搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

在间接驱动内爆实验中采用花生腔增强对称性调控

黄天晅 吴畅书 陈忠靖 晏骥 李欣 葛峰峻 张兴 蒋炜 邓博 侯立飞 蒲昱东 董云松 王立锋

引用本文:
Citation:

在间接驱动内爆实验中采用花生腔增强对称性调控

黄天晅, 吴畅书, 陈忠靖, 晏骥, 李欣, 葛峰峻, 张兴, 蒋炜, 邓博, 侯立飞, 蒲昱东, 董云松, 王立锋

Improving symmetry tuning with I-raum in indirect-driven implosions

Huang Tian-Xuan, Wu Chang-Shu, Chen Zhong-Jing, Yan Ji, Li Xin, Ge Feng-Jun, Zhang Xing, Jiang Wei, Deng Bo, Hou Li-Fei, Pu Yu-Dong, Dong Yun-Song, Wang Li-Feng
PDF
HTML
导出引用
  • 在100 kJ激光装置上开展了基于三台阶整形脉冲的间接驱动惯性约束聚变内爆实验研究. 采用传统充气直柱金壁黑腔设计, 在激光脉冲作用后期, 腔内金等离子体运动对激光能量沉积和X光辐射场空间分布产生严重扰动, 导致靶丸赤道驱动偏弱, 形成不可接受的扁圆内爆. 本文采用新型的花生腔设计, 通过调节外环激光光斑及其产生的金泡的初始位置, 补偿和缓解金等离子体运动对黑腔X光辐射分布产生的扰动影响, 获得球对称的靶丸辐射驱动. 在靶丸驱动辐射温度相同的条件下, 由于驱动对称性得到显著改善, 实验观测到花生腔内爆热斑接近球形, 中子产额的测量结果与内爆一维模拟计算结果的比值(YOS)达到30%; 而直柱腔内爆热斑呈现扁圆形状, YOS仅为13%. 模拟计算和实验结果一致表明, 在三台阶整形脉冲驱动内爆实验中, 花生腔设计可以有效抑制外环金泡膨胀加剧产生的不利因素, 增强辐射驱动和内爆对称性调控, 并提高内爆性能.
    Indirectly driven inertial confinement fusion implosions using a three-step-shaped pulse are performed at a 100 kJ laser facility. At late time of the pulse, deposition of laser energy and distribution of X-ray radiation are significantly disturbed by motion of gold plasma in the original gas-filled cylindrical hohlraum with gold wall. As a result, owing to the lack of X-ray drive at the equator of the capsule, an unacceptable oblate implosion is produced. In the I-raum modified from the above cylindrical hohlraum, the initial positions of outer laser spots and gold bubbles are appropriately shifted to modify the disturbed radiation distribution due to plasma evolution, resulting in a spherically symmetric drive on the capsule. In the implosion shots with almost the same drive pulse, owing to improved symmetry, an spherical hotspot is observed in the new I-raum, and YOS (the ratio of measured neutron yield over simulated one) is up to 30%, while an oblate hotspot is observed in the cylinder, and YOS is only 13%. The simulation calculations and experimental measurements show that the I-raum can be used to significantly reduce the impact of gold bubble expansion in the three-step-shaped pulse driven implosion, which helps to tune the drive and implosion symmetry, and to improve its over-all performance.
      通信作者: 晏骥, lucifer@mail.ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12075221, 12075220)资助的课题.
      Corresponding author: Yan Ji, lucifer@mail.ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12075221, 12075220).
    [1]

    Nuckolls J, Wood L, Thiessen A, Zimmerman G 1972 Nature 239 139Google Scholar

    [2]

    Lindl J D, Amendt P, Berger R L, et al. 2004 Phys. Plasmas 11 339Google Scholar

    [3]

    Lindl J D, Landen O L, Edwards J, NIC Team 2014 Phys. Plasmas 21 020501Google Scholar

    [4]

    Kozioziemski B, Mapoles E, Sater J, et al. 2011 Fusion Sci. Technol. 59 14Google Scholar

    [5]

    Zheng W G, Wei X F, Zhu Q H, et al. 2016 High Power Laser Sci. Eng. 4 e21Google Scholar

    [6]

    Pu Y D, Huang T X, Ge F J, et al. 2018 Plasma Phys. Control. Fusion 60 085017Google Scholar

    [7]

