搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水声射线传播的黎曼几何建模·基础理论

郭肖晋 马树青 张理论 蓝强 黄创霞

引用本文:
Citation:

水声射线传播的黎曼几何建模·基础理论

郭肖晋, 马树青, 张理论, 蓝强, 黄创霞

Riemannian geometric modeling of underwater acoustic ray propagation—Basic theory

Guo Xiao-Jin, Ma Shu-Qing, Zhang Li-Lun, Lan Qiang, Huang Chuang-Xia
PDF
HTML
导出引用
  • 水声建模一般采用外嵌描述, 即以欧氏空间固定坐标系等要素刻画水声信道. 黎曼几何是弯曲空间上的内蕴几何学, 更能反映流形的本质性质. 水声学高斯波束模型借鉴自地震学, 可有效避免传统射线追踪的弊端, 在以Bellhop为代表的水声模型中得到广泛应用, 是水声射线建模与应用的主流方法之一. 传统水声射线建模的欧氏空间底流形假设, 难以有效刻画高斯波束的弯曲特性. 本文通过建立水声射线传播的黎曼几何基本理论, 得到程函方程、动态射线方程及高斯波束模型的黎曼几何内蕴形式, 分析了水声射线几何拓扑性质, 指出水声射线模型中的焦散点等价于黎曼几何中的共轭点, 高斯波束几何扩展是测地线沿雅可比场的偏离, 波束声线会聚体现为声场正截面曲率作用下偏离的测地线在共轭点的交汇. 为验证理论正确性与适用性, 本文以水平分层距离相关环境为例, 给出特定环境和坐标系下应用前序理论建模的具体方法. 3个典型水声传播算例的仿真对比分析, 表明水声传播黎曼几何理论模型是准确有效的, 相比Bellhop模型所采用的计算方法, 具有更为清晰的数学物理含义. 本文基础理论可方便推广至曲面、三维各向异性等情形,为后续在三维弯曲球体流形、四维时变伪黎曼流形等声传播环境下的黎曼几何射线建模研究奠定了理论基础.
    Underwater sound propagation models are generally established from the extrinsic perspective, that is, embedding acoustic channels in Euclidean space with a fixed coordinate system. Riemannian geometry is intrinsic for curved space, which can describe the essential properties of background manifolds. The underwater acoustic Gaussian beam is originally adopted from seismology. Till now it has been the most important method used in acoustic ray based modeling and applications. Owing to the advantages of Gaussian beam method over the traditional ray counterpart, it is the mainstream technology of ray propagation computational software such as the famous Bellhop. With the assumption of Euclidean space, it is hard to grasp the naturally curved characteristics of the Gaussian beam. In this work, we propose the Riemannian geometry theory of underwater acoustic ray propagation, and obtain the following results. 1) The Riemannian geometric intrinsic forms of the eikonal equation, paraxial ray equation and the Gaussian beam under radially symmetric acoustic propagation environments are established, which provide a Riemannian geometric interpretation of the Gaussian beam. In fact, the underwater acoustic eikonal equation is equivalent to the geodesic equation in Riemannian manifolds, and the intrinsic geometric spreading of the Gaussian beam corresponds to the lateral deviation of geodesic curve along the Jacobian field. 2) Some geometric and topological properties of acoustic ray about conjugate points and section curvature are acquired by the Jacobi field theory, indicating that the convergence of ray beam corresponds to the intersection of geodesics at the conjugate point with positive section curvature. 3) The specific modeling method under horizontal stratified and distance-related environment is presented by using the above theory. And we point out that the method proposed here is also applicable to other radially symmetric acoustic propagation environments. 4) Simulations and comparative analyses of three typical underwater acoustic propagation examples, confirm the feasibility of the Riemannian geometric model for underwater acoustic propagation, and show that the Riemannian geometric model has exact mathematical physics meaning over the Euclidean space method adopted by the Bellhop model. The basic theory given in this paper can be extended to the curved surface, three-dimensional and other complex propagation cases. And especially it lays a theoretical foundation for the further research of long-range acoustic propagation considering curvature of the earth.
      通信作者: 张理论, zhanglilun@nudt.edu.cn
    • 基金项目: 国防基础科研计划项目(批准号: JCKY2020550C011)和水声对抗技术国防科技重点实验室基金(批准号: 6412214200403)资助的课题.
      Corresponding author: Zhang Li-Lun, zhanglilun@nudt.edu.cn
    • Funds: Project supported by the National Defense Basic Scientific Research Program of China (Grant No. JCKY2020550C011) and the National Defense Science and Technology Key Laboratory Fund for Underwater Acoustic Countermeasure Technology (Grant No. 6412214200403).
    [1]

