搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

间隔层调控SrVO3/SrTiO3超晶格铁磁半金属-铁磁绝缘体转变

房晓南 危芹 隋娜娜 孔志勇 刘静 杜颜伶

引用本文:
Citation:

间隔层调控SrVO3/SrTiO3超晶格铁磁半金属-铁磁绝缘体转变

房晓南, 危芹, 隋娜娜, 孔志勇, 刘静, 杜颜伶

Spacer-layer-tunable ferromagnetic half-metal-ferromagnetic insulator transition in SrVO3/SrTiO3 superlattice

Fang Xiao-Nan, Wei Qin, Sui Na-Na, Kong Zhi-Yong, Liu Jing, Du Yan-Ling
PDF
HTML
导出引用
  • 本文利用基于密度泛函理论(DFT)的第一性原理计算研究了SrVO3/SrTiO3(111)超晶格的电子结构、电学和磁学性质. 研究结果表明, SrVO3/SrTiO3(111)超晶格可通过调节间隔层SrTiO3的厚度实现铁磁半金属-铁磁绝缘体的转变. SrVO3亚层之间可以通过厚度为2个原子层的SrTiO3间隔层发生层间耦合, 超晶格呈现铁磁半金属态; 当间隔层SrTiO3的厚度等于3个原子层时, 超晶格出现小的带隙(约0.28 eV); 当间隔层SrTiO3的厚度大于3个原子层时, 超晶格出现较大带隙, 呈现铁磁绝缘态. 进一步对SrVO3/SrTiO3界面附近由于Ti-V混合导致的缺陷界面进行研究发现, 界面附近的Ti-V混合对金属-绝缘体转变具有重要的影响: 与理想界面相比, Ti-V混合的缺陷界面更能抑制层间耦合, 诱导超晶格实现铁磁半金属-铁磁绝缘体的转变. 本研究结果为SrVO3/SrTiO3(111)超晶格通过调控间隔层SrTiO3层数实现铁磁半金属-铁磁绝缘体的转变提供了理论依据.
    In this work, the first-principle calculations based on density functional theory (DFT) are employed to investigate the electronic and magnetic properties of SrVO3/SrTiO3(111) superlattices. The studies show that the transition from ferromagnetic half-metal to ferromagnetic insulator can be achieved by adjusting the thickness of the spacer-layer SrTiO3. The interlayer coupling between the SrVO3 sublayers can occur across two unit-cell (uc) distance of SrTiO3, and the superlattice is ferromagnetic half-metal. When the SrTiO3 sublayers are 3uc, a small band gap (about 0.28 eV) appears in the superlattice. When the SrTiO3 sublayers are more than 3uc, the superlattice has a large band gap and exhibits ferromagnetic insulating state. Further studies show that the Ti-V mixed defects play an important role in realizing the transition of metal-insulator. Compared with the ideal interface, the Ti-V mixed interface can inhibit the interlayer coupling and induce the transition of ferromagnetic half-metal to ferromagnetic insulator. These results provide a theoretical basis for the transition of ferromagnetic half-metal to ferromagnetic insulator by adjusting the number of SrTiO3 layers in SrVO3/SrTiO3(111) superlattices.
      通信作者: 杜颜伶, duyanling@sdutcm.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 82174528)、山东管理学院博士科研启动基金(批准号: SDMUD201901)和山东管理学院科研启航计划(批准号: QH2020Z05)资助的课题.
      Corresponding author: Du Yan-Ling, duyanling@sdutcm.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 82174528), the Start-up Fund for Doctoral Research of Shandong Management University, China (Grant No. SDMUD201901), and the Scientific Research Start-up Project of Shandong Management University, China (Grant No. QH2020Z05).
    [1]

    Moyer J A, Eaton C, Engel-Herbert R 2013 Adv. Mater. 25 3578Google Scholar

    [2]

    Zhang L, Zhou Y, Guo L, Zhao W, Barnes A, Zhang H-T, Eaton C, Zheng Y, Brahlek M, Haneef H F, Podraza N J, Chan M H W, Gopalan V, Rabe K M, Engel-Herbert R 2016 Nat. Mater. 15 204Google Scholar

    [3]

    Kim D H, Kim D W, Kang B S, Noh T W, Lee D R, Lee K B, Lee S J 2000 Solid State Commun. 114 473Google Scholar

