搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维亚音速运动介质中的高斯波束追踪

陈雨晨 张海刚 张明辉 杨士莪

引用本文:
Citation:

三维亚音速运动介质中的高斯波束追踪

陈雨晨, 张海刚, 张明辉, 杨士莪

Gaussian beam tracing for three-dimensional sound propagation problems in subsonic moving medium

Chen Yu-Chen, Zhang Hai-Gang, Zhang Ming-Hui, Yang Shi-E
PDF
HTML
导出引用
  • 为了充分考虑介质运动对声传播的影响, 建立了一种利用高斯波束法求解亚音速运动介质中的声传播问题的模型. 该模型基于高频近似任意马赫数的速度势函数亥姆霍兹方程, 采用波束追踪方法, 推导了运动介质中的动态射线方程组, 进而将偏微分方程转换成常微分方程组的形式. 理论表明运动介质中波束的扩展更为复杂, 并且声线管束内的能量不一定守恒. 将该模型应用于标准问题、水平分层大气次声三维远距离传播问题和墨西哥湾流流域的声传播问题, 仿真结果表明, 相比于常用的N×2D近似计算方法, 运动介质中的高斯波束追踪法充分考虑了介质运动的影响, 特别是横风的作用, 可以更加精确地计算运动介质中的三维声场; 尽管海流的马赫数很小, 但是同样会定量地改变声传播, 影响会聚区位置, 在一些区域考虑海流和不考虑海流的计算结果相差5 dB 以上.
    The study of sound propagation in moving medium is important in various fields, such as atmospheric sound and underwater acoustics. To address this problem, a three-dimensional Gaussian beam tracing model is developed for subsonic moving medium, based on the Helmholtz equation of velocity potential for high-frequency sound wave in a moving medium with arbitrary Mach numbers. The dynamic ray equations in the moving medium are derived by using the beam tracing method, and further the partial differential equation is transformed into ordinary differential equations, so as to be able to more efficiently and accurately calculate the three-dimensional sound field in the moving medium. The Gaussian beam tracing method reveals that the expansion of the beam in a moving medium is more complex than in a static medium, and the energy in the ray tube is not necessarily conserved. The model is applied to several problems, including point source sound propagation in a semi-infinite homogeneous medium, three-dimensional long-range sound propagation in horizontally layered atmospheres, and three-dimensional sound propagation in the Gulf Stream. The results of the point source sound propagation problem in the semi-infinite homogeneous medium verify the effectiveness and accuracy of the model. The results of the atmospheric sound propagation problem indicate that compared with the commonly used N × 2D method, the three-dimensional Gaussian beam tracing in a moving medium fully considers the effect of medium motion, especially the effect of crosswind, and can calculate the sound pressure field more accurately. Although the Mach number of the ocean current is very small, its effect cannot be ignored. The ocean current can quantitatively change the sound propagation mode and affect the convergence zone position. In some areas, the difference between calculation results with and without considering the ocean current is more than 5 dB. Moreover, the deviation of rays caused by lateral flow is much smaller, and even in the areas with complex terrain, the deviation becomes more obvious only after being reflected by the interface. Moreover, the influence of lateral flow on sound propagation is much smaller than that caused by flow velocity parallel to the propagation direction. In conclusion, the developed Gaussian beam tracing method provides an accurate and efficient approach for solving the sound propagation problem in subsonic moving media.
      通信作者: 张明辉, zhangminghui@hrbeu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174078, 11904292)和黑龙江省博士后科研启动基金(批准号: 3236330022)资助的课题
      Corresponding author: Zhang Ming-Hui, zhangminghui@hrbeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174078, 11904292) and the Postdoctoral Scientific Research Starting Foundation of Heilongjiang Province, China (Grant No. 3236330022)
    [1]

    Kirby R 2020 J. Acoust. Soc. Am. 148 3737Google Scholar

    [2]

    Hassan S E 2021 Recent Trends in Naval Engineering Research (Cham: Springer) p65

    [3]

