搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拓扑半金属及磁性拓扑材料的单晶生长

王欢 何春娟 徐升 王义炎 曾祥雨 林浚发 王小艳 巩静 马小平 韩坤 王乙婷 夏天龙

引用本文:
Citation:

拓扑半金属及磁性拓扑材料的单晶生长

王欢, 何春娟, 徐升, 王义炎, 曾祥雨, 林浚发, 王小艳, 巩静, 马小平, 韩坤, 王乙婷, 夏天龙

Single crystal growth of topological semimetals and magnetic topological materials

Wang Huan, He Chun-Juan, Xu Sheng, Wang Yi-Yan, Zeng Xiang-Yu, Lin Jun-Fa, Wang Xiao-Yan, Gong Jing, Ma Xiao-Ping, Han Kun, Wang Yi-Ting, Xia Tian-Long
PDF
HTML
导出引用
  • 拓扑材料因具有新奇物理特性受到广泛关注, 这些材料一方面为基础物理研究提供了新的平台, 另一方面在以拓扑物理为基础发展的器件研究方向上展现出潜在应用价值. 凝聚态领域对于拓扑材料相关物理问题的研究主要通过两种方式开展: 一是在已知的拓扑材料中不断挖掘新的实验现象和物理问题; 二是不断预言和探索发现新型拓扑材料体系并开展合成. 无论哪种方式, 高质量单晶的获得都至关重要, 它为角分辨光电子能谱、扫描隧道显微谱和磁场下的量子振荡等实验研究提供了前提保障. 本文总结了拓扑材料的分类和发展, 基于本研究组近些年开展的工作介绍了助溶剂法、气相输运法这两种拓扑材料单晶生长中常用的方法, 并详细介绍了拓扑物性研究领域几类典型的拓扑材料及其生长方法, 如拓扑绝缘体/拓扑半金属、高陈数手性拓扑半金属和磁性拓扑材料等.
    Topological materials have attracted much attention due to their novel physical properties. These materials can not only serve as a platform for studying the fundamental physics, but also demonstrate a significant potential application in electronics, and they are studied usually in two ways. One is to constantly explore new experimental phenomena and physical problems in existing topological materials, and the other is to predict and discover new topological material systems and carry out synthesis for further studies. In a word, high-quality crystals are very important for studying quantum oscillations, angle resolved photoemission spectra or scanning tunneling microscopy. In this work, the classifications and developments of topological materials, including topological insulators, topological semimetals, and magnetic topological materials, are introduced. As usually employed growth methods in growing topological materials, flux and vapour transport methods are introduced in detail. Other growth methods, such as Bridgman, float-zone, vapour deposition and molecular beam epitaxy methods, are also briefly mentioned. Then the details about the crystal growth of some typical topological materials, including topological insulators/semimetals, high Chern number chiral topological semimetals and magnetic topological materials, are elaborated. Meanwhile, the identification of crystal quality is also briefly introduced, including the analysis of crystal composition and structure, which are greatly important.
      通信作者: 夏天龙, tlxia@ruc.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFA0308602)、国家自然科学基金(批准号: 12074425, 11874422)、中央高校基本科研业务费(批准号: 18XNLG14, 19XNLG18)和中国人民大学2020年度拔尖创新人才培育计划资助的课题
      Corresponding author: Xia Tian-Long, tlxia@ruc.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2019YFA0308602), the National Natural Science Foundation of China (Grant Nos. 12074425, 11874422), the Fundamental Research Fund for the Central Universities, China (Grant Nos. 18XNLG14, 19XNLG18), and the Outstanding Innovative Talents Cultivation Funded Programs 2020 of Renmin University of China
    [1]

    Moore J E 2010 Nature 464 194Google Scholar

    [2]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [3]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [4]

    Wehling T, Black-Schaffer A M, Balatsky A V 2014 Adv. Phys. 63 1Google Scholar

    [5]

    Fang Z, Nagaosa N, Takahashi K S, Asamitsu A, Mathieu R, Ogasawara T, Yamada H, Kawasaki M, Tokura Y, Terakura K 2003 Science 302 92Google Scholar

    [6]