    [4]

    Wang J, Gauquelin N, Huijben M, Verbeeck J, Rijnders G, Koster G 2020 Appl. Phys. Lett. 117 133105Google Scholar

    [5]

    Wang G, Wang Z, Meng M, Saghayezhian M, Chen L, Chen C, Guo H, Zhu Y, Plummer W, Zhang J 2019 Phys. Rev. B 100 155114Google Scholar

    [6]

    Pardo V, Pickett W E 2010 Phys. Rev. B 81 245117Google Scholar

    [7]

    Sohn C, Skoropata E, Choi Y, Gao X, Rastogi A, Huon A, McGuire M A, Nuckols L, Zhang Y, Freeland J W, Haskel D, Lee H N 2019 Adv. Mater. 31 1805389Google Scholar

    [8]

    Meng D, Guo H, Cui Z, Ma C, Zhao J, Lu J, Xu H, Wang Z, Hu X, Fu Z, Peng R, Guo J, Zhai X, Brown G J, Knize R, Lu Y 2018 PNAS 115 2873Google Scholar

    [9]

    Okamoto S, Zhu W, Nomura Y, Arita R, Xiao D, Nagaosa N 2014 Phys. Rev. B 89 195121Google Scholar

    [10]

    Beltrán J I, Muñoz M C 2017 Phys. Rev. B 95 245120Google Scholar

    [11]

    Verissimo-Alves M, Garcia-Fernandez P, Bilc D L, Ghosez P, Junquera J 2012 Phys. Rev. Lett. 108 107003Google Scholar

    [12]

    Cossu F, Jilili J, Schwingenschlögl U 2014 Adv. Mater. Interfaces 1 1400057Google Scholar

    [13]

    Song G, Zhang W 2014 Sci. Rep. UK 4 4564Google Scholar

    [14]

    Cossu F, Kim H S, Sanyal B, Di Marco I 2022 NPJ Comp. Mater. 8 1Google Scholar

    [15]

    Yao X, Yi H T, Jain D, Han M G, Oh S 2021 Nano Lett. 21 5914Google Scholar

    [16]

    Cen C, Thiel S, Hammerl G, Schneider C W, Andersen K E, Hellberg C S, Mannhart J, Levy J 2008 Nat. Mater. 7 298Google Scholar

    [17]

    李云, 鲁文建 2021 物理学报 70 218503Google Scholar

    Li Y, Lu W J 2021 Acta Phys. Sin. 70 218503Google Scholar

    [18]

    Li J, Yin D, Li Q, Sun R, Huang S, Meng F 2017 Phys. Chem. Chem. Phys. 19 6945Google Scholar

    [19]

    Kalabukhov A S, Boikov Y A, Serenkov I T, Sakharov V I, Popok V N, Gunnarsson R, Borjesson J, Ljustina N, Olsson E, Winkler D, Claeson T 2009 Phys. Rev. Lett. 103 146101Google Scholar

    [20]

    Kramer B, MacKinnon A, 1993 Rep. Prog. Phys. 56 1469Google Scholar

    [21]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [22]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [24]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943Google Scholar

    [25]

    Du Y L, Wang C L, Li J C, Xu P P, Zhang X H, Liu J, Su W B, Mei L M 2014 Chin. Phys. B 23 087302Google Scholar

    [26]

    Park S Y, Kumar A, Rabe K M 2017 Phys. Rev. Lett. 118 087602Google Scholar

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [28]

    Kuganathan N, Baiutti F, Morata A, Tarancon A, Chroneos A 2021 AIP Adv. 11 075029Google Scholar

    [29]

    Musa Saad HE M 2021 B. Mater. Sci. 44 1Google Scholar

    [30]

    Du Y L, Bu H X, Ji C J, Zhang X M, Li C L, Fang X N 2019 Phys. Chem. Chem. Phys. 21 18170Google Scholar

    [31]

    Xiong L, Yi L, Gao G Y 2014 J. Magn. Magn. Mater. 349 69Google Scholar

    [32]

    贾倩, 杜颖妍, 杜成旭, 陈婷, 刘焦, 于越, 张恒源, 刘明, 毋志民 2019 功能材料 50 12183Google Scholar

    Jia Q, Du Y Y, Du C X, Chen T, Liu J, Yu Y, Zhang H Y, Liu M, Wu Z M 2019 J. Funct. Mater. 50 12183Google Scholar