    Franke S J, Swenson G W 1989 Appl. Acoust. 27 203Google Scholar

    [4]

    Elisseeff P, Schmidt H 1996 J. Acoust. Soc. Am. 99 2524Google Scholar

    [5]

    Ostashev V E, Wilson D K, Muhlestein M B 2020 J. Acoust. Soc. Am. 147 3969Google Scholar

    [6]

    Wilson D K, Shaw M J, Ostashev V E, Muhlestein M B, Alter R E, Swearingen M E, McComas S L 2022 J. Acoust. Soc. Am. 151 138Google Scholar

    [7]

    Zabotin N A, Godin O A, Sava P C, Zabotina L Y 2012 J. Comput. Acoust. 20 1250009Google Scholar

    [8]

    Zabotin N A, Godin O A, Sava P C, Zabotina L Y 2014 J. Comput. Acoust. 22 1450002Google Scholar

    [9]

    Blokhintsev D I 1956 Ph. D. Dissertation (Providence: Brown University)

    [10]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer) pp175–179

    [11]

    Ostashev V E, Wilson D K 2015 Acoustics in Moving Inhomogeneous Media (2nd Ed.) (Boca Raton: CRC Press) p11, p96, pp117–119, pp377–386

    [12]

    Porter M B, Bucker H P 1987 J. Acoust. Soc. Am. 82 1349Google Scholar

    [13]

    Gabillet Y, Schroeder H, Daigle G A, L’Espérance A 1993 J. Acoust. Soc. Am. 93 3105Google Scholar

    [14]

    Porter M B 2019 J. Acoust. Soc. Am. 146 2016Google Scholar

    [15]

    Červený V, Pšenčík I 1983 J. Geophys. 53 1

    [16]

    Popov M M, Pšenčík I, Červeny V 1978 Stud. Geophys. Geod. 22 248Google Scholar

    [17]

    Mo Q, Yeh H, Lin M, Manocha D 2017 J. Acoust. Soc. Am. 141 2289Google Scholar

    [18]

    Fuerkaiti Y, Casalino D, Acallone F, Ragni 2022 28th AIAA/CEAS Aeroacoustics 2022 Conference Southampton, UK, June 14–17, 2022 p1

    [19]

    杨训仁, 陈宇 2007 大气声学 (第二版) (北京: 科学出版社) 第44—48页

    Yang X R, Chen Y 2007 Atmospheric Acoustics (2nd Ed.) (Beijing: Science Press) pp44–48

    [20]

    Pierce A D 2019 Acoustics: an Introduction to Its Physical Principles and Applications (3rd Ed.) (New York: Springer) pp427–432

    [21]

    Červený V, Hron F 1980 Bull. Seismol. Soc. Am. 70 47Google Scholar

    [22]

    Schubert L K 1972 J. Acoust. Soc. Am. 51 439Google Scholar

    [23]

    程建春 2012 声学原理 (北京: 科学出版社) 第657—660页

    Cheng J C 2012 Acoustic Principle (Beijing: Science Press) pp657–660

    [24]

    Ostashev V E, Wilson D K, Liu L, Aldridge D F, Symons N P, Marlin D H 2005 J. Acoust. Soc. Am. 117 503Google Scholar

    [25]

    Assink J D, Waxler R, Drob D 2012 J. Geophys. Res.: Atmos. 117 D01110Google Scholar

    [26]

    Pichon A L, Blanc E, Drob D, Lambotte S, Dessa J X, Lardy M, Bani P, Vergniolle S 2005 J. Geophys. Res.: Atmos. 110 D13106Google Scholar

    [27]

    程巍, 滕鹏晓, 吕君, 姬培锋, 戴翊靖 2021 物理学报 70 244203Google Scholar

    Cheng W, Teng P X, Lü J, Ji P F, Dai Y J 2021 Acta Phys. Sin. 70 244203Google Scholar

    [28]