    Kravtsov Y A, Berczynski P 2007 Stud. Geophys. Geod. 51 1Google Scholar

    [2]

    Babich V M, Lazutkin V F 1968 Commun. Math. Phys. 2 9Google Scholar

    [3]

    Červený V, Popov M M, Pšenčík I 1982 Geophys. J. R. astr. Soc. 70 109Google Scholar

    [4]

    Porter M B, Bucker H P 1987 J. Acoust. Soc. Am. 82 1349Google Scholar

    [5]

    Červený V, 2001 Seismic Ray Theory (Cambridge: Cambridge University Press) p237

    [6]

    Červený V, Pšenčík I 2010 Geophys. J. Int. 180 798

    [7]

    Smith S T 2014 SIAM J. Appl. Math. 74 1637Google Scholar

    [8]

    Jensen F B, Kuperman W A, Porter M B 2011 Schmidt H Computational Ocean Acoustics ( NewYork: Springer-Verlag) p125

    [9]

    梁灿彬, 周彬 2006 微分几何入门与广义相对论 (北京: 科学出版社) 第190页

    Liang C B, Zhou B 2006 Introduction to Differential Geometry and General Relativity (Beijing: Science Press) p190 (in Chinese)

    [10]

    Gordon W 1923 Ann. Phys. 72 421

    [11]

    郭弘, 邓锡铭 1995 中国科学: A辑 25 7

    Guo H, Deng X M 1995 Sci. China (Series A) 25 7 (in Chinese)

    [12]

    邓锡铭, 郭弘, 曹清 1995 中国激光 22 523Google Scholar

    Deng X M, Guo H, Cao Q 1995 Chin. J. Lasers 22 523Google Scholar

    [13]

    杨孔庆, 罗明秋, 李幼铭 2018 石油物探 57 5Google Scholar

    Yang K Q, Luo M Q, Li Y M 2018 Geophys. Prospect. Petrol. 57 5Google Scholar

    [14]

    White R 1973 J. Acoust. Soc. Am. 53 1700Google Scholar

    [15]

    Meyer R, Schroeter G 1981 Acta Acust united Ac 47 105

    [16]

    Bergman D R 2005 Technical Report NRL/MR/7140-05-8835 Naval Research Laboratory

    [17]

    Bergman D R 2005 Waves Random Complex 15 417Google Scholar

    [18]

    Bergman D R 2006 Wave Motion 43 508Google Scholar

    [19]

    Bergman D R 2021 Int. J. Acoust. Vib. 26 2Google Scholar

    [20]

    Bergman D R 2015 Physics 120 5Google Scholar

    [21]

    陈维恒, 李兴校 2002 黎曼几何引论 (北京: 北京大学出版社) 第171页

    Chen W H, Li X X 2002 Introduction to Riemannian Geometry (Beijing: Peking University Press) p267 (in Chinese)

    [22]

    侯伯元, 侯伯宇 2004 物理学家用微分几何 (北京: 科学出版社) 第143页

    Hou B Y, Hou B Y 2004 Differential Geometry in Physics (Beijing: Science Press) p143 (in Chinese)

    [23]

    Do Carmo M P 1992 Riemannian Geometry (Boston: Birkhauser) p110

    [24]

    Cheeger J, D G Ebin 2008 Comparison Theorems in Riemannian Geometry (Providence, Rhode Island: American Mathematical Society) p35

    [25]

    Kobayashi S, Nomizu K 1963 Foundations of Differential Geometry (Vol. 2) (New York: John Wiley & Sons) p73

