搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于角谱传播理论的衰荡腔光场传输模型及调腔评价准则研究

何星 田中州 王帅 杨平 许冰

引用本文:
Citation:

基于角谱传播理论的衰荡腔光场传输模型及调腔评价准则研究

何星, 田中州, 王帅, 杨平, 许冰

Optical field propagation model of ring-down cavity light field based on angular spectrum propagation theory and evaluation criterion of cavity tuning

He Xing, Tian Zhong-Zhou, Wang Shuai, Yang Ping, Xu Bing
PDF
HTML
导出引用
  • 在光腔衰荡技术中, 腔失调与腔损耗观测值之间存在复杂的非线性映射关系, 导致调腔过程易陷入局部寻优, 对测量准确性造成影响. 本文基于角谱传播理论, 建立了一种衰荡腔高斯光场传输模型, 对典型调腔评价准则进行对比, 并以模型仿真与实验研究相结合的方式, 验证模型合理性. 在仿真模型和实验系统中对特定腔镜施加二维倾斜角度扫描, 获取两种典型调腔评价准则(即光强峰值和衰荡时间)的二维扫描分布. 对比光强最大峰值和最长衰荡时间所对应的腔损耗观测状态. 仿真结果表明光强最大峰值对应的腔损耗观测误差更小, 观测重复性更高. 实验结果同样表明光强最大峰值评价准则具有更好效果. 模型仿真和实验研究的结果验证光强最大峰值评价准则在仿真和实验中具有更好的调腔重复性精度. 同时, 仿真与实验结果基本吻合, 初步验证了本衰荡腔光场传输模型的合理性. 本光场传输仿真模型对光腔衰荡技术在测量应用、光场响应及自动化调腔技术等方面的研究具有一定参考意义.
    In cavity ring-down technique, cavity maladjustment has an essential effect on the measurement of intracavity loss. Several adjustment criterions have been adopted to achieve the optimal cavity state. However, experimental study shows that these criterions may correspond to different cavity states, which means that there is discrepancy between different criterions. In view of this problem, a model of intracavity propagation of Gaussian beam is established based on the angular spectrum propagation theory. This model is tested by numerical simulation and experimental research together. In the simulation, the true value of intracavity loss can be known beforehand. The two-dimensional angular scanning is carried out for certain cavity mirror. The two-dimensional distributions of the measure value of intracavity loss and the transmission light intensity are obtained simultaneously. These distributions are both nonlinear and multi-extremum, which will doubtlessly increase the difficulty in realizing the cavity adjustment. By comparing the distributions , we do find the discrepancy between the largest transmission light intensity and the least measured intracavity loss. Meanwhile both of these two states may be not corresponding to the true value in fact. After statistical studies, the relative error of the least measured intracavity loss is (–37.01±11.79) ppm, whereas the relative error of the largest transmission intensity is (–2.70±0.89) ppm. The criterion of the largest transmission intensity shows better stability and repeatability. This model is further tested in a folded cavity ring-down setup. The similar scanning procedure is carried out. A major problem in the experiment is that the true value of intracavity loss cannot be known. So only the repeatability precision of the measured intracavity loss can be analyzed. The statistical results of the largest light intensity and the least measured intracavity loss are ±29.32 ppm and ±70.71 ppm, respectively. The criterion of the largest transmission intensity has better repeatability, which is basically consistent with the simulation result. In this way the rationality of this model can be verified to some degree. In this paper, the criterion of the largest transmission intensity is recommended in the cavity ring-down technique. Furthermore, this model can be a reference for the research of intracavity optical field response, intracavity optical field transmission, unstable resonator alignment, etc.
      通信作者: 何星, hexingjiayou@126.com ; 杨平, pingyang2516@163.com
    • 基金项目: 国家自然科学基金(批准号: 61805251, 61875203, 11811530290, 11704382)资助的课题.
      Corresponding author: He Xing, hexingjiayou@126.com ; Yang Ping, pingyang2516@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61805251, 61875203, 11811530290, 11704382).
    [1]

    Sanders V 1977 Appl. Opt. 16 19Google Scholar

    [2]

    李斌成, 龚元 2010 激光与光电子学进展 47 021203Google Scholar

    Li B C, Gong Y 2010 Laser Opt. Pro. 47 021203Google Scholar

    [3]