    Wan X, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101Google Scholar

    [7]

    Weng H M, Dai X, Fang Z 2016 J. Phys. Condens. Matter 28 303001Google Scholar

    [8]

    Yu R, Fang Z, Dai X, Weng H M 2017 Front. Phys. 12 127202Google Scholar

    [9]

    Bradlyn B, Cano J, Wang Z, Vergniory M G, Felser C, Cava R J, Bernevig B A 2016 Science 353 aaf5037Google Scholar

    [10]

    Tang P Z, Zhou Q, Zhang S C 2017 Phys. Rev. Lett. 119 206402Google Scholar

    [11]

    Pshenay Severin D A, Ivanov Y V, Burkov A A, Burkov A T 2018 J. Phys. Condens. Matter 30 135501Google Scholar

    [12]

    Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner B, Cava R J 2014 Phys. Rev. Lett. 113 027603Google Scholar

    [13]

    Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z, Chen Y L 2014 Nat. Mater. 13 677Google Scholar

    [14]

    Neupane M, Xu S Y, Sankar R, Alidoust N, Bian G, Liu C, Belopolski I, Chang T R, Jeng H T, Lin H, Bansil A, Chou F C, Hasan M Z 2014 Nat. Commun. 5 3786Google Scholar

    [15]

    Liang T, Gibson Q, Ali M N, Liu M H, Cava R J, Ong N P 2015 Nat. Mater. 14 280Google Scholar

    [16]

    Li C Z, Wang L X, Liu H W, Wang J, Liao Z M, Yu D P 2015 Nat. Commun. 6 10137Google Scholar

    [17]

    Li H, He H T, Lu H Z, Zhang H C, Liu H C, Ma R, Fan Z Y, Shen S Q, Wang J N 2016 Nat. Commun. 7 10301Google Scholar

    [18]

    Wang Z J, Sun Y, Chen X Q, Franchini C, Xu G, Weng H M, Dai X, Fang Z 2012 Phys. Rev. B 85 195320Google Scholar

    [19]

    Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 Science 343 864Google Scholar

    [20]

    Xu S Y, Liu C, Kushwaha S K, Sankar R, Krizan J W, Belopolski I, Neupane M, Bian G, Alidoust N, Chang T R, Jeng H T, Huang C Y, Tsai W F, Lin H, Shibayev P P, Chou F C, Cava R J, Hasan M Z 2015 Science 347 294Google Scholar

    [21]

    Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W D, Cava R J, Ong N P 2015 Science 350 413Google Scholar

    [22]

    Xiong J, Kushwaha S, krizan J, Liang T, Cava R J, Ong N P 2016 Europhys. Lett. 114 27002Google Scholar

    [23]

    Weng H M, Fang C, Fang Z, Bernevig B A, Dai X 2015 Phys. Rev. X 5 011029Google Scholar

    [24]

    Huang S M, Xu S Y, Belopolski I, Lee C C, Chang G Q, Wang B K, Alidoust N, Bian G, Neupane M, Zhang C L, Jia S, Bansil A, Lin H, Hasan M Z 2015 Nat. Commun. 6 7373Google Scholar

    [25]

    Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T, Ding H 2015 Phys. Rev. X 5 031013Google Scholar

    [26]

    Lv B Q, Xu N, Weng H M, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E, Bisti F, Strocov V N, Mesot J, Fang Z, Dai X, Qian T, Shi M, Ding H 2015 Nat. Phys. 11 724Google Scholar

    [27]

    Xu S Y, Belopolski I, Sanchez D S, Zhang C L, Chang G Q, Guo C, Bian G, Yuan Z J, Lu H, Chang T R, Shibayev P P, Prokopovych M L, Alidoust N, Zheng H, Lee C C, Huang S M, Sankar R, Chou F C, Hsu C H, Jeng H T, Bansil A, Neupert T, Strocov V N, Lin H, Jia S, Hasan M Z 2015 Sci. Adv. 1 e1501092Google Scholar

    [28]

    Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C L, Sankar R, Chang G Q, Yuan Z J, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B K, Bansil A, Chou F C, Shibayev P P, Lin H, Jia S, Hasan M Z 2015 Science 349 613Google Scholar

