搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiC光学材料亚表面缺陷的光热辐射检测

刘远峰 李斌成 赵斌兴 刘红

引用本文:
Citation:

SiC光学材料亚表面缺陷的光热辐射检测

刘远峰, 李斌成, 赵斌兴, 刘红

Detection of subsurface defects in silicon carbide bulk materials with photothermal radiometry

Liu Yuan-Feng, Li Bin-Cheng, Zhao Bin-Xing, Liu Hong
PDF
HTML
导出引用
  • SiC以优异的物理性能和良好的工艺性能, 逐渐成为大型空间成像光学系统主镜的首选轻量化光学材料. SiC镜坯制备及加工过程中引入的亚表面缺陷会严重影响最终的镜面质量以及光学系统的成像品质. 针对SiC材料亚表面缺陷的检测问题, 本文采用光热辐射技术进行分析: 分别建立均匀样品的单层理论模型和含空气层缺陷的三层理论模型, 用于计算无缺陷和存在缺陷区域的光热辐射信号. 通过对三层理论模型信号的相位仿真分析, 提出利用相位差-频率曲线的特征频率估算缺陷深度的经验公式; 利用光热辐射装置测量存在亚表面缺陷的SiC样品, 分析缺陷区域的光热辐射信号分布, 利用经验公式计算缺陷深度, 并与缺陷实际深度分布进行对比分析. 实验与计算结果显示, 光热辐射技术能有效探测SiC镜坯的亚表面缺陷及其形貌, 并且对于界面与样品相对平行且较为平缓的亚表面缺陷, 其缺陷深度可通过经验公式准确确定.
    With excellent physical, mechanical and processing properties, silicon carbide (SiC) has gradually become a preferred lightweight optical material for primary mirrors of large space optical systems. The subsurface defects generated during the preparation and processing procedures of SiC will affect the optical quality of the primary mirrors and the imaging performance of the corresponding optical systems employing the SiC primary mirror as well. In this work, photothermal radiation (PTR), a powerful nondestructive testing technique for detecting sub-surface defects of solid materials, is employed to characterize the subsurface defects of bulk SiC material for primary mirrors.Theoretically, three-dimensional one-layer and three-layer PTR theoretical models are developed to describe the defect-free and defect regions of an SiC bulk material. By analyzing the frequency dependence of PTR phase of the SiC bulk material with different defect depths, an empirical formula for estimating the defect depth via a characteristic frequency (appearing at the minimum of the PTR phase-frequency curve) defined thermal diffusion length is proposed, and simulation results show reasonably good agreement between the estimated and simulated defect depths in a depth range of 0.05–0.50 mm. Experimentally, an SiC bulk sample with a subsurface defect region is tested by the PTR via position scanning and modulation frequency scanning to obtain the position and frequency dependent PTR amplitude and phase. From the spatial distributions of PTR amplitude and phase measured at different frequencies and the phase difference frequency curves of measurement positions in the defect region, the depth and shape of the defect region are estimated and found to be in good agreement with the actual shape of the defect region, which is destructively measured via a depth profiler. The experimental and calculated results demonstrate that the PTR is capable of detecting non-destructively the subsurface defects of SiC bulk material. In addition, for subsurface defects with relatively flat interface, the defect depth can be determined accurately by the developed empirical formula.
      通信作者: 李斌成, bcli@uestc.edu.cn
      Corresponding author: Li Bin-Cheng, bcli@uestc.edu.cn
    [1]

    Jiang F, Liu Y, Yang Y, Huang Z R, Li D, Liu G L, Liu X J 2012 J. Nano Mater. 2012 7Google Scholar

    [2]

    韩媛媛, 张宇民, 韩杰才, 张剑寒, 姚旺, 周玉峰 2005 材料工程 06 59Google Scholar

    Han Y Y, Zhang Y M, Han J C, Zhang J H, Yao W, Zhou Y F 2005 J. Mater. Eng. 06 59Google Scholar

    [3]

    Sein E, Toulemont Y, Safa F, Duran M, Deny P, Chambure D, Passvogel T, Pilbratt G L 2003 SPIE IR Space Telescopes and Instruments 4850 606Google Scholar

    [4]

    Rodolfo J P 2008 SPIE Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation 7018 70180EGoogle Scholar

    [5]

    Kaneda H, Nakagawa T, Onaka T, Enya K, Kataza H, Makiuti S, Matsuhara H, Miyamoto M, Murakami H, Saruwatari H, Watarai H, Yui Y Y 2007 SPIE Optical Materials and Structures Technologies III 6666 666607Google Scholar

    [6]