    University of Wyoming, Department of Atmospheric Sciences. http://weather.uwyo.edu/upperair/sounding/ [2022-01-22]

    [29]

    Pichon A L, Ceranna L, Vergoz J 2012 J. Geophys. Res. 117 D05121Google Scholar

    [30]

    Evers L G, Geyt A R J, Smets P, Frick J T 2012 J. Geophys. Res. 117 D06120Google Scholar

    [31]

    Godin O A, Mikhin D Y, Molchanov S Y 1993 Izv. Akad. Nauk. Fiz. Atmos. Okeana 29 194

    [32]

    Godin O A 2002 J. Acoust. Soc. Am. 112 1269Google Scholar

    [33]

    Franchi E R, Jacobson M J 1973 J. Acoust. Soc. Am. 54 1302Google Scholar

    [34]

    Franchi E R, Jacobson M J 1973 J. Acoust. Soc. Am. 53 835Google Scholar

    [35]

    Stallworth L A, Jacobson M J 1970 J. Acoust. Soc. Am. 48 382Google Scholar

    [36]

    张泽众, 骆文于, 庞哲, 周益清 2019 物理学报 68 204302Google Scholar

    Zhang Z Z, Luo W Y, Pang Z, Zhou Y Q 2019 Acta Phys. Sin. 68 204302Google Scholar

    [37]

    Henrick R F, Siegmann W L, Jacobson M J 1977 J. Acoust. Soc. Am. 62 860Google Scholar

    [38]

    Henrick R F, Jacobson M J, Siegmann W L 1980 J. Acoust. Soc. Am. 67 121Google Scholar

    [39]

    Grigor’eva N S, Yavor M I 1986 Sov. Phys. Acoust. 32 482

    [40]

    Copernicuse https://www.copernicus.eu/en [2022-1-30]

    [41]

    Coppens A B 1981 J. Acoust. Soc. Am. 69 862Google Scholar

  • 图 1  20 m高度顺逆流声压级曲线

    Fig. 1.  Sound pressure level curve of upwind and downwind at 20 m height

    图 2  20 m高度平面声压级

    Fig. 2.  Sound pressure level at 20 m height

    图 3  2018年12月20日12时, 美国密西西比州杰克逊, 声速与风速剖面

    Fig. 3.  Sound speed and wind profiles for Jackson, Mississippi, U.S. for 20 December 2018 at 12Z

    图 4  正北5 km高度声压级曲线

    Fig. 4.  Sound pressure level curve at northward 5 km height

    图 5  2018年12月20日12时, 杰克逊剖面计算声压级. 上图正半轴为正东, 负半轴为正西; 下图正半轴为正北, 负半轴为正南

    Fig. 5.  Sound pressure level at Jackson based on the profile for 20 December 2018 at 12Z. Top is a vertical plane with the left side being to the west, and right side to the east. Bottom is a vertical slice with the leftward being to the south, and rightward to the north

    图 6  声压级随高度变化 (a) 0.1 km; (b) 1 km; (c) 2 km; (d) 3 km; (e) 5 km; (f) 10 km; (g) 15 km; (h) 20 km; (i) 30 km

    Fig. 6.  SPL vs. height of transverse slice: (a) 0.1 km; (b) 1 km; (c) 2 km; (d) 3 km; (e) 5 km; (f) 10 km; (g) 15 km; (h) 20 km; (i) 30 km

    图 7  $ 0^{\circ} $, $ 90^{\circ} $, $ 180^\circ $, $ 270^\circ $方位角出射的声线束轨迹 (a) xoy平面; (b) xoz平面; (c) yoz平面

    Fig. 7.  Ray traces at the azimuth of $ 0^{\circ} $, $ 90^{\circ} $, $ 180^\circ $, $ 270^\circ $ at slices of (a) xoy, (b) xoz, (c) yoz