    [26]

    Eisner L, Pšenčík I 1996 Pageoph 148 227Google Scholar

    [27]

    Davis H, Fleming H, Hardy WAR, Miningham R, Rosenbaum S 1968 Technical Report the Hudson Laboratories Ray Tracing Program (Beijing: University of Science and Technology of China Press)

    [28]

    Foreman T 1988 Ph. D. Dissertation (Austin: The University of Texas at Austin)

  • 图 1  傍轴射线示意图, ${\boldsymbol{T}} = \dfrac{{{{\rm{d}}} {\boldsymbol{x}}}}{{{{\rm{d}}} s}}$是射线的切向量, N是射线的法向量

    Fig. 1.  Paraxial ray tube, ${\boldsymbol{T}} = \dfrac{{{{\rm{d}}} {\boldsymbol{x}}}}{{{{\rm{d}}} s}}$ is the tangent vector, N is the normal vector.

    图 2  双曲余弦声速剖面的声线和焦散点, 参数为$ {c_1} = 1500 $m/s, $ {z_1} = 1.5 $ km, $ E = 5 $km, 声源深度为$ {z_0} = 1 $km, 初始掠射角$ {\theta }_{0}\in (-{10}^{\circ}, {12}^{\circ}) $, $t \in [0, 130]~ \text{s}$ (a)共轭点理论仿真结果; (b) Bellhop仿真结果

    Fig. 2.  Rays and caustics for the hyperbolic cosine sound speed profile with parameters$ {c_1} = 1500 $m/s, $ {z_1} = 1.5 $km, $ E = 5 $km, $ {z_0} = 1 $km, $ {\theta }_{0}\in (-{10}^{\circ}, {12}^{\circ}) $, $t \in [0, 130]~\text{s}$: (a) Conjugate point theory simulation results; (b) Bellhop simulation results.

    图 3  线性声速剖面的声线求解结果, 参数为${c_0} = 1500$ m/s, $b = - 0.01$, 声源深度为${z_0} = 1$ km, 初始掠射角$ {\theta }_{0} \in (-{5}^{\circ }, -{2}^{\circ }) $, $t \in [0, 25]~ \text{s}$ (a)共轭点理论仿真结果; (b) Bellhop仿真结果

    Fig. 3.  Rays for the linear sound speed profile with parameters$ {c_0} = 1500 $m/s, $ b = - 0.01 $, $ {z_0} = 1 $ km, $ {\theta }_{0}\in (-{5}^{\circ }, -{2}^{\circ }) $, $t \in [0, 25]~ \text{s}$: (a) Conjugate point theory simulation results; (b) Bellhop simulation results.

    图 4  声速剖面(38) 的声速等值线, 参数为${\text{DR = 150}}{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{km, }}\;{\text{DZ = 500}}{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{km, }}\;{\text{Ze = 1000}}{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{km, }}\;{\text{Re = 300}}{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{km}}$

    Fig. 4.  Sound speed contours for the sound speed profile (38) with parameters ${\text{DR = 150}}~{\text{km, }} \;{\rm DZ =} $$ 500 {\text{km, }} \;{\text{Ze = 1000}}{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{km, }} \;{\text{Re = 300}}{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{km}}$.

    图 5  声速剖面(38)的截面曲率K和雅可比场Y1(t)仿真结果 (a) 截面曲率K仿真结果; (b) 雅可比场Y1(t)仿真结果

    Fig. 5.  Section curvature K and Jacobi field Y1(t) for the sound speed profile (38): (a) Section curvature K simulation results; (b) Jacobi field Y1(t) simulation results.

    图 6  声速剖面(38)的声线和焦散点 (a)共轭点理论求解结果; (b) Bellhop射线求解结果

    Fig. 6.  Rays and caustics for the sound speed profile (38): (a) Conjugate point theory simulation results; (b) Bellhop simulation results.

