搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni-Al-Cr合金中团簇加连接原子模型的第一性原理计算

姜福仕 王伟华 李鸿明 王清 董闯

引用本文:
Citation:

Ni-Al-Cr合金中团簇加连接原子模型的第一性原理计算

姜福仕, 王伟华, 李鸿明, 王清, 董闯

First-principles calculations of Ni-Al-Cr alloys using cluster-plus-glue-atom model

Jiang Fu-Shi, Wang Wei-Hua, Li Hong-Ming, Wang Qing, Dong Chuang
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 通过团簇加连接原子模型研究了Ni-Al-Cr合金的近程序结构和物理特性. 以Al原子为中心, 其周围第一近邻的12个Ni原子作为壳层原子, 位于次近邻的Al原子和Cr原子作为连接原子, 即[Al-Ni12]AlxCr3–x, 其中x = 0, 0.5, 1.0, 1.5, 2.0, 2.5. 形成能表明团簇加连接原子模型对应的结构比其他结构更稳定. 差分电荷密度显示了Ni, Al, Cr原子间的电荷密度转移主要聚集在Ni-Al和Ni-Cr之间, 说明Ni-Al和Ni-Cr之间比Al-Cr和Ni-Ni更容易成键. 能带结构显示了Ni-Al-Cr合金材料均具有导体性质, 且Ni-3d, Al-3p和Ni-3d, Cr-3d之间发生了明显杂化效应, 验证了Ni-Al和Ni-Cr之间存在较强的相互作用.
    The short range order and physical properties of Ni-Al-Cr alloys are studied by using the cluster-plus-glue-atom model. In the formula [Al-Ni12]AlxCr3–x, x = 0, 0.5, 1.0, 1.5, 2.0, 2.5, Al atom is selected as the center of cluster, then twelve Ni atoms which are arranged at the nearest neighboring sites constructe a cluster, and Al atoms and Cr atoms which are located at second neighboring sites are glue atoms. The results of formation energy show that the configurations of cluster-plus-glue-atoms model are more stable than the other configurations with all compositions. The results of difference charge density show that the charge density transfer of Ni-Al-Cr system is mainly accumulated between Ni and Al atoms or between Ni and Cr atoms. It means that Ni-Al and Ni-Cr are more easily bonded than Ni-Ni and Al-Cr. The electronic band structures indicate that Ni-Al-Cr alloy has conductor properties. The hybrid effects between Ni-3d and Al-3p or Ni-3d and Cr-3d are obvious, which verifies that there are strong interactions between Ni and Al atoms or between Ni and Cr atoms.
      通信作者: 董闯, dong@dlut.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFB0701401)、国家自然科学基金(批准号: 91860108)、内蒙古自治区高等学校科学研究项目(批准号: NJZZ22470)和内蒙古民族大学科学研究基金(批准号: NMDYB20040)资助的课题.
      Corresponding author: Dong Chuang, dong@dlut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0701401), the National Natural Science Foundation of China (Grant No. 91860108), the Higher Educational Scientific Research Projects of Inner Mongolia, China (Grant No. NJZZ22470), and the Science Research Foundation of Inner Mongolia Minzu University, China (Grant No. NMDYB20040).
    [1]

    Sims C T, Stoloff N S, Hagel W C 1987 Superalloys II High-Temperature Materials for Aerospace and Industrial Power (New York: John Wiley & Sons Inc.) p615

    [2]

    Xia W S, Zhao X B, Yue L, Zhang Z 2020 J. Mater. Sci. Technol. 44 76Google Scholar

    [3]

    Kaplanskii Y Y, Zaitsev A A, Sentyurina Z A, Levashov E A, Pogozhev Y S, Loginov P A, Logachev I A 2018 J. Mater. Res. Technol. 7 461Google Scholar

    [4]

    Wendt H, Haasen P 1983 Acta Metall. 31 1649Google Scholar

    [5]

    Pollock T M, Tin S 2006 J. Propul. Power 22 361Google Scholar

    [6]

    Barnard L, Young G, Swoboda B, Choudhuryc S, van der Ven A, Morgan D, Tuckere J D 2014 Acta Mater. 81 258Google Scholar

    [7]

    Pessah-Simonetti M C 1998 Mater. Sci. Eng. A 254 1Google Scholar

    [8]

    Stott F H 1987 Rep. Prog. Phys. 50 861Google Scholar

    [9]

    Saltykov P, Fabrichnaya O, Golczewski J, Aldinger F 2004 J. Alloys Compd. 381 99Google Scholar

    [10]

    Giggins C S, Pettit F 1971 J. Electrochem. Soc. 118 1782Google Scholar

    [11]

