-
磁性隧道结经过结构优化和性能提升已成功应用于磁存储、磁传感、磁逻辑等多种自旋电子学器件中. 磁传感是利用磁性隧道结的自由层和钉扎层之间特殊的磁结构来实现隧穿磁电阻(TMR)随外加磁场变化而呈现的线性输出. 迄今为止, 人们基于MgO磁性隧道结已经研发出五种TMR线性传感单元, 分别是人工间接双交换耦合型、磁场偏置型、面内/面外垂直型、超顺磁型的TMR线性传感单元. 本文梳理了这五种TMR线性传感单元并对它们的磁传感性能进行了系统比较, 为人们探索和发现磁敏传感器的相关应用提供了帮助.
-
关键词:
- 磁性隧道结 /
- 隧穿磁电阻线性传感单元 /
- 磁敏传感器
Magnetic tunnel junction (MTJ) has been successfully used in spintronic devices, such as magnetoresistive random access memory, tunneling magnetoresistance (TMR) sensor, magnetic logic. In the TMR sensor a special magnetic structure is used between the free layer and the pinned layer of an MTJ to realize a linear output. So far, five types of TMR linear sensing units (TMR-LSNs) have been developed based on MgO MTJs, which are artificial-indirect-double-exchange-coupling-, magnetic-field-biased-, in-plane-, perpendicular-, and superparamagnetic-TMR-LSN, respectively. In this paper, the five types of TMR-LSNs are combed and their magnetic sensing performances are systematically compared with each other. First, the five types of TMR-LSNs each have a linear resistance response to the external magnetic field with a changeable sensitivity, a linear field range and a low frequency noise level. Second, in the five types of TMR-LSNs different magnetic structures are used to realize the same aim that is to obtain the optimized performance parameters, which is of significance for putting TMR sensors into practical applications. Third, the five types of TMR-LSNs are suitable for different application scenarios due to their respective performance parameters. Therefore, we believe that our summarized discussion in this paper will help people to explore and find the relevant applications of TMR sensors based on the five types of TMR-LSNs.-
Keywords:
- magnetic tunnel junction /
- tunneling magnetoresistance linear sensing unit /
- magnetoresistive sensors
[1] Jullière M 1975 Phys. Lett. A 54 225Google Scholar
[2] Miyazaki T, Tezuka N 1995 J. Magn. Magn. Mater. 139 L231Google Scholar
[3] Moodera J S, Kinder L R, Wong T M, Meservey R 1995 Phys. Rev. Lett. 74 3273Google Scholar
[4] Wang D, Nordman C, Daughton J M, Qian Z, Fink J 2004 IEEE Trans. Magn. 40 2269Google Scholar
[5] Butler W H, Zhang X-G, Schulthess T C, MacLaren J M 2001 Phys. Rev. B 63 054416Google Scholar
[6] Mathon J, Umersky A 2001 Phys. Rev. B 63 220403Google Scholar
[7] Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M, Yang S H 2004 Nat. Mater. 3 862Google Scholar
[8] Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K 2004 Nat. Mater. 3 868Google Scholar
[9] Han X F, Oogane M, Kubota H, Ando Y, Miyazaki T 2000 Appl. Phys. Lett. 77 283Google Scholar
[10] Wei H X, Qin Q H, Ma M, Sharif R, Han X F 2007 J. Appl. Phys. 101 09B501Google Scholar
[11] Oleinik I I, Tsymbal E Y, Pettifor D G 2000 Phys. Rev. B 62 3952Google Scholar
[12] Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508Google Scholar
[13] Feng J F, Feng G, Coey J M D, Han X F, Zhan W S 2007 Appl. Phys. Lett. 91 102505Google Scholar
[14] Zhang J, Zhang X G, Han X F 2012 Appl. Phys. Lett. 100 222401Google Scholar
[15] Kurt H, Rode K, Oguz K, Boese M, Faulkner C C, Coey J M D 2010 Appl. Phys. Lett. 96 262501Google Scholar
[16] Wang W X, Yang Y, Naganuma H, Ando Y, Yu R C, Han X F 2011 Appl. Phys. Lett. 99 012502Google Scholar
[17] Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H. D, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H 2010 Nat. Mater. 9 721Google Scholar
[18] Zeng Z M, Amiri P K, Katine J A, Langer J, Wang K L, Jiang H W 2012 Appl. Phys. Lett. 101 062412Google Scholar
[19] Chen J Y, Feng J F, Coey J M D 2012 Appl. Phys. Lett. 100 142407Google Scholar
[20] Yuan Z H, Huang L, Feng J F, Wen Z C, Li D L, Han X F, Nakano T, Yu T, Naganuma H 2015 J. Appl. Phys. 118 053904Google Scholar
[21] Chen J Y, Carroll N, Feng J F, Coey J M D 2012 Appl. Phys. Lett. 101 262402Google Scholar
[22] Wei H X, Qin Q H, Wen Z C, Han X F, Zhang X G 2009 Appl. Phys. Lett. 94 172902Google Scholar
[23] 中国工程科技知识中心 2021知领˙报告 (2) 第2页
Analysis and Countermeasure Research on Smart Sensor Market in China 2021 Know and Report(2) p2 (in Chinese)
[24] Silva A V, Leitao D C, Valadeiro J, Amaral J, Freitas P P, Cardoso S 2015 Eur. Phys. J. Appl. Phys. 72 10601Google Scholar
[25] Yu G Q, Feng J F, Kurt H, Liu H F, Han X F, Coey J M D 2012 J. Appl. Phys. 111 113906Google Scholar
[26] Huang L, Yuan Z H, Tao B S, Wan C H, Guo P, Zhang Q T, Yin L, Feng J F, Nakano T, Naganuma H, Liu H F, Yan Y, Han X F 2017 J. Appl. Phys. 122 113903Google Scholar
[27] Mazumdar D, Shen W F Liu X Y, Schrag B D, Carter M, Xiao G 2008 J. Appl. Phys. 103 113911Google Scholar
[28] Chaves R C, Cardoso S, Ferreira R, Freitas P P 2011 J. Appl. Phys. 109 07E506Google Scholar
[29] Yin X, Yang Y, Liu Y, Hua J, Sokolov A Ewing D, Rego P J D, Gao K, Liou S 2019 Proc. SPIE 11090 110903H
-
图 1 基于单一MTJ结构的五种TMR线性传感单元的示意图, 其中反铁磁性层、铁磁性金属层(超顺磁性层)、势垒层是构成MTJ结构的主要材料层, (d) 图中的弹簧结构代表的是人工交换耦合结构的交换相互作用强度, 它决定了人工间接双交换耦合型的TMR线性传感单元的诸多性能参数
Fig. 1. Sketch of five TMR linear sensing units based on a single MTJ, the antiferromagnetic layer, ferromagnetic metal layer (superparamagnetic layer) and barrier layer are the main layers of an MTJ structure. The spring structure in Fig.(d) represents the exchange interaction strength of the synthetic exchange-coupling structure, which determines many performance parameters of the synthetic indirect-double-exchange-coupling TMR linear sensing unit.