    Ebizuka N, Dai Y, Eto H, Lin W, Ebisuzaki T, Omori H, Handa T, Takami H, Takahashi Y 2003 SPIE Specialized Optical Developments in Astronomy 4842 329Google Scholar

    [7]

    周岩 2020 硕士学位论文 (长春: 长春工业大学)

    Zhou Y 2020 M. S. Thesis (Changchun: Changchun University of Technology) (in Chinese)

    [8]

    Goela J S, Pickering M A, Tayler R L 1991 SPIE Optical Surfaces Resistant to Severe Environments 1330 25Google Scholar

    [9]

    Zappellini G B, Martin H M, Miller S M, Smith B K, Cuerden B, Gasho V, Sosa R G, Montoya M, Riccardi A 2007 SPIE Astronomical Adaptive Optics Systems and Applications III 6991 66910UGoogle Scholar

    [10]

    Xie J, Li Q, Sun J X, Li Y H 2015 J. Mater. Process. Tech. 222 422Google Scholar

    [11]

    Yoo H K, Ko J H, Lim K Y, Kwon W T, Kim Y W 2015 Ceram. Int. 41 3490Google Scholar

    [12]

    李改灵, 孙开元, 冯仁余, 刘永军, 常林枫 2008 煤矿机械 12 99Google Scholar

    Li G L, Sun K Y, Feng R Y, Liu Y J, Chang L F 2008 Coal Mine Machinery 12 99Google Scholar

    [13]

    Neauport J, Ambard C, Cormont P, Darbois N, Destribats J, Luitot C, Rondeau O 2009 Opt. Express 17 20448Google Scholar

    [14]

    Fahnle O W, Wons T, Koch E, Debruyne S, Meeder M, Booij S M, Braat J J M 2002 Applied Optics 41 4036Google Scholar

    [15]

    Wuttig A, Steinert J, Duparre A, Truckenbrodt H 1999 SPIE Optical Fabrication and Testing 3739 369Google Scholar

    [16]

    刘红婕, 王凤蕊, 耿峰, 周晓燕, 黄进, 叶鑫, 蒋晓东, 吴卫东, 杨李茗 2020 光学精密工程 28 50Google Scholar

    Liu H J, Wang F R, Geng F, Zhou X Y, Huang J, Ye X, Jiang X D, Wu W D, Yang L M 2020 Optics Precis. Eng. 28 50Google Scholar

    [17]

    Nordal P E, Kanstad S O 1979 Phys. Scr. 20 659Google Scholar

    [18]

    Nakamura H, Tsubouchi K, Mikoshiba N 1985 Jpn. J. Appl. Phys. 24 222Google Scholar

    [19]

    李佩赞 1989 红外技术 11 97

    Li P Z 1989 Infrared Technology 11 97

    [20]

    范春利, 孙丰瑞, 杨立 2005 激光与红外 35 504Google Scholar

    Fan C L, Sun F R, Yang L 2005 Laser & Infrared 35 504Google Scholar

    [21]

    王心觉, 刘恒彪, 胡文祥 2017 激光与光电子学进展 54 101201

    [22]

    曹丹, 屈惠明 2013 激光与红外 43 513

    Cao D, Qu H M 2013 Laser & Infrared 43 513

    [23]

    Muramatsu M, Nakasumi S, Harada Y 2016 Adv. Compos. Mater. 25 541Google Scholar

    [24]

    马晓波, 王青青 2018 红外技术 40 85

    Ma X B, Wang Q Q 2018 Infrared Technology 40 85

    [25]

    尹国应, 李爱珠 2020 光学与光电技术 18 18

    Yin G Y, Li A Z 2020 Optics & Optoelectronic Technology 18 18

    [26]

    李佩赞, 王钦华 1994 仪器仪表学报 15 265Google Scholar

    Li P Z, Wang Q H 1994 Chin. J. Sci. Instrum. 15 265Google Scholar

    [27]

    管国兴, 郑小明, 李佩赞 1988 红外研究 7A 201

    Guan G X, Zheng X M, Li P Z 1988 Chin. J. Infrared Res. 7A 201

    [28]

    李佩赞, 王钦华 1996 物理 25 426

    Li P Z, Wang Q H 1996 Physics 25 426

    [29]

    江海军, 陈力, 张淑仪 2014 无损检测 36 20

    Jiang H J, Chen L, Zhang S Y 2014 Nondestructive Testing 36 20

    [30]

    江海军, 陈力, 苏清风, 邢建湘 2018 无损检测 40 15Google Scholar

    Jiang H J, Chen L, Su Q F, Xing J X 2018 Nondestructive Testing 40 15Google Scholar

    [31]

    江海军, 陈力 2018 红外技术 40 946Google Scholar

    Jiang H J, Chen L 2018 Infrared Technology 40 946Google Scholar

  • 图 1  PTR理论模型 (a) 单层模型; (b) 三层模型

    Fig. 1.  Configuration of PTR theoretical model: (a) One-layer model; (b) three-layer model.