    [29]

    Xu S Y, Alidoust N, Belopolski I, Yuan Z, Bian G, Chang T R, Zheng H, Strocov V N, Sanchez D S, Chang G 2015 Nat. Phys. 11 748Google Scholar

    [30]

    Liu Z K, Yang L X, Sun Y, Zhang T, Peng H, Yang H F, Chen C, Zhang Y, Guo Y F, Prabhakaran D, Schmidt M, Hussain Z, Mo S K, Felser C, Yan B, Chen Y L 2016 Nat. Mater. 15 27Google Scholar

    [31]

    Xu N, Weng H M, Lv B Q, Matt C E, Park J, Bisti F, Strocov V N, Gawryluk D, Pomjakushina E, Conder K, Plumb N C, Radovic M, Autès G, Yazyev O V, Fang Z, Dai X, Qian T, Mesot J, Ding H, Shi M 2016 Nat. Commun. 7 11006Google Scholar

    [32]

    Huang X C, Zhao L X, Long Y J, Wang P P, Chen D, Yang Z H, Liang H, Xue M Q, Weng H, Fang Z, Dai X, Chen G F 2015 Phys. Rev. X 5 031023Google Scholar

    [33]

    Arnold F, Shekhar C, Wu S C, Sun Y, dos Reis R D, Kumar N, Naumann M, Ajeesh M O, Schmidt M, Grushin A G, Bardarson J H, Baenitz M, Sokolov D, Borrmann H, Nicklas M, Felser C, Hassinger E, Yan B H 2016 Nat. Commun. 7 11615Google Scholar

    [34]

    Zhang C L, Xu S Y, Belopolski I, Yuan Z J, Lin Z Q, Tong B B, Bian G, Alidoust N, Lee C C, Huang S M, Chang T R, Chang G Q, Hsu C H, Jeng H T, Neupane M, Sanchez D S, Zheng H, Wang J F, Lin H, Zhang C, Lu H Z, Shen S Q, Neupert T, Hasan M Z, Jia S 2016 Nat. Commun. 7 10735Google Scholar

    [35]

    Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar

    [36]

    Sekine A, Nomura K 2021 J. Appl. Phys. 129 141101Google Scholar

    [37]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [38]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [39]

    Wen X G 1990 Int. J. Mod. Phys. B 04 239Google Scholar

    [40]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [41]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [42]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [43]

    Bernevig B A, Zhang S C 2006 Phys. Rev. Lett. 96 106802Google Scholar

    [44]

    Yao Y, Ye F, Qi X L, Zhang S C, Fang Z 2007 Phys. Rev. B 75 041401Google Scholar

    [45]

    Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L, MacDonald A H 2006 Phys. Rev. B 74 165310Google Scholar

    [46]

    König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [47]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [48]

    Liu C X, Hughes T L, Qi X L, Wang K, Zhang S C 2008 Phys. Rev. Lett. 100 236601Google Scholar

    [49]

    Knez I, Du R R, Sullivan G 2011 Phys. Rev. Lett. 107 136603Google Scholar

    [50]

    Fu L, Kane C L, Mele E J 2007 Phys. Rev. Lett. 98 106803Google Scholar

    [51]

    Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J, Hasan M Z 2008 Nature 452 970Google Scholar

    [52]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [53]

    Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J, Hasan M Z 2009 Nat. Phys. 5 398Google Scholar

    [54]

    Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z, Shen Z X 2009 Science 325 178Google Scholar

    [55]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [56]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [57]

    Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2020 Nature 583 215Google Scholar

    [58]

    Uri A, Grover S, Cao Y, Crosse J A, Bagani K, Rodan-Legrain D, Myasoedov Y, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Zeldov E 2020 Nature 581 47Google Scholar

    [59]

    Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J, Rappe A M 2012 Phys. Rev. Lett. 108 140405Google Scholar

    [60]

    Tang P Z, Zhou Q, Xu G, Zhang S C 2016 Nat. Phys. 12 1100Google Scholar

    [61]

    Hua G Y, Nie S M, Song Z D, Yu R, Xu G, Yao K L 2018 Phys. Rev. B. 98 201116Google Scholar

