搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一个具有超级多稳定性的忆阻混沌系统的分析与FPGA实现

张贵重 全旭 刘嵩

引用本文:
Citation:

一个具有超级多稳定性的忆阻混沌系统的分析与FPGA实现

张贵重, 全旭, 刘嵩

Analysis and FPGA implementation of memristor chaotic system with extreme multistability

Zhang Gui-Zhong, Quan Xu, Liu Song
PDF
HTML
导出引用
  • 为了进一步提高混沌系统的复杂性, 用磁控忆阻器代替基于Sprott-B的四维混沌系统中的耦合参数, 构建了一个五维忆阻混沌系统. 通过分岔图、李雅普诺夫指数谱、相轨图、庞加莱映射等常规手段分析了系统的动力学行为. 分析表明新系统具有丰富的动力学行为: 不仅存在依赖于系统参数变化的周期极限环和混沌吸引子, 还存在依赖于忆阻初始条件变化的无限多共存吸引子的超级多稳定现象. 最后, 基于现场可编程门阵列(FPGA)技术实现了忆阻混沌系统的数字电路, 在示波器上捕捉到的相图与数值仿真一致, 验证了忆阻系统的正确性与可实现性.
    The memristor is a kind of nonlinear element with nanometer size, which can enhance the complexity of a chaotic system. With the further research of chaos, several novel nonlinear phenomena have been found by scholars, such as hidden attractors, coexisting attractors and multi-stability. Meanwhile, the extremely multi-stability representation system coexists with the infinite attractors, which has become a hot spot in the field of memristor chaos research in recent years. A general method to construct a chaotic systems of multiple coexistence is to increase the number of equilibrium points of chaotic system by means of control. The introduction of memristor results in the linear distribution of the equilibrium points of chaotic system in space, which are the linear equilibrium points. The existing researches show that chaotic system with extremely multi-stability can produce better chaotic sequence, which can be used in engineering fields such as secure communication. Therefore, it is of great significance to construct chaotic systems with rich dynamic behaviors by using memristors.In order to further improve the complexity of the chaotic system, a five-dimensional memristor chaotic system is constructed by replacing the coupling parameters in the four-dimensional chaotic system based on Sprott-B with a magnetically controlled memristor. The dynamic behavior of the system is analyzed by bifurcation diagram, Lyapunov exponent spectrum, phase portrait, Poincaré map, dynamic map and other conventional means. The analysis shows that the new system has rich dynamic behaviors: when the system parameters change, the system can produce a large number of chaotic attractors with different topological structures and periodic limit cycles with different periods. When different parameters change, the dynamic characteristics of the system also change; when the system parameters are fixed, the system not only has an offset enhancement phenomenon that depends on the change of the initial conditions, but also shows a very strong sensitivity to the initial values and a great adjustment range of the initial values, which leads the infinite chaos and periodic attractors to coexist, namely extremely multi-stability appears. Finally, the digital circuit of the memristor chaotic system is implemented based on the field programmable gate array (FPGA) technology. The phase portrait captured on the oscilloscope is consistent with that from the numerical simulation, which verifies the correctness and realizability of the memristor system.
      通信作者: 刘嵩, liusong@hbmzu.edu.cn
    • 基金项目: 湖北省教育厅优秀青年科技创新团队(批准号: T2016011)资助的课题.
      Corresponding author: Liu Song, liusong@hbmzu.edu.cn
    • Funds: Project supported by the Outstanding Young Science and Technology Innovation Team of Education Department of Hubei Province, China (Grant No. T2016011).
    [1]

    Chua L O 1971 IEEE Trans. Circuits Theor. 18 507Google Scholar

    [2]

    Wen S P, Zeng Z G, Huang T W 2012 Phys. Lett. A 376 2775Google Scholar

    [3]

    Yang F F, Mou J, Sun K H, Cao Y H, Jin J Y 2019 IEEE Access 7 58751Google Scholar

    [4]

    刘嵩, 韦亚萍, 刘静漪, 张国平 2020 华中师范大学学报(自然科学版) 54 36Google Scholar

    Liu S, Wei Y P, Liu J Y, Zhang G P 2020 J. Cent. Chin. Normal Univ. (Nat. Sci.) 54 36Google Scholar

    [5]

    Zhao L, Hong Q H, Wang X P 2018 Neurocomputing 314 207Google Scholar

    [6]

