搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带电微粒在滤膜附近的定向运动

周宏伟 欧阳文泽 徐升华

引用本文:
Citation:

带电微粒在滤膜附近的定向运动

周宏伟, 欧阳文泽, 徐升华

Directional motion of charged particles near filter membrane

Zhou Hong-Wei, Ouyang Wen-Ze, Xu Sheng-Hua
PDF
HTML
导出引用
  • 滤膜在过滤和分离领域具有非常广泛的使用, 但滤膜对溶液中的组分具有吸引或排斥作用, 导致粒子产生定向运动, 进而在膜附近产生粒子富集或“粒子禁区”等截然不同的效应, 目前对此认识尚不清楚, 粒子浓度分布不能实时准确测量是其中最大的困难. 本文以表面带负电荷的胶体粒子为模型物质, 利用胶体粒子结晶后粒子浓度可以实时原位测量的优势, 研究了纤维素滤膜对粒子运动行为的影响规律. 研究结果发现带电微粒会自发地在滤膜表面产生富集, 滤膜中微量阴阳离子释放导致的扩散泳效应是微粒朝向滤膜产生定向运动的主要原因, 基于扩散泳和粒子扩散两种机制构建了粒子运动方程和模型, 数值计算结果和实验结果定性一致. 此外, 粒子除了朝向滤膜的纵向运动之外, 壁面电渗流和横向扩散还会使粒子朝向壁面产生迁移, 导致管壁粒子数的增多.
    Membrane has many applications in the fields of filtration and separation, but due to the attraction or repulsion exerted by the membrane, the particles will experience a directional motion. As a result, two totally opposite effects, i.e. particle enrichment and exclusion zone, take place in the vicinity of the membrane, and the underlying reason is still not clear. In this work, colloidal particles with negative surface charge are used as a model substance, with the advantages of monitoring the particle concentration in a real time and in situ way, to investigate the influence of cellulose membrane on the movement of particles. The experimental results show that the particles are enriched in the vicinity of the membrane. The diffusiophoresis effect originating from tiny number of ions released by the film is the main reason of the directional movement of the charged particles. Based on the two mechanisms of diffusiophoresis and diffusion, we construct a model and make relevant numerical calculation, and the numerical results are qualitatively consistent with the experimental results. Moreover, in addition to the longitudinal motion of the particles towards the filter membrane, diffusio-osmotic flow and particles lateral diffusion also result in the migration of particles towards the container wall, and further increasing the particle number near the wall.
      通信作者: 徐升华, xush@imech.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 22172180, 11672295)资助的课题.
      Corresponding author: Xu Sheng-Hua, xush@imech.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 22172180, 11672295)
    [1]

    Zhou Q, Bao Y, Zhang H, Luan Q, Tang H, Li X 2020 Cellulose 27 335Google Scholar

    [2]

    凤权, 武丁胜, 桓珊, 杨子龙, 应志祥 2016 纺织学报 37 12Google Scholar

    Feng Q, Wu D S, Huan S, Yang Z L, Ying Z X 2016 J. Textile Res. 37 12Google Scholar

    [3]

    Bhatt B, Kumar V 2015 J. Pharm. Sci. 104 4266Google Scholar

    [4]

    Liu S, Zeng J, Tao D, Zhang L 2010 Cellulose 17 1159Google Scholar

    [5]

    Florea D, Musa S, Huyghe J M R, Wyss H M 2014 P Natl. Acad. Sci. USA 111 6554Google Scholar

    [6]

    Lee H, Kim J, Yang J, Seo S W, Kim S J 2018 Lab on a Chip 18 1713Google Scholar

    [7]

    Chen C S, Farr E, Anaya J M, Chen E Y T, Chin W C 2015 Entropy 17 1466Google Scholar

    [8]

    Esplandiu M J, Reguera D, Fraxedas J 2020 Soft Matter 16 3717Google Scholar

    [9]

    Oh S H, Im S J, Jeong S, Jang A 2018 Desalination 438 10Google Scholar

    [10]

    Oh S H, Jeong S, Kim I S, Shon H K, Jang A 2019 J. Environ. Manage. 247 385Google Scholar

    [11]

    Zhang X, Tian J, Gao S, Shi W, Zhang Z, Cui F, Zhang S, Guo S, Yang X, Xie H, Liu D 2017 J. Membrane Sci. 544 368Google Scholar

    [12]

    Singh G, Song L F 2007 Journal of Membrane Science 303 112Google Scholar

    [13]

    Fahim A, Annunziata O 2020 Langmuir 36 2635Google Scholar

    [14]

    Wilson J L, Shim S, Yu Y E, Gupta A, Stone H A 2020 Langmuir 36 7014Google Scholar

    [15]