    Kuppusami P, Murakami H 2004 Surf. Coat. Technol. 186 377Google Scholar

    [12]

    Esmaeili H, Mirsalehi S E, Farzadi A 2018 Vacuum 152 305Google Scholar

    [13]

    Huang W, Chang Y A 1999 Intermetallics 7 863Google Scholar

    [14]

    Chen J, Xiao J, Wang C, Zhang L 2021 Vacuum 189 110238Google Scholar

    [15]

    Jin S, Li Y, Shi S, Shi S, Yan Z, Chen S 2020 J. Mater. Res. Technol. 9 7499Google Scholar

    [16]

    Mao Z, Booth-Morrison C, Sudbrack C K, Noebe R D, Seidman D N 2019 Acta Mater. 166 702Google Scholar

    [17]

    Wang Y, Jiang D, Yu W, Huang S, Wu D, Xu Y, Yang X 2019 Mater. Des. 181 107981Google Scholar

    [18]

    于晶晶, 王清, 李晓娜, 石尧, 董闯, 冀春俊, 徐春明 2013 材料热处理学报 34 184Google Scholar

    Yu J J, Wang Q, Li X N, Shi Y, Dong C, Ji C J, Xu C M 2013 Trans. Mater. Heat Treat. 34 184Google Scholar

    [19]

    Dong D D, Zhang S, Wang Z R, Dong C 2015 J. Appl. Crystallogr. 48 2002Google Scholar

    [20]

    张宇, 王清, 董红刚, 董闯, 张洪宇, 孙晓峰 2018 金属学报 54 591Google Scholar

    Zhang Y, Wang Q, Dong H G, Dong C, Zhang H Y, Sun X F 2018 Acta. Metall. Sin. 54 591Google Scholar

    [21]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [23]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [24]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [25]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [26]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [27]

    Dong C, Wang Q, Qiang J B, Wang Y M, Xia J H 2007 J. Phys. D: Appl. Phys. 40 273Google Scholar

    [28]

    董闯, 董丹丹, 王清 2018 金属学报 54 293Google Scholar

    Dong C, Dong D D, Wang Q 2018 Acta. Metall. Sin. 54 293Google Scholar

    [29]

    Hong H L, Wang Q, Dong C, Liaw P K 2014 Sci. Rep. 4 7065Google Scholar

    [30]

    Zhang Y, Wang Q, Dong H G, Dong C, Zhang H Y, Sun X F 2018 Acta Metall. Sin. (Engl. Lett.) 31 127Google Scholar

    [31]

    张宇 2018 博士学位论文 (大连: 大连理工大学)

    Zhang Y 2018 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

  • 图 1  Ni3Al的团簇加连接原子模型

    Fig. 1.  The cluster-plus-glue-atom model of Ni3Al.

    图 2  [Al-Ni12]AlxCr3–x的形成能与x的关系

    Fig. 2.  The relationship between formation energies and x of [Al-Ni12]AlxCr3–x .

    图 3  [Al-Ni12]AlxCr3−x的构型及其形成能 (a) [Al-Ni12]Cr3; (b) [Al-Ni12]Al0.5Cr2.5; (c) [Al-Ni12]Al1Cr2; (d) [Al-Ni12]Al1.5Cr1.5; (e) [Al-Ni12]Al2Cr1; (f) [Al-Ni12]Al2.5Cr0.5

    Fig. 3.  The configurations and formation energies of [Al-Ni12]AlxCr3−x: (a) [Al-Ni12]Cr3; (b) [Al-Ni12]Al0.5Cr2.5; (c) [Al-Ni12]Al1Cr2; (d) [Al-Ni12]Al1.5Cr1.5; (e) [Al-Ni12]Al2Cr1; (f) [Al-Ni12]Al2.5Cr0.5.

    图 4  Ni-Al-Cr合金团簇加连接原子模型的差分电荷密度 (a) [Al-Ni12]Cr3; (b) [Al-Ni12]Al0.5Cr2.5; (c) [Al-Ni12]Al1Cr2; (d) [Al-Ni12]Al1.5Cr1.5; (e) [Al-Ni12]Al2Cr1; (f) [Al-Ni12]Al2.5Cr0.5 (等离值面: 0.005到–0.005 arb.units)

    Fig. 4.  The difference charge density of the cluster-plus-glue-atom model for Ni-Al-Cr alloys: (a) [Al-Ni12]Cr3; (b) [Al-Ni12]Al0.5Cr2.5; (c) [Al-Ni12]Al1Cr2; (d) [Al-Ni12]Al1.5Cr1.5; (e) [Al-Ni12]Al2Cr1; (f) [Al-Ni12]Al2.5Cr0.5. (Isovalues: 0.005 to –0.005 arb.units).