    [62]

    Wang Z J, Weng H M, Wu Q S, Dai X, Fang Z 2013 Phys. Rev. B 88 125427Google Scholar

    [63]

    Wang C M, Sun H P, Lu H Z, Xie X C 2017 Phys. Rev. Lett. 119 136806Google Scholar

    [64]

    Zhang C, Narayan A, Lu S H, Zhang J L, Zhang H Q, Ni Z L, Yuan X, Liu Y W, Park J H, Zhang E Z, Wang W Y, Liu S S, Cheng L, Pi L, Sheng Z G, Sanvito S, Xiu F X 2017 Nat. Commun. 8 1272Google Scholar

    [65]

    Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495Google Scholar

    [66]

    Wang Z, Gresch D, Soluyanov A A, Xie W, Kushwaha S, Dai X, Troyer M, Cava R J, Bernevig B A 2016 Phys. Rev. Lett. 117 056805Google Scholar

    [67]

    Xu N, Wang Z J, Weber A P, Magrez A, Bugnon P, Berger H, Fu B B, Lv B Q, Plumb N C, Radovic M, Conder K, Qian T, Dil J H, Mesot J, Ding H, Shi M 2016 arXiv: 1604.02116 [cond-mat.mtrl-sci]

    [68]

    Jiang J, Liu Z K, Sun Y, Yang H F, Rajamathi C R, Qi Y P, Yang L X, Chen C, Peng H, Hwang C C, Sun S Z, Mo S K, Vobornik I, Fujii J, Parkin S S P, Felser C, Yan B H, Chen Y L 2017 Nat. Commun. 8 13973Google Scholar

    [69]

    Tamai A, Wu Q S, Cucchi I, Bruno F Y, Riccò S, Kim T K, Hoesch M, Barreteau C, Giannini E, Besnard C, Soluyanov A A, Baumberger F 2016 Phys. Rev. X 6 031021Google Scholar

    [70]

    Sun Y, Wu S C, Ali M N, Felser C, Yan B H 2015 Phys. Rev. B 92 161107Google Scholar

    [71]

    Deng K, Wan G L, Deng P, Zhang K N, Ding S J, Wang E Y, Yan M Z, Huang H Q, Zhang H Y, Xu Z L, Denlinger J, Fedorov A, Yang H T, Duan W H, Yao H, Wu Y, Fan S S, Zhang H J, Chen X, Zhou S Y 2016 Nat. Phys. 12 1105Google Scholar

    [72]

    Autès G, Gresch D, Troyer M, Soluyanov A A, Yazyev O V 2016 Phys. Rev. Lett. 117 066402Google Scholar

    [73]

    Koepernik K, Kasinathan D, Efremov D V, Khim S, Borisenko S, Büchner B, van den Brink J 2016 Phys. Rev. B 93 201101Google Scholar

    [74]

    Wu Y, Mou D, Jo N H, Sun K, Huang L, Bud’ko S L, Canfield P C, Kaminski A 2016 Phys. Rev. B 94 121113Google Scholar

    [75]

    Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P, Cava R J 2014 Nature 514 205Google Scholar

    [76]

    Li P, Wen Y, He X, Zhang Q, Xia C, Yu Z M, Yang S A, Zhu Z, Alshareef H N, Zhang X X 2017 Nat. Commun. 8 2150Google Scholar

    [77]

    Kang D F, Zhou Y Z, Yi W, Yang C L, Guo J, Shi Y G, Zhang S, Wang Z, Zhang C, Jiang S, Li A G, Yang K, Wu Q, Zhang G M, Sun L L, Zhao Z X 2015 Nat. Commun. 6 7804Google Scholar

    [78]

    Burkov A A, Hook M D, Balents L 2011 Phys. Rev. B 84 235126Google Scholar

    [79]

    Hosen M M, Dimitri K, Belopolski I, Maldonado P, Sankar R, Dhakal N, Dhakal G, Cole T, Oppeneer P M, Kaczorowski D, Chou F, Hasan M Z, Durakiewicz T, Neupane M 2017 Phys. Rev. B 95 161101Google Scholar