    Xu Q, Song Z, Bao H, Chen M, Bao B C 2018 Int. J. Electron. Commun. 96 66Google Scholar

    [7]

    Hong Q H, Zhao L, Wang X P 2019 Neurocomputing 330 11Google Scholar

    [8]

    Shin S, Kim K, Kang S M 2012 Electron. Lett. 48 78Google Scholar

    [9]

    Banerjee S, Parui S, Gupta A 2004 IEEE Trans. Circuits Syst. Ⅱ 51 649Google Scholar

    [10]

    Min X T, Wang X Y, Zhou P F, Yu S M, Lu H H 2019 IEEE Access 7 124641Google Scholar

    [11]

    Jin P P, Wang G Y, Lu H H, Fernando T 2017 IEEE Trans. Circuits Syst. Ⅱ 65 246Google Scholar

    [12]

    洪庆辉, 曾以成, 李志军 2013 物理学报 62 230502Google Scholar

    Hong Q H, Zeng Y C, Li Z J 2013 Acta Phys. Sin. 62 230502Google Scholar

    [13]

    Feudel U 2008 Int. J. Bifurcation Chaos 18 1607Google Scholar

    [14]

    Bao B C, Bao H, Wang N, Chen M, Xu Q 2017 Chaos, Solitons Fractals 94 102Google Scholar

    [15]

    Xu Q, Lin Y, Bao B C, Chen M 2016 Chaos, Solitons Fractals 83 186Google Scholar

    [16]

    Bao B C, Jiang T, Xu Q, Chen M, Wu H G, Hu Y H 2016 Nonlinear Dyn. 86 1711Google Scholar

    [17]

    Bao B C, Jiang T, Wang G Y, Jin P P, Bao H, Chen M 2017 Nonlinear Dyn. 89 1157Google Scholar

    [18]

    闵富红, 王珠林, 曹戈, 王恩荣 2018 电子学报 46 486Google Scholar

    Min F H, Wang Z L, Cao G, Wang E R 2018 Acta Electron. Sin. 46 486Google Scholar

    [19]

    秦铭宏, 赖强, 吴永红 2022 物理学报 71 160502Google Scholar

    Qin M H, Lai Q, Wu Y H 2022 Acta Phys. Sin. 71 160502Google Scholar

    [20]

    Lai Q, Kuate P, Pei H, Fostin H 2020 Complexity 86 1711Google Scholar

    [21]

    Lai Q 2021 Int. J. Bifurcation Chaos 31 2150013Google Scholar

    [22]

    Li Q D, Zeng H Z, Yang X S 2014 Nonlinear Dyn. 77 255Google Scholar

    [23]

    徐强, 杨晓云, 罗姣燕, 徐权 2019 华中师范大学学报(自然科学版) 53 38Google Scholar

    Xu Q, Yang X Y, Luo J Y, Xu Q 2019 J. Cent. Chin. Normal Univ. (Nat. Sci. ) 53 38Google Scholar

    [24]

    Huang L L, Yao W J, Xiang J H, Zhang Z F 2020 Complexity 2020 1Google Scholar

    [25]

    包伯成, 胡文, 许建平, 刘中, 邹凌 2011 物理学报 60 120502Google Scholar

    Bao B C, Hu W, Xu J P, Liu Z, Zou L 2011 Acta Phys. Sin. 60 120502Google Scholar

    [26]

    Huang L L, Zhang Z F, Xiang J H, Wang S M 2019 Complexity 2019 1Google Scholar

    [27]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285Google Scholar

  • 图 1  混沌吸引子相图 (a) x-y平面; (b) x-z平面; (c) y-z平面; (d) x-w平面; (e) z-w平面; (f) x-u平面

    Fig. 1.  Phase portraits of chaotic attractor: (a) x-y plane; (b) x-z plane; (c) y-z plane; (d) x-w plane; (e) z-w plane; (f) x-u plane.

    图 2  混沌系统的庞加莱映射和时域波形 (a) 在$ x = y $截面上的庞加莱映射; (b)时域波形

    Fig. 2.  Poincaré map and the time domain waveform of the chaotic system: (a) Poincaré map on $ x = y $ plane; (b) the time domain waveform.

    图 3  随系统参数$ a $变化的分岔图和李雅普诺夫指数谱 (a) 分岔图; (b) 李雅普诺夫指数谱

    Fig. 3.  Bifurcation diagram and Lyapunov exponent spectrum with $ a $: (a) Bifurcation diagram; (b) Lyapunov exponent spectra.