    Tan Y, Wang J, Zhao X Q, Liu A W, Hu S M 2017 J. Quant. Spectrosc. Radiat. Transf. 187 274Google Scholar

    [4]

    康鹏, 孙羽, 王进, 刘安雯, 胡水明 2018 物理学报 67 104206Google Scholar

    Kang P, Sun Y, Wang J, Liu A W, Hu S M 2018 Acta Phys. Sin. 67 104206Google Scholar

    [5]

    McHale L E, Hecobian A, Yalin A P 2016 Opt. Express 24 5523Google Scholar

    [6]

    Li Z Y, Hu R Z, Xie P H, Chen H, Wu S Y, Wang F Y, Wang Y H, Ling L Y, Liu J G, Liu W Q 2018 Opt. Express 26 A433Google Scholar

    [7]

    Yang L Z, Yang J J, Yang Y, Zhang Z W, Wang J F, Zhang Z X, Xue P P, Gong Y K, Copner N 2017 Opt. Express 25 2031Google Scholar

    [8]

    Smith I W 1978 Appl. Opt. 17 2476Google Scholar

    [9]

    Li B C, Gong Y 2010 US Patent 7 679 750 B2 [2010-03-16]

    [10]

    Cui H, Li B C, Han Y L, Wang J, Gao C M, Wang Y F 2017 Chin. Opt. Lett. 15 053101Google Scholar

    [11]

    Xiao S L, Li B C, Wang J 2020 Metrologia 57 055002Google Scholar

    [12]

    Xiang W D, Yang P, Wang S, Xu B, Liu H 2018 Opto-Electronic Advances 1 180024Google Scholar

    [13]

    Cui H, Li B C, Han Y L, Wang J, Gao C M, Wang Y F 2016 Opt. Express 24 013343Google Scholar

    [14]

    Hamzeh T, Anam C P, Liu J J 2020 Appl. Opt. 59 9464Google Scholar

    [15]

    Anderson D Z, Frisch J C, Masser C S 1984 Appl. Opt. 23 1238Google Scholar

    [16]

    Paldus B A, Kachanov A A 2005 Cana. J. Phys. 83 975Google Scholar

    [17]

    Romanini D 2014 Appl. Phys. B 115 517Google Scholar

    [18]

    Shadman S, Rose C, Yalin A P 2016 Appl. Phys. B 122 194Google Scholar

    [19]

    Maity A, Maithani S, Pradhan M 2021 Anal. Chem. 93 388Google Scholar

    [20]

    易亨瑜 2006 中国激光 33 399Google Scholar

    Yi H Y 2006 Chin. J. Lasers 33 399Google Scholar

    [21]

    易亨瑜, 吕百达, 张凯 2006 激光技术 30 5Google Scholar

    Yi H Y, Lv B D, Zhang K 2006 Laser Tech. 30 5Google Scholar

    [22]

    何星 2016 博士学位论文 (北京: 中国科学院大学)

    He X 2016 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [23]

    He X, Tian Z Z, Lai B H, Zhao W, Wang S, Yang P 2021 CN Patent 113984670A [2022-01-28]

    [24]

    薛颖, 杜星湖, 何星, 王帅, 杨平, 许冰 2020 中国激光 47 0504001Google Scholar

    Xue Y, Du X H, He X, Wang S, Yang P, Xu B 2020 Chin. J. Lasers 47 0504001Google Scholar

    [25]

    杜星湖, 薛颖, 何星, 王帅, 杨平, 许冰 2020 中国激光 47 0604006Google Scholar

    Du X H, Xue Y, He X, Wang S, Yang P, Xu B 2020 Chin. J. Lasers 47 0604006Google Scholar

    [26]

    Hodges J T, Looney J P, Zee R D V 1996 J. Chem. Phys. 105 10278Google Scholar

    [27]

    Lehmann K K 1996 J. Chem. Phys. 105 10263Google Scholar

    [28]

    吕乃光 2006 傅里叶光学(第二版) (北京: 机械工业出版社) 第82—86页

    Lv N G 2006 Fourier Optics (Vol. 2) (Beijing: China Machine Press) pp82–86 (in Chinese)

    [29]

    曲哲超, 李斌成, 韩艳玲 2011 光子学报 40 1366Google Scholar

    Qu Z C, Li B C, Han Y L 2011 Acta Phot. Sin. 40 1366Google Scholar

    [30]

    He X, Yan H, Dong L Z, Yang P, Xu B 2016 Chin. Phys. B 25 014211Google Scholar

    [31]

    He X, Luan Y S, Dong L Z, Yang P, Xu B, Tang G M 2016 Opto-Electronic Engineering 43 46Google Scholar

  • 图 1  双凹衰荡腔模型示意图

    Fig. 1.  Schematic of double-concave ring-down cavity model.

