搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钒基笼目超导体

奉熙林 蒋坤 胡江平

引用本文:
Citation:

钒基笼目超导体

奉熙林, 蒋坤, 胡江平

Kagome superconductors

Feng Xi-Lin, Jiang Kun, Hu Jiang-Ping
PDF
HTML
导出引用
  • 钒基笼目超导体的发现为研究拓扑物态、超导以及几何阻挫等物理特性提供了全新平台. 自发现钒基笼目超导体以来, 国内很多研究组对其超导、电荷密度波、配对密度波、电子向列相以及时间反演对称性破缺多方面特性进行了研究, 并取得了重要进展, 引发了极大的关注. 这些新进展展示了钒基笼目超导体有极其丰富的基本物理机制. 本文简略讨论国内研究组取得的进展及其对理解钒基笼目超导体性质的意义, 并介绍目前领域内值得关注的重要问题.
    The newly discovered Kagome superconductors $ A{\mathrm{V}}_{3}{\mathrm{S}\mathrm{b}}_{5}(A=\mathrm{K},\mathrm{R}\mathrm{b},\mathrm{C}\mathrm{s}) $ provide a platform to investigate the interplay of the topological property, superconductivity and geometrical frustration. Since their discovery, many research groups, especially many groups in China, have made tremendous progress in this field, including time-reversal-symmetry-breaking (TRSB), charge density wave (CDW), electronic nematicity, superconductivity properties and pair density wave (PDW). In this paper, we introduce the $ A{\mathrm{V}}_{3}{\mathrm{S}\mathrm{b}}_{5} $properties, discuss the recent research progress and highlight the future focus of this Kagome superconductor.The paper is organized as follows. We start from the exotic normal states of $ A{\mathrm{V}}_{3}{\mathrm{S}\mathrm{b}}_{5} $, where a CDW emerges at the temperature around 70–100 K depending on $ A $. This CDW enlarges the unit cell size to 2×2 with additional c-direction modulation as observed by scanning tunneling microscope (STM) and X-ray scattering experiments. Interestingly, this CDW behaves differently under opposite magnetic fields. Namely, this CDW may break the time reversal symmetry. To confirm this property, the zero field muon spin relaxation (ZFμSR) experiment is performed with increasing relaxation rates after the CDW transition. Additionally, the intrinsic anomalous Hall effect is also observed, which may relate to this time reversal symmetry breaking (TRSB). Since there are no long-range magnetic orders observed in the elastic neutron scattering experiment and μSR, the TRSB is not related to the electron spin degree of freedom. To explain the TRSB, the chiral flux phase (CFP) with orbital magnetism is theoretically proposed. Moreover, the electronic nematicity is also observed at about 30–50 K below the CDW transition temperature. This phase breaks the $ {C}_{6} $ rotation symmetry of the Kagome lattice as confirmed by STM and nuclear magnetic resonance (NMR). What is the microscopic origin of this nematicity is still under investigation.Then, we move to the superconducting properties of $ A{\mathrm{V}}_{3}{\mathrm{S}\mathrm{b}}_{5} $. Combining the inversion symmetry property found in optical measurement and decreasing of the spin susceptibility found in NMR, the $ A{\mathrm{V}}_{3}{\mathrm{S}\mathrm{b}}_{5} $ superconductor is proven to be a spin-singlet superconductor. Experiments in NMR, angle-resolved photoemission, superfluid density and specific heat further confirm the superconductivity in Kagome superconductors is a conventional s-wave superconductor. Although this superconductor is conventional, $ A{\mathrm{V}}_{3}{\mathrm{S}\mathrm{b}}_{5} $ also contains the unconventional property. Importantly, a PDW is observed in $ \mathrm{C}\mathrm{s}{\mathrm{V}}_{3}{\mathrm{S}\mathrm{b}}_{5} $ by high-resolution STM. What is the PDW origin or microscopic mechanism is still an open question. These new progress reveal the intriguing physical properties behind the Kagome superconductors and also bring many unsolved questions, which calls for further investigations.
      通信作者: 胡江平, jphu@iphy.ac.cn
      Corresponding author: Hu Jiang-Ping, jphu@iphy.ac.cn
    [1]