    图 4  不同参数$ a $值(表1)条件下, 系统在x-y平面内的相图

    Fig. 4.  Phase portraits of the system with different parameter $ a $ (Table 1) on x-y plane.

    图 5  随系统参数$ b $变化的分岔图和李雅普诺夫指数谱 (a) 分岔图; (b) 李雅普诺夫指数谱

    Fig. 5.  Bifurcation diagram and Lyapunov exponent spectrum with $ b $: (a) Bifurcation diagram; (b) Lyapunov exponent spectra.

    图 6  关于参数$ b $$ a $的动力学地图

    Fig. 6.  Dynamical map with respect to parameters $ b $ and $ a $

    图 7  $ u(0) \in [ - 26, 26] $变化时的分岔图和李雅普诺夫指数谱 (a) 分岔图; (b) 李雅普诺夫指数谱

    Fig. 7.  Bifurcation diagram and Lyapunov exponent spectrum with $ u(0) \in [ - 26, 26] $: (a) Bifurcation diagram; (b) Lyapunov exponent spectra.

    图 8  $ u(0) \in [10,26] $时的分岔图和共存吸引子在三维空间z-u-x的相图 (a) 分岔图; (b) 共存吸引子相图

    Fig. 8.  Bifurcation diagram with $ u(0) \in [10,26] $ and phase portraits of coexisting attractors in three dimensional z-u-x space: (a) Bifurcation diagram; (b) phase portraits of coexisting attractors.

    图 9  $ x(0) \in [ - 45, 45] $时的分岔图和共存吸引子在三维空间z-u-x的相图 (a) 分岔图; (b) 共存吸引子相图

    Fig. 9.  Bifurcation diagram with $ x(0) \in [ - 45, 45] $ and phase portraits of coexisting attractors in three dimensional z-u-x space: (a) Bifurcation diagram; (b) phase portraits of coexisting attractors.

    图 10  不同忆阻初始值下的多共存吸引子在三维空间z-u-x的相图 (a) 共存周期吸引子; (b) 共存混沌吸引子

    Fig. 10.  Phase portraits of coexisting many attractors in z-u-x space: (a) Coexisting periodic attractors; (b) coexisting chaotic attractors.

    图 11  $ p, {\text{ }}q \in [ - 6, 6] $$ {Y_1} $$ {Y_2} $的分岔图

    Fig. 11.  Bifurcation diagram of $ {Y_1} $ and $ {Y_{\text{2}}} $ with $p, {\text{ }}q \in $$ [ - 6, 6]$.

    图 12  系统硬件框图

    Fig. 12.  Hardware structure chart of the system.

    图 13  FPGA电路实验结果 (a) x-y平面; (b) x-z平面; (c) y-z平面; (d) x-w平面; (e) z-w平面; (f) x-u平面

    Fig. 13.  Circuit experiment results on FPGA: (a) x-y plane; (b) x-z plane; (c) y-z plane; (d) x-w plane; (e) z-w plane; (f) x-u plane.

    表 1  不同系统参数$ a $值对应的吸引子类别及编号

    Table 1.  Attractor types and number corresponding to different values of system with parameter $ a $.

    系统参数$ a $值吸引子类别对应编号 系统参数a吸引子类别对应编号
    1周期1极限环图4(a) 1.38周期4极限环图4(b)
    1.45混沌图4(c) 1.97周期2极限环图4(d)
    3.2混沌图4(e) 4.6周期6极限环图4(f)
    5.2混沌图4(g) 5.27周期3极限环图4(h)
    5.76周期2极限环图4(i)6.3周期1极限环图4(j)
    7.96混沌图4(k)8周期4极限环图4(l)
    8.4周期2极限环图4(m) 8.6周期1极限环图4(n)
    下载: 导出CSV
  • [1]

    Chua L O 1971 IEEE Trans. Circuits Theor. 18 507Google Scholar

    [2]

    Wen S P, Zeng Z G, Huang T W 2012 Phys. Lett. A 376 2775Google Scholar

    [3]

    Yang F F, Mou J, Sun K H, Cao Y H, Jin J Y 2019 IEEE Access 7 58751Google Scholar

    [4]