    Li C Y, Wu C S, Huang T X, et al. 2019 Phys. Plasmas 26 022705Google Scholar

    [8]

    Gu J F, Ge F J, Zou S Y, et al. 2018 Phys. Plasmas 25 122706Google Scholar

    [9]

    Yan J, Shen H, Chen Z J, et al. 2021 Nucl. Fusion 61 016011Google Scholar

    [10]

    Moses E I, Boyd R, Remington B, et al. 2009 Phys. Plasmas 16 041006Google Scholar

    [11]

    Fernández J C, Goldman S R, Kline J L, et al. 2006 Phys. Plasmas 13 056319Google Scholar

    [12]

    Edwards M J, Patel P K, Lindl J D, et al. 2013 Phys. Plasmas 20 070501Google Scholar

    [13]

    Weber S V, Casey D T, Ede D C, et al. 2014 Phys. Plasmas 21 112706Google Scholar

    [14]

    Park H S, Hurricane O A, Callahan D A, et al. 2014 Phys. Rev. Lett. 112 055001Google Scholar

    [15]

    Pak A, Dewald E L, Landen O L, et al. 2015 Phys. Plasmas 22 122701Google Scholar

    [16]

    Hinkel D E, Berzak Hopkins L F, Ma T, et al. 2016 Phys. Rev. Lett. 117 225002Google Scholar

    [17]

    Ho D D, Haan S W, Salmonson J D, et al. 2016 J. Phys. Conf. Ser. 717(1) 012023

    [18]

    Milovich J L, Dewald E L, Pak A, et al. 2016 Phys. Plasmas 23 032701Google Scholar

    [19]

    Pape S L, Berzak Hopkins L F, Divol L, et al. 2016 Phys. Plasmas 23 056311Google Scholar

    [20]

    Hall G N, Jones O S, Strozzi D J, et al. 2017 Phys. Plasmas 24 052706Google Scholar

    [21]

    Callahan D A, Hurricane O A, Ralph J E, et al. 2018 Phys. Plasmas 25 056305Google Scholar

    [22]

    Ralph J E, Landen O L, Divol L, et al. 2018 Phys. Plasmas 25 082701Google Scholar

    [23]

    Kritcher A L, Ralph J, Hinkel D E, et al. 2018 Phys. Rev. E 98 053206Google Scholar

    [24]

    Robey H F, Hopkins L B, Milovich J L, and Meezan N B, 2018 Phys. Plasmas 25 052706Google Scholar

    [25]

    Zylstra A B, Hurricane O A, Callahan D A, et al. 2021 Nucl. Fusion 61 116066Google Scholar

    [26]

    Zylstra A B, Hurricane O A, Zimmerman G B 2022 Nature 601 542Google Scholar

    [27]

    Abu-Shawareb H, et al. (ICF Collaboration). 2022 Phys. Rev. Lett. 129 075001Google Scholar

    [28]

    Li Z C, Jiang X H, Liu S Y, Huang T X, Zheng J, Yang J M, Li S W, Guo L, Zhao X F, Du H B, Song T M, Yi R Q, Liu Y G, Jiang S E, DingY K 2010 Rev. Sci. Instrum. 81 073504Google Scholar

    [29]

    Jiang W, Yan J, Ge F J, Chen T, Jing L F, Chen Z J, Chen B L, Pu Y D, Yu B, Duan X X, Huang T X, Zheng J, DingY K 2019 Phys. Plasmas 26 022704Google Scholar

    [30]

    Tang Q, Chen J B, Xiao Y Q, Yi T, Liu Z J, Zhan X Y, Song Z F 2020 Rev. Sci. Instrum. 91 023508Google Scholar

    [31]

    Song Z F, Chen J B, Liu Z J, Zhan X Y, Tang Q 2015 Plasma Sci. Technol. 17 337Google Scholar

    [32]

    Fan Z F, Zhu S P, Pei W B, Ye W H, Li M, Xu X W, Wu J F, Dai Z S, Wang L F 2012 EPL: Lett. J. Explor. Front. Phys. 99 65003

    [33]

    宋鹏, 翟传磊, 李双贵, 等 2015 强激光与粒子束 27 032007

    Song P, Zhai C L, Li S G, et al. 2015 High Power Laser Part. Beams 27 032007 (in Chinese)

    [34]

    裴文兵, 朱少平 2009 物理 38 559

    Pei W B, Zhu S P 2009 Physics 38 559

  • 图 1  花生腔激光打靶示意图, 与直柱腔的区别是在外环激光光斑处具有环形凹槽

    Fig. 1.  The I-Raum has recessed pockets for the laser spots of outer cones, slightly different from a cylinder.