  • [1]

    Kravtsov Y A, Berczynski P 2007 Stud. Geophys. Geod. 51 1Google Scholar

    [2]

    Babich V M, Lazutkin V F 1968 Commun. Math. Phys. 2 9Google Scholar

    [3]

    Červený V, Popov M M, Pšenčík I 1982 Geophys. J. R. astr. Soc. 70 109Google Scholar

    [4]

    Porter M B, Bucker H P 1987 J. Acoust. Soc. Am. 82 1349Google Scholar

    [5]

    Červený V, 2001 Seismic Ray Theory (Cambridge: Cambridge University Press) p237

    [6]

    Červený V, Pšenčík I 2010 Geophys. J. Int. 180 798

    [7]

    Smith S T 2014 SIAM J. Appl. Math. 74 1637Google Scholar

    [8]

    Jensen F B, Kuperman W A, Porter M B 2011 Schmidt H Computational Ocean Acoustics ( NewYork: Springer-Verlag) p125

    [9]

    梁灿彬, 周彬 2006 微分几何入门与广义相对论 (北京: 科学出版社) 第190页

    Liang C B, Zhou B 2006 Introduction to Differential Geometry and General Relativity (Beijing: Science Press) p190 (in Chinese)

    [10]

    Gordon W 1923 Ann. Phys. 72 421

    [11]

    郭弘, 邓锡铭 1995 中国科学: A辑 25 7

    Guo H, Deng X M 1995 Sci. China (Series A) 25 7 (in Chinese)

    [12]

    邓锡铭, 郭弘, 曹清 1995 中国激光 22 523Google Scholar

    Deng X M, Guo H, Cao Q 1995 Chin. J. Lasers 22 523Google Scholar

    [13]

    杨孔庆, 罗明秋, 李幼铭 2018 石油物探 57 5Google Scholar

    Yang K Q, Luo M Q, Li Y M 2018 Geophys. Prospect. Petrol. 57 5Google Scholar

    [14]

    White R 1973 J. Acoust. Soc. Am. 53 1700Google Scholar

    [15]

    Meyer R, Schroeter G 1981 Acta Acust united Ac 47 105

    [16]

    Bergman D R 2005 Technical Report NRL/MR/7140-05-8835 Naval Research Laboratory

    [17]

    Bergman D R 2005 Waves Random Complex 15 417Google Scholar

    [18]

    Bergman D R 2006 Wave Motion 43 508Google Scholar

    [19]

    Bergman D R 2021 Int. J. Acoust. Vib. 26 2Google Scholar

    [20]

    Bergman D R 2015 Physics 120 5Google Scholar

    [21]

    陈维恒, 李兴校 2002 黎曼几何引论 (北京: 北京大学出版社) 第171页

    Chen W H, Li X X 2002 Introduction to Riemannian Geometry (Beijing: Peking University Press) p267 (in Chinese)

    [22]

    侯伯元, 侯伯宇 2004 物理学家用微分几何 (北京: 科学出版社) 第143页

    Hou B Y, Hou B Y 2004 Differential Geometry in Physics (Beijing: Science Press) p143 (in Chinese)

    [23]

    Do Carmo M P 1992 Riemannian Geometry (Boston: Birkhauser) p110

    [24]

    Cheeger J, D G Ebin 2008 Comparison Theorems in Riemannian Geometry (Providence, Rhode Island: American Mathematical Society) p35

    [25]

    Kobayashi S, Nomizu K 1963 Foundations of Differential Geometry (Vol. 2) (New York: John Wiley & Sons) p73

    [26]

    Eisner L, Pšenčík I 1996 Pageoph 148 227Google Scholar

    [27]

    Davis H, Fleming H, Hardy WAR, Miningham R, Rosenbaum S 1968 Technical Report the Hudson Laboratories Ray Tracing Program (Beijing: University of Science and Technology of China Press)

    [28]

    Foreman T 1988 Ph. D. Dissertation (Austin: The University of Texas at Austin)