    图 2  (a)腔损耗观测值分布图; (b)透射光强峰值分布图

    Fig. 2.  (a) Distribution of the cavity loss observation;(b) distribution of the peak value of signal intensity.

    图 3  实验装置

    Fig. 3.  Experimental setup.

    图 4  (a)腔损耗观测值分布图; (b)透射光强峰值分布图

    Fig. 4.  (a) Distribution of the cavity loss observation; (b) distribution of the peak value of signal intensity.

    表 1  衰荡腔模型仿真初始参数列表

    Table 1.  The initial parameters of simulation model

    名称参数数值
    注入
    光束
    横模模式TEM00
    中心波长λ = 1064 nm
    光源线宽*LW = 0.5 nm
    束腰半径w = 0.8 mm
    衰荡腔腔镜反射率R1 = R2 = 99.85%
    腔镜曲率r1 = r2=1 m
    腔长L = 0.5 m
    腔镜偏移量$ \delta_{x1} =\delta_{71} =\delta_{x2} =\delta_{y2} = 0 $
    传输
    过程
    注入过程腔内往返传输2000次
    衰荡过程腔内往返传输500次
    注: *为在光源线宽范围内, 离散选择30个波长进行仿真.
    下载: 导出CSV

    表 2  重复性扫描仿真结果

    Table 2.  Simulation results of repetitive scanning.

    编号腔镜M1的倾斜失调角度/(°)光强最大峰值下的腔损耗/ppm最长衰荡时间下的腔损耗/ppm腔损耗真值/ppm
    θx1/(°)θy1/(°)
    100.0011498.061471.981500
    2–0.00050.0011497.601461.021500
    30.0010.0011497.511447.071500
    4001496.011471.871500
    下载: 导出CSV

    表 3  不同腔镜反射率下的腔损耗仿真结果

    Table 3.  Simulation results under different cavity mirror reflectivity.

    腔镜反射率(R1=R2)光强最大峰值下的腔损耗测量结果/ppm最长衰荡时间下的腔损耗测量结果/ppm
    99.80% (2000 ppm)1996.66±0.801959.06±13.03
    99.85% (1500 ppm)1497.30±0.891462.99±11.79
    99.88% (1200 ppm)1197.63±1.061164.80±9.55
    下载: 导出CSV

    表 4  腔镜M1不同倾斜失调量下的实验结果

    Table 4.  Experimental results of cavity mirror M1 under different tilt maladjustment.

    编号光强最大峰值下
    的腔损耗/ppm
    最长衰荡时间下
    的腔损耗/ppm
    12240.612038.26
    22261.662045.96
    32304.961892.29
    42245.251989.59
    下载: 导出CSV
  • [1]

    Sanders V 1977 Appl. Opt. 16 19Google Scholar

    [2]

    李斌成, 龚元 2010 激光与光电子学进展 47 021203Google Scholar

    Li B C, Gong Y 2010 Laser Opt. Pro. 47 021203Google Scholar

    [3]

    Tan Y, Wang J, Zhao X Q, Liu A W, Hu S M 2017 J. Quant. Spectrosc. Radiat. Transf. 187 274Google Scholar

    [4]

    康鹏, 孙羽, 王进, 刘安雯, 胡水明 2018 物理学报 67 104206Google Scholar

    Kang P, Sun Y, Wang J, Liu A W, Hu S M 2018 Acta Phys. Sin. 67 104206Google Scholar

    [5]

    McHale L E, Hecobian A, Yalin A P 2016 Opt. Express 24 5523Google Scholar

    [6]

    Li Z Y, Hu R Z, Xie P H, Chen H, Wu S Y, Wang F Y, Wang Y H, Ling L Y, Liu J G, Liu W Q 2018 Opt. Express 26 A433Google Scholar

    [7]

    Yang L Z, Yang J J, Yang Y, Zhang Z W, Wang J F, Zhang Z X, Xue P P, Gong Y K, Copner N 2017 Opt. Express 25 2031Google Scholar