    图 2  直柱腔1与花生腔2内金泡、内外环激光束与靶丸的几何关系图

    Fig. 2.  Schematic illustration for gold bubbles, laser beams and the capsule inside a cylinder 1 or an I-raum 2.

    图 3  黑腔等离子体发射X光图像 (a)直柱腔; (b)花生腔 ①靶丸阴影区, ②外环光斑区, ③非光斑区, ④内环光斑区

    Fig. 3.  X-ray emission images from the hohlraum plasma: (a) Cylinder; (b) I-raum, ① capsule shadow, ② outer laser spots, ③ dark region without laser, ④ inner laser spots,respectively.

    图 4  激光能量吸收(第一象限)、电子温度Te(第二象限)、电子密度Ne(第三象限)和辐射温度Tr(第三象限)在激光加载4.0 ns时刻的空间分布 (a)直柱腔; (b)花生腔

    Fig. 4.  Distributions of laser energy absorption (1 st quadrant), electron temperature Te (2 nd quadrant), electron density Ne (3 rd quadrant), and radiation temperature Tr (4 th quadrant), respectively, at 4.0 ns: (a) Cylinder; (d) I-raum.

    图 5  激光-X光辐射能量转换 (a)实际打靶激光功率; (b)黑腔局部辐射温度Trhoh的模拟计算和实际测量结果

    Fig. 5.  Laser energy converted into X-ray radiation: (a) Laser power measured for cylinder (blue dash) and for I-raum (red solid), respectively; (b) local radiation temperature Trhoh simulated for cylinder (blue cross) and for I-raum (red circle), and measured for cylinder (blue dash) and for I-raum (red solid), respectively.

    图 6  模拟计算得到的靶丸驱动辐射温度Trcap与驱动不对称性 (a) P2; (b) P4

    Fig. 6.  Simulated drive temperatures Trcap and asymmetry components on the capsules, respectively: (a) P2; (b) P4.

    图 7  最强时刻的内爆热斑发射X光图像, 取30%等高线 (a)直柱腔; (b)花生腔

    Fig. 7.  X-ray emission images from implosion hotspots at peak time, with a contour at 30% of the maximum intensity, respectively: (a) Cylinder; (b) I-raum.

  • [1]

    Nuckolls J, Wood L, Thiessen A, Zimmerman G 1972 Nature 239 139Google Scholar

    [2]

    Lindl J D, Amendt P, Berger R L, et al. 2004 Phys. Plasmas 11 339Google Scholar

    [3]

    Lindl J D, Landen O L, Edwards J, NIC Team 2014 Phys. Plasmas 21 020501Google Scholar

    [4]

    Kozioziemski B, Mapoles E, Sater J, et al. 2011 Fusion Sci. Technol. 59 14Google Scholar

    [5]

    Zheng W G, Wei X F, Zhu Q H, et al. 2016 High Power Laser Sci. Eng. 4 e21Google Scholar

    [6]

    Pu Y D, Huang T X, Ge F J, et al. 2018 Plasma Phys. Control. Fusion 60 085017Google Scholar

    [7]

    Li C Y, Wu C S, Huang T X, et al. 2019 Phys. Plasmas 26 022705Google Scholar

    [8]

    Gu J F, Ge F J, Zou S Y, et al. 2018 Phys. Plasmas 25 122706Google Scholar

    [9]

    Yan J, Shen H, Chen Z J, et al. 2021 Nucl. Fusion 61 016011Google Scholar

    [10]

    Moses E I, Boyd R, Remington B, et al. 2009 Phys. Plasmas 16 041006Google Scholar

    [11]

    Fernández J C, Goldman S R, Kline J L, et al. 2006 Phys. Plasmas 13 056319Google Scholar

    [12]

    Edwards M J, Patel P K, Lindl J D, et al. 2013 Phys. Plasmas 20 070501Google Scholar

    [13]

    Weber S V, Casey D T, Ede D C, et al. 2014 Phys. Plasmas 21 112706Google Scholar

    [14]

    Park H S, Hurricane O A, Callahan D A, et al. 2014 Phys. Rev. Lett. 112 055001Google Scholar

    [15]