    图 2  不同缺陷深度下的PTR相位差-频率曲线

    Fig. 2.  Phase difference-frequency curve of PTR signal in different defect depths.

    图 3  缺陷深度计算结果 (a) 计算值与实际值比较; (b) 相对误差随深度的变化

    Fig. 3.  Calculation results of depth of defect: (a) Comparison between calculated value and actual value; (b) relative error of different depths.

    图 4  PTR实验装置

    Fig. 4.  PTR experimental setup.

    图 5  SiC样品示意图 (a) 光学图像; (b) 线扫描红外辐射图像[29-31]

    Fig. 5.  SiC sample under test: (a) Optical image; (b) line-scanned infrared emission image showing subsurface defect marked with a red circle[29-31].

    图 6  样品无缺陷区域PTR信号的实验结果及其最佳拟合曲线 (a) 幅度; (b)相位

    Fig. 6.  Experimental frequency dependence of PTR signal and corresponding best-fit for the defect-free region of the SiC sample: (a) Amplitude; (b) phase.

    图 7  SiC样品不同频率(5, 37, 245和960 Hz)时缺陷区域PTR信号的二维分布 (a) 幅度比; (b) 相位差

    Fig. 7.  Two-dimensional spatial distributions of PTR signals measured at different modulation frequencies (5, 37, 245, and 960 Hz, respectively) for the defect region of the SiC sample: (a) Amplitude ratio; (b) phase difference.

    图 8  (a) 实际的缺陷深度分布; (b) 部分测量点的PTR信号相位差-频率曲线

    Fig. 8.  (a) Actual depth distribution of the defect region; (b) phase difference frequency curves of PTR signals at some measuring points.

    表 1  测量点的缺陷深度估算结果

    Table 1.  Estimated results of defect depth at measuring points.

    坐标缺陷深度/μm误差
    实际值测量值绝对误差/μm相对误差/%
    1(21.0, 19.0)371.6392.020.45.5
    2(20.5, 19.5)392.0392.000
    3(20.2, 20.0)291.0276.015.05.2
    4(20.0, 20.4)186.9164.022.912.3
    5(21.3, 17.2)80.958.521.727.7
    6(21.0, 18.1)284.0392.0108.038.1
    7(20.6, 19.1)413.9560.0146.035.5
    8(19.8, 20.8)118.058.559.550.4
    下载: 导出CSV
  • [1]

    Jiang F, Liu Y, Yang Y, Huang Z R, Li D, Liu G L, Liu X J 2012 J. Nano Mater. 2012 7Google Scholar

    [2]

    韩媛媛, 张宇民, 韩杰才, 张剑寒, 姚旺, 周玉峰 2005 材料工程 06 59Google Scholar

    Han Y Y, Zhang Y M, Han J C, Zhang J H, Yao W, Zhou Y F 2005 J. Mater. Eng. 06 59Google Scholar

    [3]

    Sein E, Toulemont Y, Safa F, Duran M, Deny P, Chambure D, Passvogel T, Pilbratt G L 2003 SPIE IR Space Telescopes and Instruments 4850 606Google Scholar

    [4]

    Rodolfo J P 2008 SPIE Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation 7018 70180EGoogle Scholar

    [5]

    Kaneda H, Nakagawa T, Onaka T, Enya K, Kataza H, Makiuti S, Matsuhara H, Miyamoto M, Murakami H, Saruwatari H, Watarai H, Yui Y Y 2007 SPIE Optical Materials and Structures Technologies III 6666 666607Google Scholar

    [6]

    Ebizuka N, Dai Y, Eto H, Lin W, Ebisuzaki T, Omori H, Handa T, Takami H, Takahashi Y 2003 SPIE Specialized Optical Developments in Astronomy 4842 329Google Scholar

    [7]

    周岩 2020 硕士学位论文 (长春: 长春工业大学)

    Zhou Y 2020 M. S. Thesis (Changchun: Changchun University of Technology) (in Chinese)

    [8]

    Goela J S, Pickering M A, Tayler R L 1991 SPIE Optical Surfaces Resistant to Severe Environments 1330 25Google Scholar

    [9]