    [8]

    Smith I W 1978 Appl. Opt. 17 2476Google Scholar

    [9]

    Li B C, Gong Y 2010 US Patent 7 679 750 B2 [2010-03-16]

    [10]

    Cui H, Li B C, Han Y L, Wang J, Gao C M, Wang Y F 2017 Chin. Opt. Lett. 15 053101Google Scholar

    [11]

    Xiao S L, Li B C, Wang J 2020 Metrologia 57 055002Google Scholar

    [12]

    Xiang W D, Yang P, Wang S, Xu B, Liu H 2018 Opto-Electronic Advances 1 180024Google Scholar

    [13]

    Cui H, Li B C, Han Y L, Wang J, Gao C M, Wang Y F 2016 Opt. Express 24 013343Google Scholar

    [14]

    Hamzeh T, Anam C P, Liu J J 2020 Appl. Opt. 59 9464Google Scholar

    [15]

    Anderson D Z, Frisch J C, Masser C S 1984 Appl. Opt. 23 1238Google Scholar

    [16]

    Paldus B A, Kachanov A A 2005 Cana. J. Phys. 83 975Google Scholar

    [17]

    Romanini D 2014 Appl. Phys. B 115 517Google Scholar

    [18]

    Shadman S, Rose C, Yalin A P 2016 Appl. Phys. B 122 194Google Scholar

    [19]

    Maity A, Maithani S, Pradhan M 2021 Anal. Chem. 93 388Google Scholar

    [20]

    易亨瑜 2006 中国激光 33 399Google Scholar

    Yi H Y 2006 Chin. J. Lasers 33 399Google Scholar

    [21]

    易亨瑜, 吕百达, 张凯 2006 激光技术 30 5Google Scholar

    Yi H Y, Lv B D, Zhang K 2006 Laser Tech. 30 5Google Scholar

    [22]

    何星 2016 博士学位论文 (北京: 中国科学院大学)

    He X 2016 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [23]

    He X, Tian Z Z, Lai B H, Zhao W, Wang S, Yang P 2021 CN Patent 113984670A [2022-01-28]

    [24]

    薛颖, 杜星湖, 何星, 王帅, 杨平, 许冰 2020 中国激光 47 0504001Google Scholar

    Xue Y, Du X H, He X, Wang S, Yang P, Xu B 2020 Chin. J. Lasers 47 0504001Google Scholar

    [25]

    杜星湖, 薛颖, 何星, 王帅, 杨平, 许冰 2020 中国激光 47 0604006Google Scholar

    Du X H, Xue Y, He X, Wang S, Yang P, Xu B 2020 Chin. J. Lasers 47 0604006Google Scholar

    [26]

    Hodges J T, Looney J P, Zee R D V 1996 J. Chem. Phys. 105 10278Google Scholar

    [27]

    Lehmann K K 1996 J. Chem. Phys. 105 10263Google Scholar

    [28]

    吕乃光 2006 傅里叶光学(第二版) (北京: 机械工业出版社) 第82—86页

    Lv N G 2006 Fourier Optics (Vol. 2) (Beijing: China Machine Press) pp82–86 (in Chinese)

    [29]

    曲哲超, 李斌成, 韩艳玲 2011 光子学报 40 1366Google Scholar

    Qu Z C, Li B C, Han Y L 2011 Acta Phot. Sin. 40 1366Google Scholar

    [30]

    He X, Yan H, Dong L Z, Yang P, Xu B 2016 Chin. Phys. B 25 014211Google Scholar

    [31]

    He X, Luan Y S, Dong L Z, Yang P, Xu B, Tang G M 2016 Opto-Electronic Engineering 43 46Google Scholar