    Onsager L 1944 Phys. Rev. 65 117Google Scholar

    [2]

    Syozi I 1951 Prog. Theor. Phys. 6 306Google Scholar

    [3]

    Ortiz B R, Gomes L C, Morey J R, et al. 2019 Phys. Rev. Mater. 3 094407Google Scholar

    [4]

    Ortiz B R, Teicher S M L, Hu Y, et al. 2020 Phys. Rev. Lett. 125 247002Google Scholar

    [5]

    Jiang Y X, Yin J X, Denner M M, et al. 2021 Nat. Mater. 20 1353Google Scholar

    [6]

    Yu L, Wang C, Zhang Y, et al. arXiv: 2107.10714

    [7]

    Mielke III C, Das D, Yin J X, et al. 2022 Nature 602 245Google Scholar

    [8]

    Guguchia Z, Mielke III C, Das D, et al. arXiv: 2202.07713

    [9]

    Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J, Chen X H 2021 Phys. Rev. B 104 L041103Google Scholar

    [10]

    Feng X, Jiang K, Wang Z, Hu J 2021 Sci. Bull. 66 1384Google Scholar

    [11]

    Feng X, Zhang Y, Jiang K, Hu J 2021 Phys. Rev. B 104 165136Google Scholar

    [12]

    Nie L, Sun K, Ma W, et al. 2022 Nature 604 59Google Scholar

    [13]

    Mu C, Yin Q, Tu Z, Gong C, Lei H, Li Z, Luo J 2021 Chin. Phys. Lett. 38 077402Google Scholar

    [14]

    Duan W, Nie Z, Luo S, et al. 2021 Sci. China Phys. Mech. Astron. 64 107462Google Scholar

    [15]

    Luo H, Gao Q, Liu H, et al. 2022 Nat Commun 13 273Google Scholar

    [16]

    Chen H, Yang H, Hu B, et al. 2021 Nature 599 222Google Scholar

    [17]

    Hamidian M H, Edkins S D, Joo S H, Kostin A, Eisaki H, Uchida S, Lawler M J, Kim E A, Mackenzie A P, Fujita K, Lee J, Davis J C S 2016 Nature 532 343Google Scholar

    [18]

    Edkins S D, Kostin A, Fujita K, Mackenzie A P, Eisaki H, Uchida S, Sachdev S, Lawler M J, Kim E A, Davis J C S, Hamidian M H 2019 Science 364 976Google Scholar

  • 图 1  (a) 笼目结构示意图; (b) CsV3Sb5元胞结构示意图[4]; (c) 仅考虑最近邻原子间电子跃迁时, 笼目晶格的电子能谱; (d) 常压下笼目超导体随温度变化的相图

    Fig. 1.  (a) Schematic diagram of the Kagome lattice structure; (b) schematic diagram of the primitive unit cell structure of CsV3Sb5[4]; (c) the electronic energy spectrum of the Kagome lattice when electrons hop between the nearest neighbor atoms; (d) the Kagome superconductor’s phase diagram as a function of temperature under ambient pressure.

    图 2  (a) CsV3Sb5比热随温度的变化[4], 其中ZFC代表零场条件, FC代表有场条件; (b) STM下KV3Sb5的电荷密度分布图, 内嵌图为其傅里叶变换的结果表现出2×2有序的特性[5]

    Fig. 2.  (a) The specific heat of CsV3Sb5 varies with temperature[4], ZFC means zero field case, and FC means finite field case; (b) the charge density distribution of KV3Sb5 observed by STM, the inset image is the result of Fourier transform which shows the characteristic of 2×2 order[5].

    图 3  μSR测量和光学SHG结果[6]

    Fig. 3.  μSR measurement and optical SHG results[6].

    图 4  (a) CFP实空间示意图[10,11]; (b) CFP的局域轨道磁矩分布及电荷分布[10]

    Fig. 4.  (a) Schematic diagram of CFP in real space[10,11]; (b) local orbital magnetic moment distribution and charge distribution of CFP[10].