    Zappellini G B, Martin H M, Miller S M, Smith B K, Cuerden B, Gasho V, Sosa R G, Montoya M, Riccardi A 2007 SPIE Astronomical Adaptive Optics Systems and Applications III 6991 66910UGoogle Scholar

    [10]

    Xie J, Li Q, Sun J X, Li Y H 2015 J. Mater. Process. Tech. 222 422Google Scholar

    [11]

    Yoo H K, Ko J H, Lim K Y, Kwon W T, Kim Y W 2015 Ceram. Int. 41 3490Google Scholar

    [12]

    李改灵, 孙开元, 冯仁余, 刘永军, 常林枫 2008 煤矿机械 12 99Google Scholar

    Li G L, Sun K Y, Feng R Y, Liu Y J, Chang L F 2008 Coal Mine Machinery 12 99Google Scholar

    [13]

    Neauport J, Ambard C, Cormont P, Darbois N, Destribats J, Luitot C, Rondeau O 2009 Opt. Express 17 20448Google Scholar

    [14]

    Fahnle O W, Wons T, Koch E, Debruyne S, Meeder M, Booij S M, Braat J J M 2002 Applied Optics 41 4036Google Scholar

    [15]

    Wuttig A, Steinert J, Duparre A, Truckenbrodt H 1999 SPIE Optical Fabrication and Testing 3739 369Google Scholar

    [16]

    刘红婕, 王凤蕊, 耿峰, 周晓燕, 黄进, 叶鑫, 蒋晓东, 吴卫东, 杨李茗 2020 光学精密工程 28 50Google Scholar

    Liu H J, Wang F R, Geng F, Zhou X Y, Huang J, Ye X, Jiang X D, Wu W D, Yang L M 2020 Optics Precis. Eng. 28 50Google Scholar

    [17]

    Nordal P E, Kanstad S O 1979 Phys. Scr. 20 659Google Scholar

    [18]

    Nakamura H, Tsubouchi K, Mikoshiba N 1985 Jpn. J. Appl. Phys. 24 222Google Scholar

    [19]

    李佩赞 1989 红外技术 11 97

    Li P Z 1989 Infrared Technology 11 97

    [20]

    范春利, 孙丰瑞, 杨立 2005 激光与红外 35 504Google Scholar

    Fan C L, Sun F R, Yang L 2005 Laser & Infrared 35 504Google Scholar

    [21]

    王心觉, 刘恒彪, 胡文祥 2017 激光与光电子学进展 54 101201

    [22]

    曹丹, 屈惠明 2013 激光与红外 43 513

    Cao D, Qu H M 2013 Laser & Infrared 43 513

    [23]

    Muramatsu M, Nakasumi S, Harada Y 2016 Adv. Compos. Mater. 25 541Google Scholar

    [24]

    马晓波, 王青青 2018 红外技术 40 85

    Ma X B, Wang Q Q 2018 Infrared Technology 40 85

    [25]

    尹国应, 李爱珠 2020 光学与光电技术 18 18

    Yin G Y, Li A Z 2020 Optics & Optoelectronic Technology 18 18

    [26]

    李佩赞, 王钦华 1994 仪器仪表学报 15 265Google Scholar

    Li P Z, Wang Q H 1994 Chin. J. Sci. Instrum. 15 265Google Scholar

    [27]

    管国兴, 郑小明, 李佩赞 1988 红外研究 7A 201

    Guan G X, Zheng X M, Li P Z 1988 Chin. J. Infrared Res. 7A 201

    [28]

    李佩赞, 王钦华 1996 物理 25 426

    Li P Z, Wang Q H 1996 Physics 25 426

    [29]

    江海军, 陈力, 张淑仪 2014 无损检测 36 20

    Jiang H J, Chen L, Zhang S Y 2014 Nondestructive Testing 36 20

    [30]

    江海军, 陈力, 苏清风, 邢建湘 2018 无损检测 40 15Google Scholar

    Jiang H J, Chen L, Su Q F, Xing J X 2018 Nondestructive Testing 40 15Google Scholar

    [31]