    [80]

    Neupane M, Belopolski I, Hosen M M, Sanchez D S, Sankar R, Szlawska M, Xu S Y, Dimitri K, Dhakal N, Maldonado P, Oppeneer P M, Kaczorowski D, Chou F, Hasan M Z, Durakiewicz T 2016 Phys. Rev. B 93 201104Google Scholar

    [81]

    Schoop L M, Ali M N, Straßer C, Topp A, Varykhalov A, Marchenko D, Duppel V, Parkin S S P, Lotsch B V, Ast C R 2016 Nat. Commun. 7 11696Google Scholar

    [82]

    Hu J, Tang Z J, Liu J Y, Liu X, Zhu Y L, Graf D, Myhro K, Tran S, Lau C N, Wei J, Mao Z Q 2016 Phys. Rev. Lett. 117 016602Google Scholar

    [83]

    Takane D, Wang Z, Souma S, Nakayama K, Trang C X, Sato T, Takahashi T, Ando Y 2016 Phys. Rev. B 94 121108Google Scholar

    [84]

    Bian G, Chang T R, Sankar R, Xu S Y, Zheng H, Neupert T, Chiu C K, Huang S M, Chang G, Belopolski I, Sanchez D S, Neupane M, Alidoust N, Liu C, Wang B, Lee C C, Jeng H T, Zhang C, Yuan Z, Jia S, Bansil A, Chou F, Lin H, Hasan M Z 2016 Nat. Commun. 7 10556Google Scholar

    [85]

    Zhu Z M, Winkler G W, Wu Q S, Li J, Soluyanov A A 2016 Phys. Rev. X 6 031003Google Scholar

    [86]

    Lv B Q, Feng Z L, Xu Q N, Gao X, Ma J Z, Kong L Y, Richard P, Huang Y B, Strocov V N, Fang C, Weng H M, Shi Y G, Qian T, Ding H 2017 Nature 546 627Google Scholar

    [87]

    Ma J Z, He J B, Xu Y F, Lv B Q, Chen D, Zhu W L, Zhang S, Kong L Y, Gao X, Rong L Y, Huang Y B, Richard P, Xi C Y, Choi E S, Shao Y, Wang Y L, Gao H J, Dai X, Fang C, Weng H M, Chen G F, Qian T, Ding H 2018 Nat. Phys. 14 349Google Scholar

    [88]

    He J B, Chen D, Zhu W L, Zhang S, Zhao L X, Ren Z A, Chen G F 2017 Phys. Rev. B 95 195165Google Scholar

    [89]

    Rao Z C, Li H, Zhang T, Tian S J, Li C H, Fu B B, Tang C Y, Wang L, Li Z L, Fan W H, Li J J, Huang Y B, Liu Z H, Long Y W, Fang C, Weng H M, Shi Y G, Lei H C, Sun Y J, Qian T, Ding H 2019 Nature 567 496Google Scholar

    [90]

    Sanchez D S, Belopolski I, Cochran T A, Xu X, Yin J X, Chang G, Xie W, Manna K, Süß V, Huang C Y, Alidoust N, Multer D, Zhang S S, Shumiya N, Wang X, Wang G Q, Chang T R, Felser C, Xu S Y, Jia S, Lin H, Hasan M Z 2019 Nature 567 500Google Scholar

    [91]

    Takane D, Wang Z W, Souma S, Nakayama K, Nakamura T, Oinuma H, Nakata Y, Iwasawa H, Cacho C, Kim T, Horiba K, Kumigashira H, Takahashi T, Ando Y, Sato T 2019 Phys. Rev. Lett. 122 076402Google Scholar

    [92]

    Wu D S, Mi Z Y, Li Y J, Wu W, Li P L, Song Y T, Liu G T, Li G, Luo J L 2019 Chin. Phys. Lett. 36 077102Google Scholar

    [93]

    Xu X T, Wang X R, Cochran T A, Sanchez D S, Chang G, Belopolski I, Wang G Q, Liu Y Y, Tien H J, Gui X, Xie W W, Hasan M Z, Chang T R, Jia S 2019 Phys. Rev. B 100 045104Google Scholar

