig. 10.  Evolution of the 400 kHz second-mode amplitude in the standard grid and the fine grid.

    图 11  基本流压力云图

    Fig. 11.  Pressure contours of the base flow.

    图 12  A1—A5工况基本流修正压力剖面分布 (a) 首槽中心线; (b) 尾槽中心线

    Fig. 12.  Pressure correction of the A1–A5 basic flow: (a) First groove centerline; (b) tail groove centerline.

    图 13  阻力系数($C{d_x}, C{d_{\text{f}}}, C{d_{\text{p}}}$)随开槽位置$ {x_{\text{l}}} $的变化

    Fig. 13.  Drag coefficients ($C{d_x}, C{d_{\text{f}}}, C{d_{\text{p}}}$) versus grooving locations $ {x_{\text{l}}} $.

    图 14  脉动压力云图 (a)—(f) A0—A5工况

    Fig. 14.  Pulsating pressure: (a)–(f) A0–A5 cases in turn.

    图 15  壁面脉动压力沿流向分布 (a)—(e) A1—A5工况壁面脉动压力

    Fig. 15.  Distributions of the wall pressure fluctuation: (a)–(e) The A1–A5 cases.

    图 16  400 kHz第二模态沿流向的发展 (a) A0—A5工况流向[100, 300] mm扰动幅值; (b) A0, A4, A5工况在加长区[300, 400] mm扰动幅值

    Fig. 16.  Development of the 400 kHz second mode along the streamwise direction: (a) A0–A5 cases flow direction[100, 300] mm disturbance amplitude; (b) A0, A4, and A5 cases in the extended area of [300, 400] mm.

    图 17  透射系数T 随开槽起始位置${x_{\text{l}}}$的变化

    Fig. 17.  Variation of transmission coefficient with grooving location.

    表 1  来流参数设置

    Table 1.  Free stream parameter setting.

    马赫数Ma单位
    雷诺数 Re/m
    壁温 Tw/K来流
    密度
    ρ/(kg·m3)
    来流
    温度 Te/K
    普朗
    特数 Pr
    比热比 γ
    6.0$1 \times {10^7}$$300{\text{ }}$$0.0184{\text{ }}$216.650.721.4
    下载: 导出CSV

    表 2  开槽位置参数

    Table 2.  Grooving location parameters.

    Cases开槽起始位置${x_{\text{l}}}/{L_0}$开槽区间
    A0
    A1120(120, 136)
    A2170(170, 186)
    A3200(200, 216)
    A4245(245, 261)
    A5270(270, 286)
    下载: 导出CSV
  • [1]

    Richie G 1999 AIAA 4435

    [2]

    Bertin J J, Cummings R M 2006 Annu. Rev. Fluid Mech 38 129Google Scholar

    [3]

    Whitehead A 1989 AIAA 5013

    [4]

    Morkovin M V 1994 Bull. Am. Phys. Soc 39 1882

    [5]

    Fedorov A 2011 Annu. Rev. Fluid Mech 43 79Google Scholar

    [6]

    Malmuth N, Fedorov A, Shalaev V, Cole J, Khokhlov A, Hites M, Williams D 1998 Theoretical Fluid Mechanics Meeting Albuquerque, NM, USA, June 15–18, 1998 p2695

    [7]

    Fedorov A V, Malmuth N D, Rasheed A, Hornung H G 2001 AIAA J 39 605Google Scholar

    [8]

    Rasheed A, Hornung H G, Fedorov A V, Malmuth N D 2002 AIAA J 40 481Google Scholar

    [9]

    Chokani N, Bountin D A, Shiplyuk A N, Maslov A A 2005 AIAA J 43 149Google Scholar

    [10]

    Egorov I V, Fedorov A V, Soudakov V G 2008 J. Fluid Mech 601 165Google Scholar

    [11]

    Egorov I V, Fedorov A V, Novikov A V, Soudakov V G 2007 AIAA 948

    [12]

    Dong M, Li C 2021 AIAA J 59 2368Google Scholar

    [13]

    Long T H, Dong Y, Zhao R, Wen Z Y 2021 Phys. Fluids 33 054105Google Scholar

    [14]