    [33]

    Ohtomo A, Muller D A, Grazul J L, Hwang H Y 2002 Nature 419 378Google Scholar

    [34]

    Biscaras J, Bergeal N, Kushwaha A, Wolf T, Rastogi A, Budhani R C, Lesueur J 2010 Nat. Commun. 1 1Google Scholar

    [35]

    Xu Q F, Wu D, Li A D 2013 Phys. Lett. A 377 577Google Scholar

    [36]

    范潆方 2019 硕士学位论文 (南京: 南京邮电大学)

    Fan Y F 2019 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese)

    [37]

    Liu Z T Y, Podraza N J, Khare S V, Sarin P 2018 Comput. Mater. Sci. 144 139Google Scholar

  • 图 1  (a) 超晶格(SVO)m/(STO)n(111) (4 ≤ m ≤ 6; 1 ≤ n ≤ 6)的模型之一(SVO)4/(STO)5 (111) 超晶格的顶视图; (b) 超晶格(SVO)4/(STO)5(111) 的侧视图; (c) A-AFM示意图; (d) C-AFM示意图; (e) G-AFM示意图; (f) FM示意图; (g) 各模型基态能量的对比图, 其中铁磁态能量设为零; 图(c)—(f)中, 只显示了Ti和V原子, 其中蓝色小球代表Ti原子, 紫色小球代表自旋向上的V原子, 绿色小球代表自旋向下的V原子

    Fig. 1.  (a) Top view of the (SVO)4/(STO)5(111) superlattice, which is one of the (SVO)m/(STO)n (111) (4 ≤ m ≤ 6; 1 ≤ n ≤ 6) superlattices; (b) side view of (SVO)4/(STO)5(111) superlattice; (c) schematic diagram of A-AFM; (d) schematic diagram of C-AFM; (e) schematic diagram of G-AFM; (f) schematic diagram of FM; (g) energy differences between different magnetic orders of different superlattices. In the figure, the energy of FM states are set to zero. In figures (c)–(f) , only the Ti and V atoms are shown, the blue balls represent the Ti atoms, the purple balls represent the spin-up V atoms, and the green balls represent the spin-down V atoms.

    图 2  沿c轴方向, 各超晶格相邻原子层间距离对比图 (a) (SVO)4/(STO)2 和(SVO)4/(STO)5; (b) (SVO)5/(STO)1和 (SVO)5/(STO)4; (c) (SVO)6/(STO)3和 (SVO)6/(STO)6

    Fig. 2.  The interplanar distance between consecutive planes of different superlattices along the c axis: (a) (SVO)4/(STO)2 and (SVO)4/(STO)5; (b) (SVO)5/(STO)1 and (SVO)5/(STO)4; (c) (SVO)6/(STO)3 and (SVO)6/(STO)6.

    图 3  超晶格在费米能级附近的能带结构和总态密度的对比图 (a) (SVO)5/(STO)1 (111); (b) (SVO)4/(STO)2 (111); (c) (SVO)6/(STO)3 (111); (d) (SVO)5/(STO)4 (111); (e) (SVO)4/(STO)5 (111); (f) (SVO)6/(STO)6 (111). 高对称点如图中第一布里渊区所示; 对应的总态密度图显示在能带图下侧, 黑色实线和红色实线分别代表自旋向上和自旋向下, 费米能级用虚线表示

    Fig. 3.  Comparison of band structures and total state densities near the Fermi level of different superlattices: (a) (SVO)5/(STO)1 (111); (b) (SVO)4/(STO)2 (111); (c) (SVO)6/(STO)3 (111); (d) (SVO)5/(STO)4 (111); (e) (SVO)4/(STO)5 (111); (f) (SVO)6/(STO)6 (111). The inset shows the Brillouin zone and the special points. Black and red lines are spin-up and spin-down states,respectively; the Fermi level is located at 0 eV (dotted black line).

    图 4  (a), (b) (SVO)5/(STO)1 (111)和(SVO)4/(STO)2 (111)超晶格各原子层在费米能级附近的态密度图. 图中自旋向上的电子态密度由浅灰色区域表示, 自旋向下的电子态密度由深灰色区域表示; 黑色虚线表示费米能级

    Fig. 4.  (a), (b) Layer-resolved partial DOS of (SVO)5/(STO)1(111) and (SVO)4/(STO)2 (111) superlattices. Light gray and dark gray areas are spin-up and spin-down states, respectively. The Fermi level is located at 0 eV (dotted black line).