    Prieve D C, Malone S M, Khair A S, Stout R F, Kanj M Y 2019 PNAS 116 18257Google Scholar

    [16]

    王林伟, 徐升华, 周宏伟, 孙祉伟, 欧阳文泽, 徐丰 2017 物理学报 66 066102Google Scholar

    Wang L W, Xu S H, Zhou H W, Sun Z W, Ouyang W Z, Xu F, 2017 Acta Phys. Sin. 66 066102Google Scholar

    [17]

    Wette P, Schöpe H J, Liu J, Palberg T 2004 Prog. Colloid Polym. Sci. 123 264Google Scholar

    [18]

    Wang S, Zhou H, Sun Z, Xu S, Ouyang W, Wang L 2020 Sci. Rep. 10 9084Google Scholar

    [19]

    Anderson J L 1989 Annu. Rev. Fluid. Mech. 21 61Google Scholar

    [20]

    Keh H J 2016 Curr. Opin. Colloid Interface Sci. 24 13Google Scholar

    [21]

    Velegol D, Garg A, Guha R, Kar A, Kumar M 2016 Soft Matter 12 4686Google Scholar

    [22]

    Shin S 2020 Phys. Fluids 32 101302Google Scholar

    [23]

    Chiang T Y, Velegol D 2014 J. Colloid Interface Sci. 424 120Google Scholar

    [24]

    Gupta A, Rallabandi B, Stone H A 2019 Phys. Rev. Fluids 4 043702Google Scholar

    [25]

    Gonzalez A E 2001 Phys. Rev. Lett. 86 1243Google Scholar

    [26]

    Niu R, Oguz E C, Muller H, Reinmuller A, Botin D, Lowen H, Palberg T 2017 Phys. Chem. Chem. Phys. 19 3104Google Scholar

    [27]

    Reinmueller A, Schoepe H J, Palberg T 2013 Langmuir 29 1738Google Scholar

    [28]

    Segre G, Silberberg A 1961 Nature 189 209Google Scholar

    [29]

    苏敬宏2021 博士学位论文 (北京: 中国科学院大学)

    Su J H 2021 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [30]

    Rubinow S I, Keller J B 1961 J. Fluid Mech. 11 447Google Scholar

    [31]

    Musa S, Florea D, Wyss H M, Huyghe J M 2016 Soft Matter 12 1127Google Scholar

    [32]

    Shinde A, Huang D L, Saldivar M, Xu H F, Zeng M X, Okeibunor U, Wang L, Mejia C, Tin P, George S, Zhang L C, Cheng Z D 2019 Acs Nano 13 12461Google Scholar

  • 图 1  实验装置示意图

    Fig. 1.  Sketch of the experimental setup.

    图 2  (a) t = 0.2 h和(b) t = 31 h两个典型时刻的反射光谱图, 以及与之对应的反射峰波长分布(c)和粒子体积分数分布(d)

    Fig. 2.  Reflection spectra at two typical time points (a) t = 0.2 h and (b) t = 31 h, and the corresponding peak wavelength distribution (c) and volume fraction distribution (d).

    图 3  样品管中粒子浓度分布的演变过程 (a)不同时刻的Φ-L曲线; (b)不同位置的Φ-t曲线

    Fig. 3.  Particle concentration evolution in the sample tube: (a) Φ-L curves at different time points; (b) Φ-t curves at different locations.

    图 4  纯水-滤膜-粒子溶液(WP)体系和溶液-滤膜-粒子溶液(PP)体系在不同时刻的粒子浓度分布

    Fig. 4.  Particle concentration profiles in water-film-particle (WP) system and particle-film-particle (PP) system at different times.

    图 5  模型示意图(a)和数值计算结果(b)

    Fig. 5.  Schematic diagram of the model (a) and the numerical simulation results (b).

    图 6  壁面粒子数的计算 (a) 粒子迁移量计算示意图; (b)增加的粒子数、减少的粒子数和粒子数净变化

    Fig. 6.  Calculation of particle numbers near the container wall: (a) Model used to calculate the number of migrated particles; (b) the increased, decreased and the net change of particle numbers.

    图 7  样品池内流动示意图

    Fig. 7.  Schematic diagram of flow in the sample cell.

    表 1  滤膜中所含离子的成分、浓度以及相关离子的迁移率

    Table 1.  Ion species and concentration contained in the film and the mobility of relevant ions.