    刘嵩, 韦亚萍, 刘静漪, 张国平 2020 华中师范大学学报(自然科学版) 54 36Google Scholar

    Liu S, Wei Y P, Liu J Y, Zhang G P 2020 J. Cent. Chin. Normal Univ. (Nat. Sci.) 54 36Google Scholar

    [5]

    Zhao L, Hong Q H, Wang X P 2018 Neurocomputing 314 207Google Scholar

    [6]

    Xu Q, Song Z, Bao H, Chen M, Bao B C 2018 Int. J. Electron. Commun. 96 66Google Scholar

    [7]

    Hong Q H, Zhao L, Wang X P 2019 Neurocomputing 330 11Google Scholar

    [8]

    Shin S, Kim K, Kang S M 2012 Electron. Lett. 48 78Google Scholar

    [9]

    Banerjee S, Parui S, Gupta A 2004 IEEE Trans. Circuits Syst. Ⅱ 51 649Google Scholar

    [10]

    Min X T, Wang X Y, Zhou P F, Yu S M, Lu H H 2019 IEEE Access 7 124641Google Scholar

    [11]

    Jin P P, Wang G Y, Lu H H, Fernando T 2017 IEEE Trans. Circuits Syst. Ⅱ 65 246Google Scholar

    [12]

    洪庆辉, 曾以成, 李志军 2013 物理学报 62 230502Google Scholar

    Hong Q H, Zeng Y C, Li Z J 2013 Acta Phys. Sin. 62 230502Google Scholar

    [13]

    Feudel U 2008 Int. J. Bifurcation Chaos 18 1607Google Scholar

    [14]

    Bao B C, Bao H, Wang N, Chen M, Xu Q 2017 Chaos, Solitons Fractals 94 102Google Scholar

    [15]

    Xu Q, Lin Y, Bao B C, Chen M 2016 Chaos, Solitons Fractals 83 186Google Scholar

    [16]

    Bao B C, Jiang T, Xu Q, Chen M, Wu H G, Hu Y H 2016 Nonlinear Dyn. 86 1711Google Scholar

    [17]

    Bao B C, Jiang T, Wang G Y, Jin P P, Bao H, Chen M 2017 Nonlinear Dyn. 89 1157Google Scholar

    [18]

    闵富红, 王珠林, 曹戈, 王恩荣 2018 电子学报 46 486Google Scholar

    Min F H, Wang Z L, Cao G, Wang E R 2018 Acta Electron. Sin. 46 486Google Scholar

    [19]

    秦铭宏, 赖强, 吴永红 2022 物理学报 71 160502Google Scholar

    Qin M H, Lai Q, Wu Y H 2022 Acta Phys. Sin. 71 160502Google Scholar

    [20]

    Lai Q, Kuate P, Pei H, Fostin H 2020 Complexity 86 1711Google Scholar

    [21]

    Lai Q 2021 Int. J. Bifurcation Chaos 31 2150013Google Scholar

    [22]

    Li Q D, Zeng H Z, Yang X S 2014 Nonlinear Dyn. 77 255Google Scholar

    [23]

    徐强, 杨晓云, 罗姣燕, 徐权 2019 华中师范大学学报(自然科学版) 53 38Google Scholar

    Xu Q, Yang X Y, Luo J Y, Xu Q 2019 J. Cent. Chin. Normal Univ. (Nat. Sci. ) 53 38Google Scholar

    [24]

    Huang L L, Yao W J, Xiang J H, Zhang Z F 2020 Complexity 2020 1Google Scholar

    [25]

    包伯成, 胡文, 许建平, 刘中, 邹凌 2011 物理学报 60 120502Google Scholar

    Bao B C, Hu W, Xu J P, Liu Z, Zou L 2011 Acta Phys. Sin. 60 120502Google Scholar

    [26]