    Brès G A, Colonius T, Fedorov A V 2010 AIAA J 48 267Google Scholar

    [15]

    Zhao R, Liu T, Wen C Y, Zhu J, Chen L 2018 AIAA J 56 2942Google Scholar

    [16]

    涂国华, 陈坚强, 袁先旭, 杨强, 张毅锋 2018 空气动力学报 36 273

    Tu G H, Chen J Q, Yuan X X, Yang Q, Zhang Y F 2018 Acta Aerodyn. Sin. 36 273 (in Chinese)

    [17]

    郭启龙, 涂国华, 陈坚强, 袁先旭, 万兵兵 2020 航空动力学报 35 135

    Guo Q L, Tu G H, Chen J Q, Yuan X X, Wan B B 2020 J. Aerosp. Power 35 135 (in Chinese)

    [18]

    Guo Q L, Li C, Tu G H, Chen J J, Wan B B, Liu Y 2021 Asia Conference on Mechanical and Aerospace Engineering, Athens, Greece, July 14–17, 2020 p012053

    [19]

    Wang X W, Zhong X L 2008 AIAA 4382

    [20]

    Wang X W, Zhong X L 2012 Phys. Fluids 24 1441

    [21]

    Lukashevich S V, Morozov S O, Shiplyuk A N 2016 J. Appl. Mech. Tech. Phys 57 873Google Scholar

    [22]

    Zhao R, Wen C Y, Long T H, Tian X D, Zhou L, Wu Y 2019 AIAA J 57 5061Google Scholar

    [23]

    孔维萱, 闫超, 赵瑞 2013 航空学报 34 2249

    Kong W X, Yan C, Zhao R 2013 Acta Aeronaut. Astronaut. Sin. 34 2249 (in Chinese)

    [24]

    Brès G A, Inkman M, Colonius T, Fedorov A V 2013 J. Fluid Mech 726 312Google Scholar

    [25]

    Zhao R, Liu T, Wen C Y, Zhu J, Chen L 2019 Phys. Rev. Appl 11 044015Google Scholar

    [26]

    Zhao R, Dong Y, Zhang X X, Wen Z Y, Long T H, Wu Y 2021 AIAA J 59 1893Google Scholar

    [27]

    Ma Y B, Zhong X L 2003 J. Fluid Mech 488 31Google Scholar

    [28]

    Tumin A, Wang X W, Zhong X L 2011 AIAA J 49 463Google Scholar

    [29]

    Liu Y, Guo Q L, Tu G H, Yang Q, Yuan X X, Wan B B 2021 International Conference on Mechanical Engineering and Automation Science, Seoul, South Korea, October 28–30, 2021 p132

    [30]

    Zhang H X, Zhang L P, Zhang S H, Li Q 2017 Comput. Fluids 154 371Google Scholar

    [31]

    Sandham N D, Lüdeke H 2009 AIAA 1288

    [32]

    Tullio N D, Sandham N D 2010 Phys. Fluids 22 094105Google Scholar

    [33]

    Zhao R, Wen C Y, Tian X D, Yuan W 2018 Int. J. Heat Mass Transfer 121 986Google Scholar

    [34]

    Wartemann V, Lüdeke H, Sandham N 2009 AIAA 7202

    [35]

    Fedorov A V, Tumin A 2010 AIAA 5003

    [36]

    Liu Z Y, Yu M 2017 AIAA 2247

    [37]

    Deng X G, Mao M L, Tu G H, Zhang H X, Zhang Y F 2012 Commun. Comput. Phys 11 1081Google Scholar