表 1 基于单一 MgO MTJ的五种TMR线性传感单元的性能参数
Table 1. Performance parameters of five TMR linear sensing units based on a single MTJ.
-
[1] Jullière M 1975 Phys. Lett. A 54 225Google Scholar
[2] Miyazaki T, Tezuka N 1995 J. Magn. Magn. Mater. 139 L231Google Scholar
[3] Moodera J S, Kinder L R, Wong T M, Meservey R 1995 Phys. Rev. Lett. 74 3273Google Scholar
[4] Wang D, Nordman C, Daughton J M, Qian Z, Fink J 2004 IEEE Trans. Magn. 40 2269Google Scholar
[5] Butler W H, Zhang X-G, Schulthess T C, MacLaren J M 2001 Phys. Rev. B 63 054416Google Scholar
[6] Mathon J, Umersky A 2001 Phys. Rev. B 63 220403Google Scholar
[7] Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M, Yang S H 2004 Nat. Mater. 3 862Google Scholar
[8] Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K 2004 Nat. Mater. 3 868Google Scholar
[9] Han X F, Oogane M, Kubota H, Ando Y, Miyazaki T 2000 Appl. Phys. Lett. 77 283Google Scholar
[10] Wei H X, Qin Q H, Ma M, Sharif R, Han X F 2007 J. Appl. Phys. 101 09B501Google Scholar
[11] Oleinik I I, Tsymbal E Y, Pettifor D G 2000 Phys. Rev. B 62 3952Google Scholar
[12] Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508Google Scholar
[13] Feng J F, Feng G, Coey J M D, Han X F, Zhan W S 2007 Appl. Phys. Lett. 91 102505Google Scholar
[14] Zhang J, Zhang X G, Han X F 2012 Appl. Phys. Lett. 100 222401Google Scholar
[15] Kurt H, Rode K, Oguz K, Boese M, Faulkner C C, Coey J M D 2010 Appl. Phys. Lett. 96 262501Google Scholar
[16] Wang W X, Yang Y, Naganuma H, Ando Y, Yu R C, Han X F 2011 Appl. Phys. Lett. 99 012502Google Scholar
[17] Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H. D, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H 2010 Nat. Mater. 9 721Google Scholar
[18] Zeng Z M, Amiri P K, Katine J A, Langer J, Wang K L, Jiang H W 2012 Appl. Phys. Lett. 101 062412Google Scholar
[19] Chen J Y, Feng J F, Coey J M D 2012 Appl. Phys. Lett. 100 142407Google Scholar
[20] Yuan Z H, Huang L, Feng J F, Wen Z C, Li D L, Han X F, Nakano T, Yu T, Naganuma H 2015 J. Appl. Phys. 118 053904Google Scholar
[21] Chen J Y, Carroll N, Feng J F, Coey J M D 2012 Appl. Phys. Lett. 101 262402Google Scholar
[22] Wei H X, Qin Q H, Wen Z C, Han X F, Zhang X G 2009 Appl. Phys. Lett. 94 172902Google Scholar
[23] 中国工程科技知识中心 2021知领˙报告 (2) 第2页
Analysis and Countermeasure Research on Smart Sensor Market in China 2021 Know and Report(2) p2 (in Chinese)
[24] Silva A V, Leitao D C, Valadeiro J, Amaral J, Freitas P P, Cardoso S 2015 Eur. Phys. J. Appl. Phys. 72 10601Google Scholar
[25] Yu G Q, Feng J F, Kurt H, Liu H F, Han X F, Coey J M D 2012 J. Appl. Phys. 111 113906Google Scholar
[26] Huang L, Yuan Z H, Tao B S, Wan C H, Guo P, Zhang Q T, Yin L, Feng J F, Nakano T, Naganuma H, Liu H F, Yan Y, Han X F 2017 J. Appl. Phys. 122 113903Google Scholar
[27] Mazumdar D, Shen W F Liu X Y, Schrag B D, Carter M, Xiao G 2008 J. Appl. Phys. 103 113911Google Scholar
[28] Chaves R C, Cardoso S, Ferreira R, Freitas P P 2011 J. Appl. Phys. 109 07E506Google Scholar
[29] Yin X, Yang Y, Liu Y, Hua J, Sokolov A Ewing D, Rego P J D, Gao K, Liou S 2019 Proc. SPIE 11090 110903H
计量
- 文章访问数: 5435
- PDF下载量: 239
- 被引次数: 0