    图 5  Ni-Al-Cr合金团簇加连接原子模型的能带结构 (a) [Al-Ni12]Cr3; (b) [Al-Ni12]Al0.5Cr2.5; (c) [Al-Ni12]Al1Cr2; (d) [Al-Ni12]Al1.5Cr1.5; (e) [Al-Ni12]Al2Cr1; (f) [Al-Ni12]Al2.5Cr0.5

    Fig. 5.  The electronic band structure of the cluster-plus-glue-atom model for Ni-Al-Cr alloys: (a) [Al-Ni12]Cr3; (b) [Al-Ni12]Al0.5Cr2.5; (c) [Al-Ni12]Al1Cr2; (d) [Al-Ni12]Al1.5Cr1.5; (e) [Al-Ni12]Al2Cr1; (f) [Al-Ni12]Al2.5Cr0.5.

  • [1]

    Sims C T, Stoloff N S, Hagel W C 1987 Superalloys II High-Temperature Materials for Aerospace and Industrial Power (New York: John Wiley & Sons Inc.) p615

    [2]

    Xia W S, Zhao X B, Yue L, Zhang Z 2020 J. Mater. Sci. Technol. 44 76Google Scholar

    [3]

    Kaplanskii Y Y, Zaitsev A A, Sentyurina Z A, Levashov E A, Pogozhev Y S, Loginov P A, Logachev I A 2018 J. Mater. Res. Technol. 7 461Google Scholar

    [4]

    Wendt H, Haasen P 1983 Acta Metall. 31 1649Google Scholar

    [5]

    Pollock T M, Tin S 2006 J. Propul. Power 22 361Google Scholar

    [6]

    Barnard L, Young G, Swoboda B, Choudhuryc S, van der Ven A, Morgan D, Tuckere J D 2014 Acta Mater. 81 258Google Scholar

    [7]

    Pessah-Simonetti M C 1998 Mater. Sci. Eng. A 254 1Google Scholar

    [8]

    Stott F H 1987 Rep. Prog. Phys. 50 861Google Scholar

    [9]

    Saltykov P, Fabrichnaya O, Golczewski J, Aldinger F 2004 J. Alloys Compd. 381 99Google Scholar

    [10]

    Giggins C S, Pettit F 1971 J. Electrochem. Soc. 118 1782Google Scholar

    [11]

    Kuppusami P, Murakami H 2004 Surf. Coat. Technol. 186 377Google Scholar

    [12]

    Esmaeili H, Mirsalehi S E, Farzadi A 2018 Vacuum 152 305Google Scholar

    [13]

    Huang W, Chang Y A 1999 Intermetallics 7 863Google Scholar

    [14]

    Chen J, Xiao J, Wang C, Zhang L 2021 Vacuum 189 110238Google Scholar

    [15]

    Jin S, Li Y, Shi S, Shi S, Yan Z, Chen S 2020 J. Mater. Res. Technol. 9 7499Google Scholar

    [16]

    Mao Z, Booth-Morrison C, Sudbrack C K, Noebe R D, Seidman D N 2019 Acta Mater. 166 702Google Scholar

    [17]

    Wang Y, Jiang D, Yu W, Huang S, Wu D, Xu Y, Yang X 2019 Mater. Des. 181 107981Google Scholar

    [18]

    于晶晶, 王清, 李晓娜, 石尧, 董闯, 冀春俊, 徐春明 2013 材料热处理学报 34 184Google Scholar

    Yu J J, Wang Q, Li X N, Shi Y, Dong C, Ji C J, Xu C M 2013 Trans. Mater. Heat Treat. 34 184Google Scholar

    [19]

    Dong D D, Zhang S, Wang Z R, Dong C 2015 J. Appl. Crystallogr. 48 2002Google Scholar

    [20]

    张宇, 王清, 董红刚, 董闯, 张洪宇, 孙晓峰 2018 金属学报 54 591Google Scholar

    Zhang Y, Wang Q, Dong H G, Dong C, Zhang H Y, Sun X F 2018 Acta. Metall. Sin. 54 591Google Scholar

    [21]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [23]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [24]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [25]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [26]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [27]

    Dong C, Wang Q, Qiang J B, Wang Y M, Xia J H 2007 J. Phys. D: Appl. Phys. 40 273Google Scholar

    [28]

    董闯, 董丹丹, 王清 2018 金属学报 54 293Google Scholar

    Dong C, Dong D D, Wang Q 2018 Acta. Metall. Sin. 54 293Google Scholar

    [29]

    Hong H L, Wang Q, Dong C, Liaw P K 2014 Sci. Rep. 4 7065Google Scholar

    [30]