    图 5  (SVO)5/(STO)1 (111) (a)和 (SVO)4/(STO)2 (111) (b)超晶格中 Ti, Sr, O 原子的态密度图; (SVO)5/(STO)1 (111) (c)和 (SVO)4/(STO)2 (111) (d)超晶格中V 原子 3d 轨道的分波态密度图, 黑色虚线表示费米能级

    Fig. 5.  Densities of states near the Fermi level of Ti, Sr and O in (SVO)5/(STO)1 (111) (a) and (SVO)4/(STO)2 (111) (b) superlattices; the partial density of states of V 3d orbitals of (SVO)5/(STO)1 (111) (c) and (SVO)4/(STO)2 (111) (d) superlattices. The Fermi level is located at 0 eV (dotted black line).

    图 6  各超晶格V 原子 3d 轨道的分波态密度图 (a) (SVO)5/(STO)1 (111); (b) (SVO)4/(STO)2 (111); (c) (SVO)6/(STO)3 (111); (d) (SVO)5/(STO)4 (111); (e) (SVO)4/(STO)5 (111); (f) (SVO)6/(STO)6 (111). 其中, 图(b)中V原子的位置与图1(b)中V原子位置一致, 其余模型中V原子的排列与图1(b)中V原子排列相似, 从下往上V原子序号递增. 图中黑色虚线表示费米能级

    Fig. 6.  The partial density of states of V 3d orbitals of different superlattices: (a) (SVO)5/(STO)1 (111); (b) (SVO)4/(STO)2 (111); (c) (SVO)6/(STO)3 (111); (d) (SVO)5/(STO)4 (111); (e) (SVO)4/(STO)5 (111); (f) (SVO)6/(STO)6 (111). Among them, the position of the V atoms in figure (b) are consistent with the position of the V atoms in Fig. 1(b). The arrangement of V atoms in the rest of the models is similar to the arrangement of V atoms in Fig. 1(b). The atomic numbers get bigger and bigger from the bottom up. The Fermi level is located at 0 eV (dotted black line).

    图 7  (a) 含有Ti-V混合缺陷界面的(SVO)m/(ST0.5V0.5O)1/(STO)n-1(111) (4 ≤ m ≤ 6; 1 ≤ n ≤ 6)超晶格之一 (SVO)5/(ST0.5V0.5O)1/(STO)3(111) 的俯视图; (b) (SVO)5/(ST0.5V0.5O)1/(STO)3(111) 超晶格的侧视图; (c)—(h) 各含有Ti-V混合缺陷界面的超晶格在费米能级附近的总态密度的对比图, 其中, (c) (SVO)5/(ST0.5V0.5O)1(111); (d) (SVO)4/(ST0.5V0.5O)1/(STO)1(111); (e) (SVO)6/(ST0.5V0.5O)1/(STO)2(111); (f) (SVO)5/(ST0.5V0.5O)1/(STO)3(111); (g) (SVO)4/(ST0.5V0.5O)1/(STO)4(111); (h) (SVO)6/(ST0.5V0.5O)1/(STO)5(111). 黑色实线和红色实线分别代表自旋向上和自旋向下, 费米能级用虚线表示

    Fig. 7.  (a) Top view of (SVO)5/(ST0.5V0.5O)1/(STO)3(111) superlattice containing the defect interface; (b) side view of (SVO)5/(ST0.5V0.5O)1/(STO)3(111) superlattice; (c)–(h) comparison of total state densities near the Fermi level for the different superlattices, (c) (SVO)5/(ST0.5V0.5O)1(111); (d) (SVO)4/(ST0.5V0.5O)1/(STO)1(111); (e) (SVO)6/(ST0.5V0.5O)1/(STO)2(111); (f) (SVO)5/(ST0.5V0.5O)1/(STO)3(111); (g) (SVO)4/(ST0.5V0.5O)1/(STO)4(111); (h) (SVO)6/(ST0.5V0.5O)1/(STO)5(111). Black and red lines are spin-up and spin-down states, respectively. The Fermi level is located at 0 eV (dotted black line).