  • [1] 胡玉发, 易仕和, 刘小林, 徐席旺, 张震, 张臻. 壁面渗透气膜工质对圆锥高超声速边界层稳定性的影响. 物理学报, 2024, 73(12): 124701. doi: 10.7498/aps.73.20240369
    [2] 张震, 易仕和, 刘小林, 陈世康, 张臻. 高超声速条件下凸曲率壁面混合层的流动演化. 物理学报, 2024, 73(10): 104701. doi: 10.7498/aps.73.20240128
    [3] 罗仕超, 吴里银, 常雨. 高超声速湍流流动磁流体动力学控制机理. 物理学报, 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [4] 何新, 江涛, 张振福, 杨俊波. 束缚态特征温度方法及应用. 物理学报, 2022, 71(8): 085201. doi: 10.7498/aps.71.20212115
    [5] 马平, 韩一平, 张宁, 田得阳, 石安华, 宋强. 高超声速类HTV2模型全目标电磁散射特性实验研究. 物理学报, 2022, 71(8): 084101. doi: 10.7498/aps.71.20211901
    [6] 黄亚冬, 王智河, 周本谋. 圆柱绕流尾迹转捩电磁力控制研究. 物理学报, 2022, 71(22): 224702. doi: 10.7498/aps.71.20221357
    [7] 牛海波, 易仕和, 刘小林, 霍俊杰, 冈敦殿. 高超声速三角翼上横流不稳定性的实验研究. 物理学报, 2021, 70(13): 134701. doi: 10.7498/aps.70.20201777
    [8] 郑文鹏, 易仕和, 牛海波, 霍俊杰. 高超声速4∶1椭圆锥横流不稳定性实验研究. 物理学报, 2021, 70(24): 244702. doi: 10.7498/aps.70.20210807
    [9] 丁明松, 傅杨奥骁, 高铁锁, 董维中, 江涛, 刘庆宗. 高超声速磁流体力学控制霍尔效应影响. 物理学报, 2020, 69(21): 214703. doi: 10.7498/aps.69.20200630
    [10] 胡立军, 袁海专, 杜玉龙. 一种改进的HLLEM格式及其激波稳定性分析. 物理学报, 2020, 69(13): 134701. doi: 10.7498/aps.69.20191851
    [11] 丁明松, 江涛, 董维中, 高铁锁, 刘庆宗, 傅杨奥骁. 热化学模型对高超声速磁流体控制数值模拟影响分析. 物理学报, 2019, 68(17): 174702. doi: 10.7498/aps.68.20190378
    [12] 刘小林, 易仕和, 牛海波, 陆小革, 赵鑫海. 高超声速条件下7°直圆锥边界层转捩实验研究. 物理学报, 2018, 67(17): 174701. doi: 10.7498/aps.67.20180531
    [13] 刘小林, 易仕和, 牛海波, 陆小革. 激光聚焦扰动作用下高超声速边界层稳定性实验研究. 物理学报, 2018, 67(21): 214701. doi: 10.7498/aps.67.20181192
    [14] 刘强, 罗振兵, 邓雄, 杨升科, 蒋浩. 合成冷/热射流控制超声速边界层流动稳定性. 物理学报, 2017, 66(23): 234701. doi: 10.7498/aps.66.234701
    [15] 谢文佳, 李桦, 潘沙, 田正雨. 一类新型激波捕捉格式的耗散性与稳定性分析. 物理学报, 2015, 64(2): 024702. doi: 10.7498/aps.64.024702
    [16] 付佳, 易仕和, 王小虎, 张庆虎, 何霖. 高超声速平板边界层流动显示的试验研究. 物理学报, 2015, 64(1): 014704. doi: 10.7498/aps.64.014704
    [17] 王小虎, 易仕和, 付佳, 陆小革, 何霖. 二维高超声速后台阶表面传热特性实验研究. 物理学报, 2015, 64(5): 054706. doi: 10.7498/aps.64.054706
    [18] 刘梅, 王松岭, 吴正人. 非平整基底上受热液膜流动稳定性研究. 物理学报, 2014, 63(15): 154702. doi: 10.7498/aps.63.154702
    [19] 陆海波, 刘伟强. 迎风凹腔与逆向喷流组合热防护系统冷却效果研究. 物理学报, 2012, 61(6): 064703. doi: 10.7498/aps.61.064703
    [20] 聂涛, 刘伟强. 高超声速飞行器前缘流固耦合计算方法研究. 物理学报, 2012, 61(18): 184401. doi: 10.7498/aps.61.184401
计量
  • 文章访问数:  3644
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-29
  • 修回日期:  2022-06-12
  • 上网日期:  2022-09-27
  • 刊出日期:  2022-10-05

/

返回文章
返回