    图 8  (a)东向流和(b)北向流剖面

    Fig. 8.  (a) Eastward current and (b) northward current profiles

    图 9  声速剖面

    Fig. 9.  Sound speed profiles

    图 10  海底地形

    Fig. 10.  Bathymetry for the calculation area

    图 11  60 m平面传播损失 (a)考虑海流; (b)不考虑海流; (c)两者差别

    Fig. 11.  Transmission loss at 60 m horizontal slice: (a) consider current; (b) noflow; (c) difference between (a) and (b)

    图 12  0°和180°方位角出射声线的轨迹 (a) xoz平面, (b) xoy平面. 实线表示无流的轨迹, 虚线表示考虑流的轨迹, 黑色表示发生海底海面反射的声线, 蓝色表示仅发生海底反射的声线

    Fig. 12.  Ray trajectories of the azimuth angle of 0° and 180° at slices of (a) xoz , (b) xoy . Solid line is the trajectory in noflow, dotted line in current; black indicates the ray reflected from surface and bottom, blue only reflected from bottom

    图 13  60 m深度顺逆流传播损失曲线. 上图为顺流, 下图为逆流

    Fig. 13.  Transmission loss curve at 60 m deep. Top is downstream and bottom is upstream

  • [1]

    Kirby R 2020 J. Acoust. Soc. Am. 148 3737Google Scholar

    [2]

    Hassan S E 2021 Recent Trends in Naval Engineering Research (Cham: Springer) p65

    [3]

    Franke S J, Swenson G W 1989 Appl. Acoust. 27 203Google Scholar

    [4]

    Elisseeff P, Schmidt H 1996 J. Acoust. Soc. Am. 99 2524Google Scholar

    [5]

    Ostashev V E, Wilson D K, Muhlestein M B 2020 J. Acoust. Soc. Am. 147 3969Google Scholar

    [6]

    Wilson D K, Shaw M J, Ostashev V E, Muhlestein M B, Alter R E, Swearingen M E, McComas S L 2022 J. Acoust. Soc. Am. 151 138Google Scholar

    [7]

    Zabotin N A, Godin O A, Sava P C, Zabotina L Y 2012 J. Comput. Acoust. 20 1250009Google Scholar

    [8]

    Zabotin N A, Godin O A, Sava P C, Zabotina L Y 2014 J. Comput. Acoust. 22 1450002Google Scholar

    [9]

    Blokhintsev D I 1956 Ph. D. Dissertation (Providence: Brown University)

    [10]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer) pp175–179

    [11]

    Ostashev V E, Wilson D K 2015 Acoustics in Moving Inhomogeneous Media (2nd Ed.) (Boca Raton: CRC Press) p11, p96, pp117–119, pp377–386

    [12]

    Porter M B, Bucker H P 1987 J. Acoust. Soc. Am. 82 1349Google Scholar

    [13]

    Gabillet Y, Schroeder H, Daigle G A, L’Espérance A 1993 J. Acoust. Soc. Am. 93 3105Google Scholar

    [14]

    Porter M B 2019 J. Acoust. Soc. Am. 146 2016Google Scholar

    [15]

    Červený V, Pšenčík I 1983 J. Geophys. 53 1

    [16]

    Popov M M, Pšenčík I, Červeny V 1978 Stud. Geophys. Geod. 22 248Google Scholar

    [17]

    Mo Q, Yeh H, Lin M, Manocha D 2017 J. Acoust. Soc. Am. 141 2289Google Scholar

    [18]

    Fuerkaiti Y, Casalino D, Acallone F, Ragni 2022 28th AIAA/CEAS Aeroacoustics 2022 Conference Southampton, UK, June 14–17, 2022 p1

    [19]

    杨训仁, 陈宇 2007 大气声学 (第二版) (北京: 科学出版社) 第44—48页

    Yang X R, Chen Y 2007 Atmospheric Acoustics (2nd Ed.) (Beijing: Science Press) pp44–48

    [20]

    Pierce A D 2019 Acoustics: an Introduction to Its Physical Principles and Applications (3rd Ed.) (New York: Springer) pp427–432