    表 1  不同(SVO)m/(STO)n(111)超晶格模型的面内晶格常数

    Table 1.  In-plane lattice constants of the different (SVO)m/(STO)n(111) superlattices.

    m/n4/24/55/15/46/36/6
    面内晶格常数/Å5.505.575.485.575.565.57
    下载: 导出CSV

    表 2  (SVO)m/(STO)n (111)各超晶格V和O的磁矩及体系总磁矩, 各模型中 V 原子的排列与图 1(b)中 V 原子排列相似, 从下往上V 原子的序号递增

    Table 2.  Magnetic moments of V and O atoms and the total magnetic moments of (SVO)m/(STO)n (111) superlattices. The arrangement of V atoms in the models is similar to the arrangement of V atoms in Fig. 1(b). The atomic numbers get bigger and bigger from the bottom up.

    m/n5/14/26/35/44/56/6
    M_v1/μB1.131.011.001.001.001.01
    M_v2/μB1.181.201.021.021.011.00
    M_v3/μB1.041.201.001.021.011.02
    M_v4/μB1.041.011.021.001.001.01
    M_v5/μB1.181.001.001.01
    M_v6/μB1.001.01
    M_Vtotal/μB5.574.426.045.044.026.06
    M_O/μB–0.93–0.74–0.32–0.28–0.23–0.34
    M_Total/μB5.04.06.05.04.06.0
    下载: 导出CSV

    表 3  (SVO)m/(STO)n(111)各理想界面与Ti-V混合缺陷界面超晶格自旋向上态密度带隙值

    Table 3.  Band gaps of spin-up states of (SVO)m/(STO)n(111) superlattices with ideal or defect interfaces.

    Band gap of spin-up states/eV
    m/n5/14/26/35/44/56/6
    Ideal interfaces000.280.511.000.48
    Defect interfaces00.690.560.741.030.77
    下载: 导出CSV
  • [1]

    Moyer J A, Eaton C, Engel-Herbert R 2013 Adv. Mater. 25 3578Google Scholar

    [2]

    Zhang L, Zhou Y, Guo L, Zhao W, Barnes A, Zhang H-T, Eaton C, Zheng Y, Brahlek M, Haneef H F, Podraza N J, Chan M H W, Gopalan V, Rabe K M, Engel-Herbert R 2016 Nat. Mater. 15 204Google Scholar

    [3]

    Kim D H, Kim D W, Kang B S, Noh T W, Lee D R, Lee K B, Lee S J 2000 Solid State Commun. 114 473Google Scholar

    [4]

    Wang J, Gauquelin N, Huijben M, Verbeeck J, Rijnders G, Koster G 2020 Appl. Phys. Lett. 117 133105Google Scholar

    [5]

    Wang G, Wang Z, Meng M, Saghayezhian M, Chen L, Chen C, Guo H, Zhu Y, Plummer W, Zhang J 2019 Phys. Rev. B 100 155114Google Scholar

    [6]

    Pardo V, Pickett W E 2010 Phys. Rev. B 81 245117Google Scholar

    [7]

    Sohn C, Skoropata E, Choi Y, Gao X, Rastogi A, Huon A, McGuire M A, Nuckols L, Zhang Y, Freeland J W, Haskel D, Lee H N 2019 Adv. Mater. 31 1805389Google Scholar

    [8]

    Meng D, Guo H, Cui Z, Ma C, Zhao J, Lu J, Xu H, Wang Z, Hu X, Fu Z, Peng R, Guo J, Zhai X, Brown G J, Knize R, Lu Y 2018 PNAS 115 2873Google Scholar

    [9]

    Okamoto S, Zhu W, Nomura Y, Arita R, Xiao D, Nagaosa N 2014 Phys. Rev. B 89 195121Google Scholar

    [10]

    Beltrán J I, Muñoz M C 2017 Phys. Rev. B 95 245120Google Scholar

    [11]

    Verissimo-Alves M, Garcia-Fernandez P, Bilc D L, Ghosez P, Junquera J 2012 Phys. Rev. Lett. 108 107003Google Scholar

    [12]

    Cossu F, Jilili J, Schwingenschlögl U 2014 Adv. Mater. Interfaces 1 1400057Google Scholar

    [13]