    Zhang Y, Wang Q, Dong H G, Dong C, Zhang H Y, Sun X F 2018 Acta Metall. Sin. (Engl. Lett.) 31 127Google Scholar

    [31]

    张宇 2018 博士学位论文 (大连: 大连理工大学)

    Zhang Y 2018 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

  • [1] 温恒迪, 刘跃, 甄良, 李洋, 徐成彦. MoS2/MoTe2垂直异质结的电荷传输及其调制. 物理学报, 2023, 72(3): 036102. doi: 10.7498/aps.72.20221768
    [2] 万法琦, 马艳平, 董丹丹, 丁万昱, 姜宏, 董闯, 贺建雄. 氧化物玻璃中的类分子结构单元. 物理学报, 2020, 69(13): 136101. doi: 10.7498/aps.69.20191892
    [3] 马启慧, 张宇, 王清, 董红刚, 董闯. Co-Al-W基高温合金的团簇成分式. 物理学报, 2019, 68(6): 062101. doi: 10.7498/aps.68.20181030
    [4] 杨雯, 宋建军, 任远, 张鹤鸣. 光器件应用改性Ge的能带结构模型. 物理学报, 2018, 67(19): 198502. doi: 10.7498/aps.67.20181155
    [5] 范达志, 刘贵立, 卫琳. 扭转形变对石墨烯吸附O原子电学和光学性质影响的电子理论研究. 物理学报, 2017, 66(24): 246301. doi: 10.7498/aps.66.246301
    [6] 王同, 胡小刚, 吴爱民, 林国强, 于学文, 董闯. 以团簇加连接原子模型解析Cr-C共晶成分. 物理学报, 2017, 66(9): 092101. doi: 10.7498/aps.66.092101
    [7] 洪海莲, 董闯, 王清, 张宇, 耿遥祥. 面心立方固溶体合金的团簇加连接原子几何模型及典型工业合金成分解析. 物理学报, 2016, 65(3): 036101. doi: 10.7498/aps.65.036101
    [8] 王艳丽, 苏克和, 颜红侠, 王欣. C在不同位置掺杂(n,n)型BN纳米管的密度泛函研究. 物理学报, 2014, 63(4): 046101. doi: 10.7498/aps.63.046101
    [9] 李晓娜, 郑月红, 李震, 王苗, 张坤, 董闯. 基于团簇模型设计的Cu-Cu12-[Mx/(12+x)Ni12/(12+x)]5 (M=Si, Cr, Cr+Fe) 合金抗高温氧化研究. 物理学报, 2014, 63(2): 028102. doi: 10.7498/aps.63.028102
    [10] 金峰, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带能带结构及透射特性的扭曲效应. 物理学报, 2013, 62(3): 036103. doi: 10.7498/aps.62.036103
    [11] 高尚鹏, 祝桐. 基于自洽GW方法的碳化硅准粒子能带结构计算. 物理学报, 2012, 61(13): 137103. doi: 10.7498/aps.61.137103
    [12] 韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯. 源于团簇-共振模型的理想金属玻璃电子化学势均衡. 物理学报, 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [13] 林琦, 陈余行, 吴建宝, 孔宗敏. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响. 物理学报, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [14] 于峰, 王培吉, 张昌文. Al掺杂SnO2 材料电子结构和光学性质. 物理学报, 2011, 60(2): 023101. doi: 10.7498/aps.60.023101
    [15] 董华锋, 吴福根, 牟中飞, 钟会林. 二维复式声子晶体中基元配置对声学能带结构的影响. 物理学报, 2010, 59(2): 754-758. doi: 10.7498/aps.59.754
    [16] 郭浩, 吴评, 于天宝, 廖清华, 刘念华, 黄永箴. 一种新型的光子晶体偏振光分束器的设计. 物理学报, 2010, 59(8): 5547-5552. doi: 10.7498/aps.59.5547
    [17] 黄云霞, 曹全喜, 李智敏, 李桂芳, 王毓鹏, 卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质. 物理学报, 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [18] 邵明珠, 罗诗裕. 正弦平方势与带电粒子沟道效应的能带结构. 物理学报, 2007, 56(6): 3407-3410. doi: 10.7498/aps.56.3407
    [19] 邬云文, 海文华, 蔡丽华. Paul阱中一维两离子系统的能带结构. 物理学报, 2006, 55(2): 583-589. doi: 10.7498/aps.55.583
    [20] 陈德艳, 吕铁羽, 黄美纯. BaSe的准粒子能带结构. 物理学报, 2006, 55(7): 3597-3600. doi: 10.7498/aps.55.3597
计量
  • 文章访问数:  5088
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-24
  • 修回日期:  2022-06-17
  • 上网日期:  2022-10-10
  • 刊出日期:  2022-10-20

/

返回文章
返回