    江海军, 陈力 2018 红外技术 40 946Google Scholar

    Jiang H J, Chen L 2018 Infrared Technology 40 946Google Scholar

  • [1] 陈晶晶, 赵洪坡, 王葵, 占慧敏, 罗泽宇. SiC基底覆多层石墨烯力学强化性能分子动力学模拟. 物理学报, 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [2] 邓旭良, 冀先飞, 王德君, 黄玲琴. 石墨烯过渡层对金属/SiC接触肖特基势垒调控的第一性原理研究. 物理学报, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [3] 于子恒, 马春红, 白少先. SiC表面圆环槽边缘效应实验研究. 物理学报, 2021, 70(4): 044702. doi: 10.7498/aps.70.20201303
    [4] 黄毅华, 江东亮, 张辉, 陈忠明, 黄政仁. Al掺杂6H-SiC的磁性研究与理论计算. 物理学报, 2017, 66(1): 017501. doi: 10.7498/aps.66.017501
    [5] 卢吴越, 张永平, 陈之战, 程越, 谈嘉慧, 石旺舟. 不同退火方式对Ni/SiC接触界面性质的影响. 物理学报, 2015, 64(6): 067303. doi: 10.7498/aps.64.067303
    [6] 杨帅, 汤晓燕, 张玉明, 宋庆文, 张义门. 电荷失配对SiC半超结垂直双扩散金属氧化物半导体场效应管击穿电压的影响. 物理学报, 2014, 63(20): 208501. doi: 10.7498/aps.63.208501
    [7] 蔡月飞, 吕志伟, 李森森, 王雨雷, 朱成禹, 林殿阳, 何伟明. 赫兹型微裂纹光场调制增强作用的系统研究. 物理学报, 2013, 62(23): 234203. doi: 10.7498/aps.62.234203
    [8] 宋坤, 柴常春, 杨银堂, 张现军, 陈斌. 栅漏间表面外延层对4H-SiC功率MESFET击穿特性的改善机理与结构优化. 物理学报, 2012, 61(2): 027202. doi: 10.7498/aps.61.027202
    [9] 贺平逆, 吕晓丹, 赵成利, 宁建平, 秦尤敏, 苟富均. F原子与SiC(100)表面相互作用的分子动力学模拟. 物理学报, 2011, 60(9): 095203. doi: 10.7498/aps.60.095203
    [10] 张勇, 张崇宏, 周丽宏, 李炳生, 杨义涛. 氦离子注入4H-SiC晶体的纳米硬度研究. 物理学报, 2010, 59(6): 4130-4135. doi: 10.7498/aps.59.4130
    [11] 张云, 邵晓红, 王治强. 3C-SiC材料p型掺杂的第一性原理研究. 物理学报, 2010, 59(8): 5652-5660. doi: 10.7498/aps.59.5652
    [12] 刘福, 周继承, 谭晓超. 3C-SiC(001)-(2×1)表面原子与电子结构研究. 物理学报, 2009, 58(11): 7821-7825. doi: 10.7498/aps.58.7821
    [13] 黄维, 陈之战, 陈博源, 张静玉, 严成锋, 肖兵, 施尔畏. 氢氟酸刻蚀对Ni/6H-SiC接触性质的作用. 物理学报, 2009, 58(5): 3443-3447. doi: 10.7498/aps.58.3443
    [14] 武煜宇, 陈石, 高新宇, Andrew Thye Shen Wee, 徐彭寿. 6H-SiC(0001)-6[KF(]3[KF)]×6[KF(]3[KF)]R30°重构表面的同步辐射角分辨光电子能谱研究. 物理学报, 2009, 58(6): 4288-4294. doi: 10.7498/aps.58.4288
    [15] 马格林, 张玉明, 张义门, 马仲发. SiC表面C 1s谱最优拟合参数的研究. 物理学报, 2008, 57(7): 4125-4129. doi: 10.7498/aps.57.4125
    [16] 马格林, 张玉明, 张义门, 马仲发. SiC外延层表面化学态的研究. 物理学报, 2008, 57(7): 4119-4124. doi: 10.7498/aps.57.4119
    [17] 郜锦侠, 张义门, 汤晓燕, 张玉明. C-V法提取SiC隐埋沟道MOSFET沟道载流子浓度. 物理学报, 2006, 55(6): 2992-2996. doi: 10.7498/aps.55.2992
    [18] 徐彭寿, 李拥华, 潘海斌. β-SiC(001)-(2×1)表面结构的第一性原理研究. 物理学报, 2005, 54(12): 5824-5829. doi: 10.7498/aps.54.5824
    [19] 尚也淳, 刘忠立, 王姝睿. SiC Schottky结反向特性的研究. 物理学报, 2003, 52(1): 211-216. doi: 10.7498/aps.52.211
    [20] 姜振益, 许小红, 武海顺, 张富强, 金志浩. SiC多型体几何结构与电子结构研究. 物理学报, 2002, 51(7): 1586-1590. doi: 10.7498/aps.51.1586
计量
  • 文章访问数:  3969
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-01
  • 修回日期:  2022-10-26
  • 上网日期:  2022-11-11
  • 刊出日期:  2023-01-20

/

返回文章
返回