    Song G, Zhang W 2014 Sci. Rep. UK 4 4564Google Scholar

    [14]

    Cossu F, Kim H S, Sanyal B, Di Marco I 2022 NPJ Comp. Mater. 8 1Google Scholar

    [15]

    Yao X, Yi H T, Jain D, Han M G, Oh S 2021 Nano Lett. 21 5914Google Scholar

    [16]

    Cen C, Thiel S, Hammerl G, Schneider C W, Andersen K E, Hellberg C S, Mannhart J, Levy J 2008 Nat. Mater. 7 298Google Scholar

    [17]

    李云, 鲁文建 2021 物理学报 70 218503Google Scholar

    Li Y, Lu W J 2021 Acta Phys. Sin. 70 218503Google Scholar

    [18]

    Li J, Yin D, Li Q, Sun R, Huang S, Meng F 2017 Phys. Chem. Chem. Phys. 19 6945Google Scholar

    [19]

    Kalabukhov A S, Boikov Y A, Serenkov I T, Sakharov V I, Popok V N, Gunnarsson R, Borjesson J, Ljustina N, Olsson E, Winkler D, Claeson T 2009 Phys. Rev. Lett. 103 146101Google Scholar

    [20]

    Kramer B, MacKinnon A, 1993 Rep. Prog. Phys. 56 1469Google Scholar

    [21]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [22]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [24]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943Google Scholar

    [25]

    Du Y L, Wang C L, Li J C, Xu P P, Zhang X H, Liu J, Su W B, Mei L M 2014 Chin. Phys. B 23 087302Google Scholar

    [26]

    Park S Y, Kumar A, Rabe K M 2017 Phys. Rev. Lett. 118 087602Google Scholar

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [28]

    Kuganathan N, Baiutti F, Morata A, Tarancon A, Chroneos A 2021 AIP Adv. 11 075029Google Scholar

    [29]

    Musa Saad HE M 2021 B. Mater. Sci. 44 1Google Scholar

    [30]

    Du Y L, Bu H X, Ji C J, Zhang X M, Li C L, Fang X N 2019 Phys. Chem. Chem. Phys. 21 18170Google Scholar

    [31]

    Xiong L, Yi L, Gao G Y 2014 J. Magn. Magn. Mater. 349 69Google Scholar

    [32]

    贾倩, 杜颖妍, 杜成旭, 陈婷, 刘焦, 于越, 张恒源, 刘明, 毋志民 2019 功能材料 50 12183Google Scholar

    Jia Q, Du Y Y, Du C X, Chen T, Liu J, Yu Y, Zhang H Y, Liu M, Wu Z M 2019 J. Funct. Mater. 50 12183Google Scholar

    [33]

    Ohtomo A, Muller D A, Grazul J L, Hwang H Y 2002 Nature 419 378Google Scholar

    [34]

    Biscaras J, Bergeal N, Kushwaha A, Wolf T, Rastogi A, Budhani R C, Lesueur J 2010 Nat. Commun. 1 1Google Scholar

    [35]

    Xu Q F, Wu D, Li A D 2013 Phys. Lett. A 377 577Google Scholar

    [36]

    范潆方 2019 硕士学位论文 (南京: 南京邮电大学)

    Fan Y F 2019 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese)

    [37]

    Liu Z T Y, Podraza N J, Khare S V, Sarin P 2018 Comput. Mater. Sci. 144 139Google Scholar