  • [1] 陈雨晨, 张海刚, 张明辉, 杨士莪. 三维亚音速运动介质中的高斯波束追踪. 物理学报, 2023, 72(12): 124301. doi: 10.7498/aps.72.20221691
    [2] 马树青, 郭肖晋, 张理论, 蓝强, 黄创霞. 水声射线传播的黎曼几何建模·应用 —深海远程声传播会聚区黎曼几何模型. 物理学报, 2023, 72(4): 044301. doi: 10.7498/aps.72.20221495
    [3] 张金玲, 万文钢, 郑占奇, 甘曦, 朱兴宇. X波段微带余割平方扩展波束天线阵赋形优化遗传算法研究. 物理学报, 2015, 64(11): 110504. doi: 10.7498/aps.64.110504
    [4] 陆璐, 季小玲, 邓金平, 马媛. 非Kolmogorov大气湍流对高斯列阵光束扩展的影响. 物理学报, 2014, 63(1): 014207. doi: 10.7498/aps.63.014207
    [5] 卞保民, 赖小明, 杨玲, 李振华, 贺安之. 自由质点测地线仿射参量时空坐标系. 物理学报, 2012, 61(17): 170401. doi: 10.7498/aps.61.170401
    [6] 杜云刚, 韩一平, 韩国霞, 李继军. 高斯波束致微粒旋转的理论研究. 物理学报, 2011, 60(2): 028702. doi: 10.7498/aps.60.028702
    [7] 季小玲. 大气湍流对径向分布高斯列阵光束扩展和方向性的影响. 物理学报, 2010, 59(1): 692-698. doi: 10.7498/aps.59.692
    [8] 张显斌, 施 卫. 基于可调谐准高斯波束太赫兹源的成像系统研究. 物理学报, 2008, 57(8): 4984-4990. doi: 10.7498/aps.57.4984
    [9] 李海英, 吴振森. 二维高斯波束对多层球粒子电磁散射的解析解. 物理学报, 2008, 57(2): 833-838. doi: 10.7498/aps.57.833
    [10] 王运华, 张彦敏, 郭立新. 平面上方二维介质目标对高斯波束的电磁散射研究. 物理学报, 2008, 57(9): 5529-5536. doi: 10.7498/aps.57.5529
    [11] 王运华, 郭立新, 吴振森. 平行柱体对平面波/高斯波束电磁散射. 物理学报, 2007, 56(1): 186-194. doi: 10.7498/aps.56.186
    [12] 季小玲, 黄太星, 吕百达. 部分相干双曲余弦高斯光束通过湍流大气的光束扩展. 物理学报, 2006, 55(2): 978-982. doi: 10.7498/aps.55.978
    [13] 陈 光. 尘埃粒子的时空结构及其性质. 物理学报, 2006, 55(4): 1539-1542. doi: 10.7498/aps.55.1539
    [14] 韩一平, 杜云刚, 张华永. 高斯波束对双层粒子的辐射俘获力. 物理学报, 2006, 55(9): 4557-4562. doi: 10.7498/aps.55.4557
    [15] 白 璐, 吴振森, 陈 辉, 郭立新. 高斯波束入射下串粒子的散射问题. 物理学报, 2005, 54(5): 2025-2029. doi: 10.7498/aps.54.2025
    [16] 吴 鹏, 韩一平, 刘德芳. 大粒子对高斯波束散射的数值模拟. 物理学报, 2005, 54(6): 2676-2679. doi: 10.7498/aps.54.2676
    [17] 田贵花, 赵 峥. 一类类光测地线的加速度. 物理学报, 2004, 53(6): 1662-1664. doi: 10.7498/aps.53.1662
    [18] 曾小东, 梁昌洪, 安毓英. 远轴高斯波的矢量场理论. 物理学报, 1999, 48(7): 1254-1260. doi: 10.7498/aps.48.1254
    [19] 沈文达, 朱莳通. 非奇性Schwarzschild黑洞的零测地线和稳定性. 物理学报, 1991, 40(12): 2032-2036. doi: 10.7498/aps.40.2032
    [20] 白贵儒, 吕洪君, 邢晓正. 衍射法测径中的光场偏振效应. 物理学报, 1988, 37(6): 899-905. doi: 10.7498/aps.37.899
计量
  • 文章访问数:  4343
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-20
  • 修回日期:  2022-12-06
  • 上网日期:  2022-12-17
  • 刊出日期:  2023-02-20

/

返回文章
返回