    Pak A, Dewald E L, Landen O L, et al. 2015 Phys. Plasmas 22 122701Google Scholar

    [16]

    Hinkel D E, Berzak Hopkins L F, Ma T, et al. 2016 Phys. Rev. Lett. 117 225002Google Scholar

    [17]

    Ho D D, Haan S W, Salmonson J D, et al. 2016 J. Phys. Conf. Ser. 717(1) 012023

    [18]

    Milovich J L, Dewald E L, Pak A, et al. 2016 Phys. Plasmas 23 032701Google Scholar

    [19]

    Pape S L, Berzak Hopkins L F, Divol L, et al. 2016 Phys. Plasmas 23 056311Google Scholar

    [20]

    Hall G N, Jones O S, Strozzi D J, et al. 2017 Phys. Plasmas 24 052706Google Scholar

    [21]

    Callahan D A, Hurricane O A, Ralph J E, et al. 2018 Phys. Plasmas 25 056305Google Scholar

    [22]

    Ralph J E, Landen O L, Divol L, et al. 2018 Phys. Plasmas 25 082701Google Scholar

    [23]

    Kritcher A L, Ralph J, Hinkel D E, et al. 2018 Phys. Rev. E 98 053206Google Scholar

    [24]

    Robey H F, Hopkins L B, Milovich J L, and Meezan N B, 2018 Phys. Plasmas 25 052706Google Scholar

    [25]

    Zylstra A B, Hurricane O A, Callahan D A, et al. 2021 Nucl. Fusion 61 116066Google Scholar

    [26]

    Zylstra A B, Hurricane O A, Zimmerman G B 2022 Nature 601 542Google Scholar

    [27]

    Abu-Shawareb H, et al. (ICF Collaboration). 2022 Phys. Rev. Lett. 129 075001Google Scholar

    [28]

    Li Z C, Jiang X H, Liu S Y, Huang T X, Zheng J, Yang J M, Li S W, Guo L, Zhao X F, Du H B, Song T M, Yi R Q, Liu Y G, Jiang S E, DingY K 2010 Rev. Sci. Instrum. 81 073504Google Scholar

    [29]

    Jiang W, Yan J, Ge F J, Chen T, Jing L F, Chen Z J, Chen B L, Pu Y D, Yu B, Duan X X, Huang T X, Zheng J, DingY K 2019 Phys. Plasmas 26 022704Google Scholar

    [30]

    Tang Q, Chen J B, Xiao Y Q, Yi T, Liu Z J, Zhan X Y, Song Z F 2020 Rev. Sci. Instrum. 91 023508Google Scholar

    [31]

    Song Z F, Chen J B, Liu Z J, Zhan X Y, Tang Q 2015 Plasma Sci. Technol. 17 337Google Scholar

    [32]

    Fan Z F, Zhu S P, Pei W B, Ye W H, Li M, Xu X W, Wu J F, Dai Z S, Wang L F 2012 EPL: Lett. J. Explor. Front. Phys. 99 65003

    [33]

    宋鹏, 翟传磊, 李双贵, 等 2015 强激光与粒子束 27 032007

    Song P, Zhai C L, Li S G, et al. 2015 High Power Laser Part. Beams 27 032007 (in Chinese)

    [34]