    图 5  由核磁共振结果分析得出的笼目超导体各相的相变示意图, 浅蓝色代表电子结构[12]

    Fig. 5.  Schematic diagram of phase transition of each phase of Kagome superconductor obtained from the analysis of NMR results. Light blue represents the electronic structure[12]

    图 6  (a) CsV3Sb5材料在各方向的奈特位移随温度的变化; (b) 超导转变温度附近自旋晶格弛豫率的Hebel-Slicheter共振峰[13]

    Fig. 6.  (a) The Knight shift of CsV3Sb5 material in all directions as a function of temperature; (b) Hebel-Slicheter resonance peak of the spin lattice relaxation rate near the superconducting transition temperature[13].

    图 7  (a) BCS超导电子配对示意图(左)与FFLO态配对示意图(右); (b) CsV3Sb5的零场STM结果快速傅里叶变换图, 绿色圈中的峰对应于2×2的CDW相, 粉色圈中的峰对应于PDW相[16]

    Fig. 7.  (a) Cooper pair for BCS superconductor (left) and for FFLO state (right); (b) Fourier transform of the STM diagram of CsV3Sb5 under zero field, the green cycle shows the 2×2 CDW phase, the pink cycle shows the PDW phase[16].

  • [1]

    Onsager L 1944 Phys. Rev. 65 117Google Scholar

    [2]

    Syozi I 1951 Prog. Theor. Phys. 6 306Google Scholar

    [3]

    Ortiz B R, Gomes L C, Morey J R, et al. 2019 Phys. Rev. Mater. 3 094407Google Scholar

    [4]

    Ortiz B R, Teicher S M L, Hu Y, et al. 2020 Phys. Rev. Lett. 125 247002Google Scholar

    [5]

    Jiang Y X, Yin J X, Denner M M, et al. 2021 Nat. Mater. 20 1353Google Scholar

    [6]

    Yu L, Wang C, Zhang Y, et al. arXiv: 2107.10714

    [7]

    Mielke III C, Das D, Yin J X, et al. 2022 Nature 602 245Google Scholar

    [8]

    Guguchia Z, Mielke III C, Das D, et al. arXiv: 2202.07713

    [9]

    Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J, Chen X H 2021 Phys. Rev. B 104 L041103Google Scholar

    [10]

    Feng X, Jiang K, Wang Z, Hu J 2021 Sci. Bull. 66 1384Google Scholar

    [11]

    Feng X, Zhang Y, Jiang K, Hu J 2021 Phys. Rev. B 104 165136Google Scholar

    [12]

    Nie L, Sun K, Ma W, et al. 2022 Nature 604 59Google Scholar

    [13]

    Mu C, Yin Q, Tu Z, Gong C, Lei H, Li Z, Luo J 2021 Chin. Phys. Lett. 38 077402Google Scholar

    [14]

    Duan W, Nie Z, Luo S, et al. 2021 Sci. China Phys. Mech. Astron. 64 107462Google Scholar

    [15]

    Luo H, Gao Q, Liu H, et al. 2022 Nat Commun 13 273Google Scholar

    [16]

    Chen H, Yang H, Hu B, et al. 2021 Nature 599 222Google Scholar

    [17]

    Hamidian M H, Edkins S D, Joo S H, Kostin A, Eisaki H, Uchida S, Lawler M J, Kim E A, Mackenzie A P, Fujita K, Lee J, Davis J C S 2016 Nature 532 343Google Scholar

    [18]

    Edkins S D, Kostin A, Fujita K, Mackenzie A P, Eisaki H, Uchida S, Sachdev S, Lawler M J, Kim E A, Davis J C S, Hamidian M H 2019 Science 364 976Google Scholar