  • [1] 熊枫, 彭志敏, 王振, 丁艳军, 吕俊复, 杜艳君. CO2/CO干扰下基于腔衰荡吸收光谱的痕量H2S浓度测量. 物理学报, 2023, 72(4): 043302. doi: 10.7498/aps.72.20221851
    [2] 黄知秋, 张猛, 彭志敏, 王振, 杨乾锁. 注入光有限相干性对衰荡腔测试方法的影响及求解衰荡时间的强度积分法. 物理学报, 2023, 72(18): 184205. doi: 10.7498/aps.72.20230448
    [3] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 更正: 光学反馈线性腔衰荡光谱技术不确定性[物理学报 2022, 71(12): 124201]. 物理学报, 2022, 71(15): 159901. doi: 10.7498/aps.71.159901
    [4] 饶冰洁, 张攀, 李铭坤, 杨西光, 闫露露, 陈鑫, 张首刚, 张颜艳, 姜海峰. 用于光腔衰荡光谱测量的多支路掺铒光纤飞秒光梳系统. 物理学报, 2022, 71(8): 084203. doi: 10.7498/aps.71.20212162
    [5] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 光学反馈线性腔衰荡光谱技术不确定性. 物理学报, 2022, 71(12): 124201. doi: 10.7498/aps.70.20220186
    [6] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 光学反馈线性腔衰荡光谱技术不确定性研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220186
    [7] 何星, 田中州, 王帅, 杨平, 许冰. 基于角谱传播理论的衰荡腔光场传输模型及调腔评价准则研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221530
    [8] 王金舵, 余锦, 貊泽强, 何建国, 代守军, 孟晶晶, 王晓东, 刘洋. 连续波腔衰荡光谱技术中模式筛选的数值方法. 物理学报, 2019, 68(24): 244201. doi: 10.7498/aps.68.20190844
    [9] 王振, 杜艳君, 丁艳军, 彭志敏. 基于傅里叶变换的波长扫描腔衰荡光谱. 物理学报, 2019, 68(20): 204204. doi: 10.7498/aps.68.20191062
    [10] 张曦, 刘慧, 姜坤良, 王进起, 熊转贤, 贺凌翔, 吕宝龙. 利用传输腔技术实现镱原子光钟光晶格场的频率稳定. 物理学报, 2017, 66(16): 164205. doi: 10.7498/aps.66.164205
    [11] 贾梦源, 赵刚, 侯佳佳, 谭巍, 邱晓东, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 双重频率锁定的腔衰荡吸收光谱技术及信号处理. 物理学报, 2016, 65(12): 128701. doi: 10.7498/aps.65.128701
    [12] 刘志刚, 刘伟龙, 赵海军. 量子计算正三角形腔内的氢负离子光剥离截面. 物理学报, 2015, 64(16): 163202. doi: 10.7498/aps.64.163202
    [13] 崔立红, 颜昌翔, 赵维宁, 张新洁, 胡春辉. 失调多腔镜型环形谐振腔共轭光轴位置精度分析. 物理学报, 2015, 64(22): 224210. doi: 10.7498/aps.64.224210
    [14] 胡仁志, 王丹, 谢品华, 凌六一, 秦敏, 李传新, 刘建国. 二极管激光腔衰荡光谱测量大气NO3自由基. 物理学报, 2014, 63(11): 110707. doi: 10.7498/aps.63.110707
    [15] 曹 琳, 王春梅, 陈扬骎, 杨晓华. 光外差腔衰荡光谱理论研究. 物理学报, 2006, 55(12): 6354-6359. doi: 10.7498/aps.55.6354
    [16] 冯健, 王继锁, 高云峰, 詹明生. 光场及原子-光场耦合的非线性对腔内原子辐射谱的影响. 物理学报, 2001, 50(7): 1279-1283. doi: 10.7498/aps.50.1279
    [17] 赵宏太, 柳晓军, 曹俊文, 彭良友, 詹明生. Ba原子6s6p1P1←6s6s1S0跃迁的光腔衰荡光谱. 物理学报, 2001, 50(7): 1274-1278. doi: 10.7498/aps.50.1274
    [18] 刘正东, 曹昌祺, 林多樑. 腔内原有光场的振幅压缩. 物理学报, 1991, 40(11): 1792-1798. doi: 10.7498/aps.40.1792
    [19] 张卫平, 谭维翰. 激光腔内压缩态光的产生. 物理学报, 1988, 37(11): 1767-1774. doi: 10.7498/aps.37.1767
    [20] 李铁城, 方励之. 分子在失调腔中的辐射行为及双腔Maser的振荡现象. 物理学报, 1964, 20(8): 753-760. doi: 10.7498/aps.20.753
计量
  • 文章访问数:  3451
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-28
  • 修回日期:  2022-08-30
  • 上网日期:  2022-12-24
  • 刊出日期:  2023-01-05

/

返回文章
返回