    [94]

    Wang H, Xu S, Lu X Q, Wang X Y, Zeng X Y, Lin J F, Liu K, Lu Z Y, Xia T L 2020 Phys. Rev. B 102 115129Google Scholar

    [95]

    Xu S, Zhou L Q, Wang H, Wang X Y, Su Y, Cheng P, Weng H M, Xia T L 2019 Phys. Rev. B 100 245146Google Scholar

    [96]

    Li H, Xu S, Rao Z C, Zhou L Q, Wang Z J, Zhou S M, Tian S J, Gao S Y, Li J J, Huang Y B, Lei H C, Weng H M, Sun Y J, Xia T L, Qian T, Ding H 2019 Nat. Commun. 10 5505Google Scholar

    [97]

    Chang G, Xu S Y, Wieder B J, Sanchez D S, Huang S M, Belopolski I, Chang T R, Zhang S, Bansil A, Lin H, Hasan M Z 2017 Phys. Rev. Lett. 119 206401Google Scholar

    [98]

    Schröter N B M, Pei D, Vergniory M G, Sun Y, Manna K, de Juan F, Krieger J A, Süss V, Schmidt M, Dudin P, Bradlyn B, Kim T K, Schmitt T, Cacho C, Felser C, Strocov V N, Chen Y L 2019 Nat. Phys. 15 759Google Scholar

    [99]

    Saini V, Sasmal S, Kulkarni R, Singh B, Thamizhavel A, Nakamura A, Aoki D 2022 Phys. Rev. B 106 125126Google Scholar

    [100]

    Yao M Y, Manna K, Yang Q, Fedorov A, Voroshnin V, Valentin S B, Hornung J, Chattopadhyay S, Sun Z, Guin S N, Wosnitza J, Borrmann H, Shekhar C, Kumar N, Fink J, Sun Y, Felser C 2020 Nat. Commun. 11 2033Google Scholar

    [101]

    Xu S, Zhou L Q, Wang X Y, Wang H, Lin J F, Zeng X Y, Cheng P, Weng H M, Xia T L 2020 Chin. Phys. Lett. 37 107504Google Scholar

    [102]

    Schroter N B M, Stolz S, Manna K, Juan F d, Vergniory M G, Krieger J A, Pei D, Schmitt T, Dudin P, Kim T K, Cacho C, Bradlyn B, Borrmann H, Schmidt M, Widmer R, Strocov V N, Felser C 2020 Science 369 179Google Scholar

    [103]

    Zeng X Y, Dai Z Y, Xu S, Zhao N N, Wang H, Wang X Y, Lin J F, Gong J, Ma X P, Han K, Wang Y T, Cheng P, Liu K, Xia T L 2022 Phys. Rev. B 106 205120Google Scholar

    [104]

    He K 2020 npj Quantum Mater. 5 90Google Scholar

    [105]

    Wang P Y, Ge J, Li J H, Liu Y Z, Xu Y, Wang J 2021 The Innovation 2 100098Google Scholar

    [106]

    Nagaosa N, Sinova J, Onoda S, MacDonald A H, Ong N P 2010 Rev. Mod. Phys. 82 1539Google Scholar

    [107]

    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Böni P 2009 Phys. Rev. Lett. 102 186602Google Scholar

    [108]

    何珂 2019 物理 49 12Google Scholar

    He K 2019 Physics 49 12Google Scholar

    [109]

    Ou Y B, Liu C, Zhang L G, Feng Y, Jiang G Y, Zhao D Y, Zang Y Y, Zhang Q H, Gu L, Wang Y H, He K, Ma X C, Xue Q K 2016 APL Mater. 4 086101Google Scholar

    [110]

    Qi X L, Hughes T L, Zhang S C 2008 Phys. Rev. B 78 195424Google Scholar

    [111]

    Mogi M, Yoshimi R, Tsukazaki A, Yasuda K, Kozuka Y, Takahashi K S, Kawasaki M, Tokura Y 2015 APL Mater. 107 182401Google Scholar

    [112]