  • [1] 李永恺, 刘锦锦, 张鑫, 朱鹏, 杨柳, 张钰琪, 吴黄宇, 王秩伟. Kagome超导体AV3Sb5 (A = K, Rb, Cs)的掺杂效应. 物理学报, 2024, 73(6): 067401. doi: 10.7498/aps.73.20231954
    [2] 李齐治, 张世龙, 彭莹莹. 铜氧超导材料电荷密度波和元激发的共振非弹性X射线散射研究. 物理学报, 2024, 73(19): 197401. doi: 10.7498/aps.73.20240983
    [3] 殷嘉鑫, 王强华. 超导能隙振荡: 到底来自配对密度波还是拆对散射?. 物理学报, 2024, 73(15): 157401. doi: 10.7498/aps.73.20240807
    [4] 赵宗阳, 李铭, 周涛. 石墨烯类超导体的单磁性杂质效应. 物理学报, 2023, 72(20): 207401. doi: 10.7498/aps.72.20230830
    [5] 黄佳贝, 廉富镯, 汪致远, 孙世涛, 李明, 张棣, 蔡晓凡, 马国栋, 麦志洪, Andy Shen, 王雷, 于葛亮. 二维范德瓦耳斯材料的超导物性研究及性能调控. 物理学报, 2022, 71(18): 187401. doi: 10.7498/aps.71.20220638
    [6] 樊金泽, 方展伯, 罗超杰, 张汇. 低维材料中的电荷密度波. 物理学报, 2022, 71(12): 127103. doi: 10.7498/aps.71.20220052
    [7] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器. 物理学报, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [8] 史良马, 周明健, 朱仁义. 磁场作用下超导圆环的涡旋演化. 物理学报, 2014, 63(24): 247501. doi: 10.7498/aps.63.247501
    [9] 史良马, 张世军, 朱仁义. 双能隙介观超导体的涡旋结构模拟. 物理学报, 2013, 62(9): 097401. doi: 10.7498/aps.62.097401
    [10] 周渝, 张蜡宝, 郏涛, 赵清源, 顾敏, 邱健, 康琳, 陈健, 吴培亨. 超导纳米线多光子响应特性研究. 物理学报, 2012, 61(20): 208501. doi: 10.7498/aps.61.208501
    [11] 杨鹏飞, 白晋涛, 杨小鹏. 有限厚无限大平板超导体模型场分布的严格解. 物理学报, 2007, 56(9): 5033-5036. doi: 10.7498/aps.56.5033
    [12] 杨鹏飞, 陈文学. 超导体界面层的电场电荷分布及起源. 物理学报, 2006, 55(12): 6622-6629. doi: 10.7498/aps.55.6622
    [13] 徐 靖, 王治国, 陈宇光, 石云龙, 陈 鸿. 电荷转移型Hubbard模型的相图. 物理学报, 2005, 54(1): 307-312. doi: 10.7498/aps.54.307
    [14] 李 勇, 闻 平, 刘振兴, 景秀年, 王万录, 白海洋. 块体金属玻璃Zr46.75Ti8.25Cu7.5Ni10Be27.5的超导与负电阻温度系数. 物理学报, 2004, 53(3): 844-849. doi: 10.7498/aps.53.844
    [15] 王俊峰, 熊 锐, 余 恒, 李 慧, 汤五丰, 余祖新, 石 兢, 田德诚, 田明亮, 张裕恒. 准二维电荷密度波导体钾紫青铜KxMo6O17单晶样品的制备. 物理学报, 2004, 53(3): 895-899. doi: 10.7498/aps.53.895
    [16] 冯天, 王楠林, 陈兆甲, 田明亮, 张裕恒. 电荷密度波材料K0.3MoO3及W掺杂样品的红外光学响应的研究. 物理学报, 2002, 51(9): 2113-2116. doi: 10.7498/aps.51.2113
    [17] 董正超, 邢定钰, 董锦明. 铁磁-超导隧道结中的散粒噪声. 物理学报, 2001, 50(3): 556-560. doi: 10.7498/aps.50.556
    [18] 董正超. d波超导体NIS结中的时间反演对称态的破缺与准粒子寿命效应. 物理学报, 2000, 49(2): 339-343. doi: 10.7498/aps.49.339
    [19] 魏建华, 解士杰, 梅良模. 低维混合金属卤化物中的电荷转移机理. 物理学报, 2000, 49(8): 1561-1566. doi: 10.7498/aps.49.1561
    [20] 田明亮, 石 兢, 李世燕, 曹 强, 乐 松, 张裕恒. 准二维电荷密度波导体磷酸钨青铜(PO2)4(WO3)2 m(m=6)的磁电阻研究. 物理学报, 2000, 49(9): 1892-1896. doi: 10.7498/aps.49.1892
计量
  • 文章访问数:  7485
  • PDF下载量:  661
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-06
  • 修回日期:  2022-06-04
  • 上网日期:  2022-06-07
  • 刊出日期:  2022-06-05

/

返回文章
返回