    裴文兵, 朱少平 2009 物理 38 559

    Pei W B, Zhu S P 2009 Physics 38 559

  • [1] 杨钧兰, 钟哲强, 翁小凤, 张彬. 惯性约束聚变装置中靶面光场特性的统计表征方法. 物理学报, 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [2] 李树, 陈耀桦, 姬志成, 章明宇, 任国利, 霍文义, 闫威华, 韩小英, 李志超, 刘杰, 蓝可. 神光III主机上球腔辐射场实验的三维数值模拟与分析. 物理学报, 2018, 67(2): 025202. doi: 10.7498/aps.67.20170521
    [3] 肖德龙, 戴自换, 孙顺凯, 丁宁, 张扬, 邬吉明, 尹丽, 束小建. Z箍缩动态黑腔驱动靶丸内爆动力学. 物理学报, 2018, 67(2): 025203. doi: 10.7498/aps.67.20171640
    [4] 李宏勋, 张锐, 朱娜, 田小程, 许党朋, 周丹丹, 宗兆玉, 范孟秋, 谢亮华, 郑天然, 李钊历. 基于光束参量优化实现直接驱动靶丸均匀辐照. 物理学报, 2017, 66(10): 105202. doi: 10.7498/aps.66.105202
    [5] 尹剑, 陈绍华, 温成伟, 夏立东, 李海容, 黄鑫, 余铭铭, 梁建华, 彭述明. 玻璃微球内氘结晶行为研究. 物理学报, 2015, 64(1): 015202. doi: 10.7498/aps.64.015202
    [6] 赵英奎, 欧阳碧耀, 文武, 王敏. 惯性约束聚变中氘氚燃料整体点火与燃烧条件研究. 物理学报, 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [7] 邓学伟, 周维, 袁强, 代万俊, 胡东霞, 朱启华, 景峰. 甚多束激光直接驱动靶面辐照均匀性研究. 物理学报, 2015, 64(19): 195203. doi: 10.7498/aps.64.195203
    [8] 晏骥, 张兴, 郑建华, 袁永腾, 康洞国, 葛峰骏, 陈黎, 宋仔峰, 袁铮, 蒋炜, 余波, 陈伯伦, 蒲昱东, 黄天晅. 氘氘-塑料靶丸变收缩比内爆物理实验研究. 物理学报, 2015, 64(12): 125203. doi: 10.7498/aps.64.125203
    [9] 宁成, 丰志兴, 薛创. Z箍缩驱动动态黑腔中的基本能量转移特征. 物理学报, 2014, 63(12): 125208. doi: 10.7498/aps.63.125208
    [10] 蒲昱东, 康洞国, 黄天晅, 高耀明, 陈家斌, 唐琦, 宋仔峰, 彭晓世, 陈伯伦, 蒋炜, 余波, 晏骥, 江少恩, 刘慎业, 杨家敏, 丁永坤. 小收缩比内爆实验初步研究. 物理学报, 2014, 63(12): 125211. doi: 10.7498/aps.63.125211
    [11] 晏骥, 郑建华, 陈黎, 胡昕, 黄天晅, 江少恩. 多点光源相衬成像法应用于内爆背光照相实验. 物理学报, 2013, 62(12): 125203. doi: 10.7498/aps.62.125203
    [12] 晏骥, 郑建华, 陈黎, 林稚伟, 江少恩. X射线相衬成像技术应用于高能量密度物理条件下内爆靶丸诊断. 物理学报, 2012, 61(14): 148701. doi: 10.7498/aps.61.148701
    [13] 张占文, 漆小波, 李波. 惯性约束聚变点火靶候选靶丸特点及制备研究进展. 物理学报, 2012, 61(14): 145204. doi: 10.7498/aps.61.145204
    [14] 晏骥, 江少恩, 苏明, 巫顺超, 林稚伟. X射线相衬成像应用于惯性约束核聚变多层球壳靶丸检测. 物理学报, 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [15] 景龙飞, 黄天晅, 江少恩, 陈伯伦, 蒲昱东, 胡峰, 程书博. 神光-Ⅱ和神光-Ⅲ原型内爆对称性实验的模型分析. 物理学报, 2012, 61(10): 105205. doi: 10.7498/aps.61.105205
    [16] 占江徽, 姚欣, 高福华, 阳泽健, 张怡霄, 郭永康. 惯性约束聚变驱动器连续相位板前置时频率转换晶体内部光场研究. 物理学报, 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [17] 周近宇, 黄天晅, 蒙林, 蒋炜. 半腔靶M带X射线角分布测量与模拟. 物理学报, 2010, 59(3): 1913-1916. doi: 10.7498/aps.59.1913
    [18] 姚欣, 高福华, 张怡霄, 温圣林, 郭永康, 林祥棣. 激光惯性约束聚变驱动器终端光学系统中束匀滑器件前置的条件研究. 物理学报, 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [19] 姚欣, 高福华, 高博, 张怡霄, 黄利新, 郭永康, 林祥棣. 惯性约束聚变驱动器终端束匀滑器件前置时频率转换系统优化研究. 物理学报, 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
    [20] 杨洪琼, 杨建伦, 温树槐, 王根兴, 郭玉芝, 唐正元, 牟维兵, 马驰. 激光直接驱动内爆DT燃料面密度诊断. 物理学报, 2001, 50(12): 2408-2412. doi: 10.7498/aps.50.2408
计量
  • 文章访问数:  3836
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-02
  • 修回日期:  2022-10-03
  • 上网日期:  2022-11-11
  • 刊出日期:  2023-01-20

/

返回文章
返回