    [21]

    Červený V, Hron F 1980 Bull. Seismol. Soc. Am. 70 47Google Scholar

    [22]

    Schubert L K 1972 J. Acoust. Soc. Am. 51 439Google Scholar

    [23]

    程建春 2012 声学原理 (北京: 科学出版社) 第657—660页

    Cheng J C 2012 Acoustic Principle (Beijing: Science Press) pp657–660

    [24]

    Ostashev V E, Wilson D K, Liu L, Aldridge D F, Symons N P, Marlin D H 2005 J. Acoust. Soc. Am. 117 503Google Scholar

    [25]

    Assink J D, Waxler R, Drob D 2012 J. Geophys. Res.: Atmos. 117 D01110Google Scholar

    [26]

    Pichon A L, Blanc E, Drob D, Lambotte S, Dessa J X, Lardy M, Bani P, Vergniolle S 2005 J. Geophys. Res.: Atmos. 110 D13106Google Scholar

    [27]

    程巍, 滕鹏晓, 吕君, 姬培锋, 戴翊靖 2021 物理学报 70 244203Google Scholar

    Cheng W, Teng P X, Lü J, Ji P F, Dai Y J 2021 Acta Phys. Sin. 70 244203Google Scholar

    [28]

    University of Wyoming, Department of Atmospheric Sciences. http://weather.uwyo.edu/upperair/sounding/ [2022-01-22]

    [29]

    Pichon A L, Ceranna L, Vergoz J 2012 J. Geophys. Res. 117 D05121Google Scholar

    [30]

    Evers L G, Geyt A R J, Smets P, Frick J T 2012 J. Geophys. Res. 117 D06120Google Scholar

    [31]

    Godin O A, Mikhin D Y, Molchanov S Y 1993 Izv. Akad. Nauk. Fiz. Atmos. Okeana 29 194

    [32]

    Godin O A 2002 J. Acoust. Soc. Am. 112 1269Google Scholar

    [33]

    Franchi E R, Jacobson M J 1973 J. Acoust. Soc. Am. 54 1302Google Scholar

    [34]

    Franchi E R, Jacobson M J 1973 J. Acoust. Soc. Am. 53 835Google Scholar

    [35]

    Stallworth L A, Jacobson M J 1970 J. Acoust. Soc. Am. 48 382Google Scholar

    [36]

    张泽众, 骆文于, 庞哲, 周益清 2019 物理学报 68 204302Google Scholar

    Zhang Z Z, Luo W Y, Pang Z, Zhou Y Q 2019 Acta Phys. Sin. 68 204302Google Scholar

    [37]

    Henrick R F, Siegmann W L, Jacobson M J 1977 J. Acoust. Soc. Am. 62 860Google Scholar

    [38]

    Henrick R F, Jacobson M J, Siegmann W L 1980 J. Acoust. Soc. Am. 67 121Google Scholar

    [39]

    Grigor’eva N S, Yavor M I 1986 Sov. Phys. Acoust. 32 482

    [40]

    Copernicuse https://www.copernicus.eu/en [2022-1-30]

    [41]