    Cl${\rm NO}_3^- $${\rm SO}_4^{2-}$Na+${\rm NH}_4^+$K+
    (I) 离子浓度/( mol·L–1)纯水8.00×10–83.74×10–85.07×10–91.46×10–78.09×10–88.01×10–8
    纯水 + 滤膜3.06×10–61.49×10–73.59×10–73.21×10–52.04×10–61.12×10–6
    (II) 离子迁移率/(m2·s–1)2.03×10–91.9×10–91.07×10–91.33×10–91.98×10–91.96×10–9
    下载: 导出CSV
  • [1]

    Zhou Q, Bao Y, Zhang H, Luan Q, Tang H, Li X 2020 Cellulose 27 335Google Scholar

    [2]

    凤权, 武丁胜, 桓珊, 杨子龙, 应志祥 2016 纺织学报 37 12Google Scholar

    Feng Q, Wu D S, Huan S, Yang Z L, Ying Z X 2016 J. Textile Res. 37 12Google Scholar

    [3]

    Bhatt B, Kumar V 2015 J. Pharm. Sci. 104 4266Google Scholar

    [4]

    Liu S, Zeng J, Tao D, Zhang L 2010 Cellulose 17 1159Google Scholar

    [5]

    Florea D, Musa S, Huyghe J M R, Wyss H M 2014 P Natl. Acad. Sci. USA 111 6554Google Scholar

    [6]

    Lee H, Kim J, Yang J, Seo S W, Kim S J 2018 Lab on a Chip 18 1713Google Scholar

    [7]

    Chen C S, Farr E, Anaya J M, Chen E Y T, Chin W C 2015 Entropy 17 1466Google Scholar

    [8]

    Esplandiu M J, Reguera D, Fraxedas J 2020 Soft Matter 16 3717Google Scholar

    [9]

    Oh S H, Im S J, Jeong S, Jang A 2018 Desalination 438 10Google Scholar

    [10]

    Oh S H, Jeong S, Kim I S, Shon H K, Jang A 2019 J. Environ. Manage. 247 385Google Scholar

    [11]

    Zhang X, Tian J, Gao S, Shi W, Zhang Z, Cui F, Zhang S, Guo S, Yang X, Xie H, Liu D 2017 J. Membrane Sci. 544 368Google Scholar

    [12]

    Singh G, Song L F 2007 Journal of Membrane Science 303 112Google Scholar

    [13]

    Fahim A, Annunziata O 2020 Langmuir 36 2635Google Scholar

    [14]

    Wilson J L, Shim S, Yu Y E, Gupta A, Stone H A 2020 Langmuir 36 7014Google Scholar

    [15]

    Prieve D C, Malone S M, Khair A S, Stout R F, Kanj M Y 2019 PNAS 116 18257Google Scholar

    [16]

    王林伟, 徐升华, 周宏伟, 孙祉伟, 欧阳文泽, 徐丰 2017 物理学报 66 066102Google Scholar

    Wang L W, Xu S H, Zhou H W, Sun Z W, Ouyang W Z, Xu F, 2017 Acta Phys. Sin. 66 066102Google Scholar

    [17]

    Wette P, Schöpe H J, Liu J, Palberg T 2004 Prog. Colloid Polym. Sci. 123 264Google Scholar

    [18]

    Wang S, Zhou H, Sun Z, Xu S, Ouyang W, Wang L 2020 Sci. Rep. 10 9084Google Scholar

    [19]

    Anderson J L 1989 Annu. Rev. Fluid. Mech. 21 61Google Scholar

    [20]

    Keh H J 2016 Curr. Opin. Colloid Interface Sci. 24 13Google Scholar

    [21]

    Velegol D, Garg A, Guha R, Kar A, Kumar M 2016 Soft Matter 12 4686Google Scholar

    [22]

    Shin S 2020 Phys. Fluids 32 101302Google Scholar

    [23]

    Chiang T Y, Velegol D 2014 J. Colloid Interface Sci. 424 120Google Scholar

    [24]

    Gupta A, Rallabandi B, Stone H A 2019 Phys. Rev. Fluids 4 043702Google Scholar

    [25]

    Gonzalez A E 2001 Phys. Rev. Lett. 86 1243Google Scholar

    [26]

    Niu R, Oguz E C, Muller H, Reinmuller A, Botin D, Lowen H, Palberg T 2017 Phys. Chem. Chem. Phys. 19 3104Google Scholar

    [27]

    Reinmueller A, Schoepe H J, Palberg T 2013 Langmuir 29 1738Google Scholar

    [28]

    Segre G, Silberberg A 1961 Nature 189 209Google Scholar

    [29]

    苏敬宏2021 博士学位论文 (北京: 中国科学院大学)

    Su J H 2021 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [30]

    Rubinow S I, Keller J B 1961 J. Fluid Mech. 11 447Google Scholar

    [31]

    Musa S, Florea D, Wyss H M, Huyghe J M 2016 Soft Matter 12 1127Google Scholar

    [32]

    Shinde A, Huang D L, Saldivar M, Xu H F, Zeng M X, Okeibunor U, Wang L, Mejia C, Tin P, George S, Zhang L C, Cheng Z D 2019 Acs Nano 13 12461Google Scholar