    Huang L L, Zhang Z F, Xiang J H, Wang S M 2019 Complexity 2019 1Google Scholar

    [27]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285Google Scholar

  • [1] 王永博, 唐曦, 赵乐涵, 张鑫, 邓进, 吴正茂, 杨俊波, 周恒, 吴加贵, 夏光琼. 基于Si3N4微环混沌光频梳的Tbit/s并行实时物理随机数方案. 物理学报, 2024, 73(8): 084203. doi: 10.7498/aps.73.20231913
    [2] 全旭, 邱达, 孙智鹏, 张贵重, 刘嵩. 一个具有共存吸引子的四阶混沌系统动力学分析及FPGA实现. 物理学报, 2023, 72(19): 190502. doi: 10.7498/aps.72.20230795
    [3] 秦铭宏, 赖强, 吴永红. 具有无穷共存吸引子的简单忆阻混沌系统的分析与实现. 物理学报, 2022, 71(16): 160502. doi: 10.7498/aps.71.20220593
    [4] 吕晏旻, 闵富红. 基于现场可编程逻辑门阵列的磁控忆阻电路对称动力学行为分析. 物理学报, 2019, 68(13): 130502. doi: 10.7498/aps.68.20190453
    [5] 肖利全, 段书凯, 王丽丹. 基于Julia分形的多涡卷忆阻混沌系统. 物理学报, 2018, 67(9): 090502. doi: 10.7498/aps.67.20172761
    [6] 王传福, 丁群. 基于混沌系统的SM4密钥扩展算法. 物理学报, 2017, 66(2): 020504. doi: 10.7498/aps.66.020504
    [7] 包涵, 包伯成, 林毅, 王将, 武花干. 忆阻自激振荡系统的隐藏吸引子及其动力学特性. 物理学报, 2016, 65(18): 180501. doi: 10.7498/aps.65.180501
    [8] 杨科利. 耦合不连续系统同步转换过程中的多吸引子共存. 物理学报, 2016, 65(10): 100501. doi: 10.7498/aps.65.100501
    [9] 许雅明, 王丽丹, 段书凯. 磁控二氧化钛忆阻混沌系统及现场可编程逻辑门阵列硬件实现. 物理学报, 2016, 65(12): 120503. doi: 10.7498/aps.65.120503
    [10] 武花干, 陈胜垚, 包伯成. 忆阻混沌系统的脉冲同步与初值影响研究. 物理学报, 2015, 64(3): 030501. doi: 10.7498/aps.64.030501
    [11] 邵书义, 闵富红, 吴薛红, 张新国. 基于现场可编程逻辑门阵列的新型混沌系统实现. 物理学报, 2014, 63(6): 060501. doi: 10.7498/aps.63.060501
    [12] 潘晶, 齐娜, 薛兵兵, 丁群. 基于现场可编程门阵列的手机短信息混沌加密系统设计方案及硬件实现. 物理学报, 2012, 61(18): 180504. doi: 10.7498/aps.61.180504
    [13] 刘 强, 方锦清, 赵耿, 李永. 基于FPGA技术的混沌加密系统研究. 物理学报, 2012, 61(13): 130508. doi: 10.7498/aps.61.130508
    [14] 高博, 余学峰, 任迪远, 李豫东, 崔江维, 李茂顺, 李明, 王义元. 静态存储器型现场可编程门阵列总剂量辐射损伤效应研究. 物理学报, 2011, 60(3): 036106. doi: 10.7498/aps.60.036106
    [15] 周武杰, 禹思敏. 基于现场可编程门阵列技术的混沌数字通信系统——设计与实现. 物理学报, 2009, 58(1): 113-119. doi: 10.7498/aps.58.113
    [16] 周武杰, 禹思敏. 基于IEEE-754标准和现场可编程门阵列技术的混沌产生器设计与实现. 物理学报, 2008, 57(8): 4738-4747. doi: 10.7498/aps.57.4738
    [17] 王发强, 刘崇新. 一类多折叠环面多涡卷混沌吸引子的仿真研究. 物理学报, 2007, 56(4): 1983-1987. doi: 10.7498/aps.56.1983
    [18] 王发强, 刘崇新, 逯俊杰. 四维系统中多涡卷混沌吸引子的仿真研究. 物理学报, 2006, 55(7): 3289-3294. doi: 10.7498/aps.55.3289
    [19] 禹思敏, 林清华, 丘水生. 一类多折叠环面混沌吸引子. 物理学报, 2004, 53(7): 2084-2088. doi: 10.7498/aps.53.2084
    [20] 禹思敏, 林清华, 丘水生. 四维系统中多涡卷混沌与超混沌吸引子的仿真研究. 物理学报, 2003, 52(1): 25-33. doi: 10.7498/aps.52.25
计量
  • 文章访问数:  2663
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-15
  • 修回日期:  2022-08-09
  • 上网日期:  2022-12-02
  • 刊出日期:  2022-12-24

/

返回文章
返回