    Coppens A B 1981 J. Acoust. Soc. Am. 69 862Google Scholar

  • [1] 郭肖晋, 马树青, 张理论, 蓝强, 黄创霞. 水声射线传播的黎曼几何建模·基础理论. 物理学报, 2023, 72(4): 044302. doi: 10.7498/aps.72.20221451
    [2] 马树青, 郭肖晋, 张理论, 蓝强, 黄创霞. 水声射线传播的黎曼几何建模·应用 —深海远程声传播会聚区黎曼几何模型. 物理学报, 2023, 72(4): 044301. doi: 10.7498/aps.72.20221495
    [3] 毕思昭, 彭朝晖, 王光旭, 谢志敏, 张灵珊. 西太平洋远距离声传播特性. 物理学报, 2022, 71(21): 214302. doi: 10.7498/aps.71.20220566
    [4] 孙冠文, 崔寒茵, 李超, 林伟军. 火星大气频散声速剖面建模方法及其对声传播路径的影响. 物理学报, 2022, 71(24): 244304. doi: 10.7498/aps.71.20221531
    [5] 毕思昭, 彭朝晖. 地球曲率对远距离声传播的影响. 物理学报, 2021, 70(11): 114303. doi: 10.7498/aps.70.20201858
    [6] 刘代, 李整林, 刘若芸. 浅海周期起伏海底环境下的声传播. 物理学报, 2021, 70(3): 034302. doi: 10.7498/aps.70.20201233
    [7] 刘今, 彭朝晖, 张灵珊, 刘若芸, 李整林. 浅海涌浪对表面声道声传播的影响. 物理学报, 2021, 70(5): 054302. doi: 10.7498/aps.70.20201549
    [8] 程巍, 滕鹏晓, 吕君, 姬培锋, 戴翊靖. 基于大气声传播理论的爆炸声源能量估计. 物理学报, 2021, 70(24): 244203. doi: 10.7498/aps.70.20210562
    [9] 姚美娟, 鹿力成, 孙炳文, 郭圣明, 马力. 浅海起伏海面下气泡层对声传播的影响. 物理学报, 2020, 69(2): 024303. doi: 10.7498/aps.69.20191208
    [10] 张鹏, 李整林, 吴立新, 张仁和, 秦继兴. 深海海底反射会聚区声传播特性. 物理学报, 2019, 68(1): 014301. doi: 10.7498/aps.68.20181761
    [11] 乔厚, 何锃, 张恒堃, 彭伟才, 江雯. 二维含多孔介质周期复合结构声传播分析. 物理学报, 2019, 68(12): 128101. doi: 10.7498/aps.68.20190164
    [12] 范雨喆, 陈宝伟, 李海森, 徐超. 丛聚的含气泡水对线性声传播的影响. 物理学报, 2018, 67(17): 174301. doi: 10.7498/aps.67.20180728
    [13] 胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利. 深海海底斜坡环境下的声传播. 物理学报, 2016, 65(1): 014303. doi: 10.7498/aps.65.014303
    [14] 郑广赢, 黄益旺. 气泡线性振动对含气泡水饱和多孔介质声传播的影响. 物理学报, 2016, 65(23): 234301. doi: 10.7498/aps.65.234301
    [15] 张歆, 邢晓飞, 张小蓟, 周燕群, 赵顺德, 李俊威. 基于水声信道传播时延排序的分层空时信号检测. 物理学报, 2015, 64(16): 164302. doi: 10.7498/aps.64.164302
    [16] 王勇, 林书玉, 张小丽. 含气泡液体中的非线性声传播. 物理学报, 2014, 63(3): 034301. doi: 10.7498/aps.63.034301
    [17] 钱仙妹, 朱文越, 饶瑞中. 伪部分相干高斯-谢尔模型光束在湍流大气中传播的闪烁孔径平滑效应. 物理学报, 2013, 62(4): 044203. doi: 10.7498/aps.62.044203
    [18] 吕君, 赵正予, 周晨. 次声波在非均匀运动大气中非线性传播特性的研究. 物理学报, 2011, 60(10): 104301. doi: 10.7498/aps.60.104301
    [19] 张景川, 袁萍, 欧阳玉花. 雷声在大气中传播的吸收衰减特性研究. 物理学报, 2010, 59(11): 8287-8392. doi: 10.7498/aps.59.8287
    [20] 荀 径, 宁 滨, 李克平. 网络条件下列车追踪模型及延迟传播的研究. 物理学报, 2007, 56(9): 5158-5164. doi: 10.7498/aps.56.5158
计量
  • 文章访问数:  3098
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-25
  • 修回日期:  2023-04-04
  • 上网日期:  2023-04-21
  • 刊出日期:  2023-06-20

/

返回文章
返回