  • [1] 崔杰, 苏俊杰, 王军, 夏国栋, 李志刚. 自由分子区内纳米颗粒的热泳力计算. 物理学报, 2021, 70(5): 055101. doi: 10.7498/aps.70.20201629
    [2] 楚硕, 郭春文, 王志军, 李俊杰, 王锦程. 浓度相关的扩散系数对定向凝固枝晶生长的影响. 物理学报, 2019, 68(16): 166401. doi: 10.7498/aps.68.20190603
    [3] 周光雨, 陈力, 张鸿雁, 崔海航. 基于格子Boltzmann方法的自驱动Janus颗粒扩散泳力. 物理学报, 2017, 66(8): 084703. doi: 10.7498/aps.66.084703
    [4] 夏懿, 库晓珂, 沈苏华. 布朗运动和湍流扩散作用下槽流中纤维悬浮流动特性的研究. 物理学报, 2016, 65(19): 194702. doi: 10.7498/aps.65.194702
    [5] 沈明仁, 刘锐, 厚美瑛, 杨明成, 陈科. 自扩散泳微观转动马达的介观模拟. 物理学报, 2016, 65(17): 170201. doi: 10.7498/aps.65.170201
    [6] 王雷磊, 崔海航, 张静, 郑旭, 王磊, 陈力. 不同粒径Janus微球的自驱动:实验及驱动机制对比. 物理学报, 2016, 65(22): 220201. doi: 10.7498/aps.65.220201
    [7] 黄雪峰, 李盛姬, 周东辉, 赵冠军, 王关晴, 徐江荣. 介观尺度下活性炭微粒的光镊捕捉、点火和扩散燃烧特性研究. 物理学报, 2014, 63(17): 178802. doi: 10.7498/aps.63.178802
    [8] 丁光涛. 磁场中带电粒子阻尼运动的分析力学表示. 物理学报, 2012, 61(2): 020204. doi: 10.7498/aps.61.020204
    [9] 刘金远, 陈龙, 王丰, 王楠, 段萍. 聚变等离子体中尘埃杂质的带电和运动特性及温度变化研究. 物理学报, 2010, 59(12): 8692-8700. doi: 10.7498/aps.59.8692
    [10] 陆裕东, 何小琦, 恩云飞, 王歆, 庄志强. 倒装芯片上金属布线/凸点互连结构中原子的定向扩散. 物理学报, 2010, 59(5): 3438-3444. doi: 10.7498/aps.59.3438
    [11] 冀忠宝, 夏钟福, 沈莉莉, 安振连. 电晕充电的聚丙烯无纺布空气过滤膜的电荷储存及稳定性. 物理学报, 2005, 54(8): 3799-3804. doi: 10.7498/aps.54.3799
    [12] 金进生, 夏阿根, 叶高翔. 带电液体基底表面银原子的凝聚和扩散行为. 物理学报, 2002, 51(9): 2144-2149. doi: 10.7498/aps.51.2144
    [13] 刘存业, 王跃, 李建. 电弧法磁性超细微粒分析. 物理学报, 2000, 49(4): 786-790. doi: 10.7498/aps.49.786
    [14] 吴奇学. 带电粒子在均匀磁场与三维各向同性谐振子场中运动的双波描述. 物理学报, 2000, 49(7): 1211-1214. doi: 10.7498/aps.49.1211
    [15] 黄湘友. 质谱仪中带电粒子运动的双波描述. 物理学报, 1996, 45(5): 729-737. doi: 10.7498/aps.45.729
    [16] 黄湘友, 刘全慧, 田旭, 裘忠平. 均匀磁场中带电粒子运动的双波描述. 物理学报, 1993, 42(2): 180-187. doi: 10.7498/aps.42.180
    [17] 刘俊明. 层状共晶定向凝固. 物理学报, 1992, 41(5): 861-868. doi: 10.7498/aps.41.861
    [18] 邓昭镜. 超微粒蒸发源特性研究. 物理学报, 1992, 41(8): 1255-1260. doi: 10.7498/aps.41.1255
    [19] 胡希伟. 带电粒子在空间关联的湍动静电场中扩散行为的粒子模拟. 物理学报, 1991, 40(12): 1942-1947. doi: 10.7498/aps.40.1942
    [20] 庞锦忠, 龚昌德. 金属微粒对于隧道性质的影响. 物理学报, 1985, 34(12): 1539-1548. doi: 10.7498/aps.34.1539
计量
  • 文章访问数:  1925
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-28
  • 修回日期:  2022-11-09
  • 上网日期:  2022-12-02
  • 刊出日期:  2023-02-05

/

返回文章
返回