  • [1] 曹文彧, 张雅婷, 魏彦锋, 朱丽娟, 徐可, 颜家圣, 周书星, 胡晓东. 超晶格插入层对InGaN/GaN多量子阱的应变调制作用. 物理学报, 2024, 73(7): 077201. doi: 10.7498/aps.73.20231677
    [2] 王继光, 李珑玲, 邱嘉图, 陈许敏, 曹东兴. 钙钛矿超晶格材料界面二维电子气的调控. 物理学报, 2023, 72(17): 176801. doi: 10.7498/aps.72.20230573
    [3] 魏浩铭, 张颖, 张宙, 吴仰晴, 曹丙强. 极性补偿对LaMnO3/LaNiO3超晶格交换偏置场强度的影响. 物理学报, 2022, 71(15): 156801. doi: 10.7498/aps.71.20220365
    [4] 房晓南, 杜颜伶, 吴晨雨, 刘静. (SrVO3)5/(SrTiO3)1(111)异质结金属-绝缘体转变和磁性调控的第一性原理研究. 物理学报, 2022, 71(18): 187301. doi: 10.7498/aps.71.20220627
    [5] 刘英光, 任国梁, 郝将帅, 张静文, 薛新强. 含有倾斜界面硅/锗超晶格的导热性能. 物理学报, 2021, 70(11): 113101. doi: 10.7498/aps.70.20201807
    [6] 刘英光, 郝将帅, 任国梁, 张静文. 不同周期结构硅锗超晶格导热性能研究. 物理学报, 2021, 70(7): 073101. doi: 10.7498/aps.70.20201789
    [7] 李云, 鲁文建. 掺杂维度和浓度调控的δ掺杂的La:SrTiO3超晶格结构金属-绝缘体转变. 物理学报, 2021, 70(22): 227102. doi: 10.7498/aps.70.20210830
    [8] 赵国栋, 杨亚利, 任伟. 钙钛矿型氧化物非常规铁电研究进展. 物理学报, 2018, 67(15): 157504. doi: 10.7498/aps.67.20180936
    [9] 焦媛媛, 孙建平, Prashant Shahi, 刘哲宏, 王铂森, 龙有文, 程金光. Pb掺杂对Cd2Ru2O7反常金属态的调控. 物理学报, 2018, 67(12): 127402. doi: 10.7498/aps.67.20180343
    [10] 王泽霖, 张振华, 赵喆, 邵瑞文, 隋曼龄. 电触发二氧化钒纳米线发生金属-绝缘体转变的机理. 物理学报, 2018, 67(17): 177201. doi: 10.7498/aps.67.20180835
    [11] 李柱松, 朱泰山. 超晶格和层状结构传热特性的连续模型及其在能源材料设计中的应用. 物理学报, 2016, 65(11): 116802. doi: 10.7498/aps.65.116802
    [12] 罗晓华, 何为, 吴木营, 罗诗裕. 准周期激励与应变超晶格的动力学稳定性. 物理学报, 2013, 62(24): 247301. doi: 10.7498/aps.62.247301
    [13] 冯现徉, 逯瑶, 蒋雷, 张国莲, 张昌文, 王培吉. In掺杂ZnO超晶格光学性质的研究. 物理学报, 2012, 61(5): 057101. doi: 10.7498/aps.61.057101
    [14] 尚杰, 张辉, 曹明刚, 张鹏翔. 氧压对Ba0.6Sr0.4TiO3薄膜晶格常数的影响及BaTiO3/Ba0.6Sr0.4TiO3超晶格的制备. 物理学报, 2011, 60(1): 016802. doi: 10.7498/aps.60.016802
    [15] 蒋雷, 王培吉, 张昌文, 冯现徉, 逯瑶, 张国莲. 超晶格SnO2掺Cr的电子结构和光学性质的研究. 物理学报, 2011, 60(9): 093101. doi: 10.7498/aps.60.093101
    [16] 李志华, 王文新, 刘林生, 蒋中伟, 高汉超, 周均铭. As保护下的生长中断时间对AlSb/InAs超晶格界面粗糙度的影响. 物理学报, 2007, 56(3): 1785-1789. doi: 10.7498/aps.56.1785
    [17] 邓成良, 邵明珠, 罗诗裕. 带电粒子同超晶格的相互作用与系统的混沌行为. 物理学报, 2006, 55(5): 2422-2426. doi: 10.7498/aps.55.2422
    [18] 顾培夫, 陈海星, 秦小芸, 刘 旭. 基于薄膜光子晶体超晶格理论的偏振带通滤波器. 物理学报, 2005, 54(2): 773-776. doi: 10.7498/aps.54.773
    [19] 张启义, 田强. 超晶格中电场单极畴与偶极畴的形成和输运. 物理学报, 2002, 51(8): 1804-1807. doi: 10.7498/aps.51.1804
    [20] 魏建华, 解士杰, 梅良模. 混合金属卤化物的超晶格与量子线特征. 物理学报, 2000, 49(11): 2254-2260. doi: 10.7498/aps.49.2254
计量
  • 文章访问数:  3695
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-09
  • 修回日期:  2022-10-08
  • 上网日期:  2022-10-19
  • 刊出日期:  2022-12-05

/

返回文章
返回