    Otrokov M M, Menshchikova T V, Vergniory M G, Rusinov I P, Vyazovskaya A Y, Koroteev Y M, Bihlmayer G, Ernst A, Echenique P M, Arnau A, Chulkov E V 2017 2D Mater. 4 025082

    [113]

    Gong Y, Guo J W, Li J H, Zhu K J, Liao M H, Liu X Z, Zhang Q H, Gu L, Tang L, Feng X, Zhang D, Li W, Song C L, Wang L, Yu P, Chen X, Wang Y Y, Yao H, Duan W H, Xu Y, Zhang S C, Ma X C, Xue Q K, He K 2019 Chin. Phys. Lett. 36 076801Google Scholar

    [114]

    Tang E, Mei J W, Wen X G 2011 Phys. Rev. Lett. 106 236802Google Scholar

    [115]

    Ye L, Kang M G, Liu J W, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R, Checkelsky J G 2018 Nature 555 638Google Scholar

    [116]

    Wang Q, Sun S S, Zhang X, Pang F, Lei H C 2016 Phys. Rev. B 94 075135Google Scholar

    [117]

    Yin J X, Zhang S T, Li H, Jiang K, Chang G Q, Zhang B J, Lian B, Xiang C, Belopolski I, Zheng H, Cochran T A, Xu S Y, Bian G, Liu K, Chang T R, Lin H, Lu Z Y, Wang Z Q, Jia S, Wang W H, Hasan M Z 2018 Nature 562 91Google Scholar

    [118]

    Hou Z P, Ren W J, Ding B, Xu G Z, Wang Y, Yang B, Zhang Q, Zhang Y, Liu E K, Xu F, Wang W H, Wu G H, Zhang X X, Shen B G, Zhang Z D 2017 Adv. Mater. 29 1701144Google Scholar

    [119]

    Wang L L, Jo N H, Kuthanazhi B, Wu Y, McQueeney R J, Kaminski A, Canfield P C 2019 Phys. Rev. B 99 245147Google Scholar

    [120]

    Ma J Z, Nie S M, Yi C J, Jandke J, Shang T, Yao M Y, Naamneh M, Yan L Q, Sun Y, Chikina A, Strocov V N, Medarde M, Song M, Xiong Y M, Xu G, Wulfhekel W, Mesot J, Reticcioli M, Franchini C, Mudry C, Müller M, Shi Y G, Qian T, Ding H, Shi M 2019 Sci. Adv. 5 eaaw4718Google Scholar

    [121]

    Soh J R, de Juan F, Vergniory M G, Schröter N B M, Rahn M C, Yan D Y, Jiang J, Bristow M, Reiss P, Blandy J N, Guo Y F, Shi Y G, Kim T K, McCollam A, Simon S H, Chen Y, Coldea A I, Boothroyd A T 2019 Phys. Rev. B 100 201102Google Scholar

    [122]

    Rahn M C, Soh J R, Francoual S, Veiga L S I, Strempfer J, Mardegan J, Yan D Y, Guo Y F, Shi Y G, Boothroyd A T 2018 Phys. Rev. B 97 214422Google Scholar

    [123]

    Xu G, Weng H M, Wang Z J, Dai X, Fang Z 2011 Phys. Rev. Lett. 107 186806Google Scholar

    [124]

    Guan T, Lin C J, Yang C L, Shi Y G, Ren C, Li Y Q 2015 Phys. Rev. Lett. 115 087002Google Scholar

    [125]

    Yang S, Li Z L, Lin C J, Yi C J, Shi Y G, Culcer D, Li Y Q 2019 Phys. Rev. Lett. 123 096601Google Scholar

    [126]

    Sun J P, Jiao Y Y, Yi C J, Dissanayake S E, Matsuda M, Uwatoko Y, Shi Y G, Li Y Q, Fang Z, Cheng J G 2019 Phys. Rev. Lett. 123 047201Google Scholar

    [127]

    Morali N, Batabyal R, Nag P K, Liu E K, Xu Q N, Sun Y, Yan B H, Felser C, Avraham N, Beidenkopf H 2019 Science 365 1286Google Scholar

    [128]

    Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C, Chen Y L 2019 Science 365 1282Google Scholar

    [129]

    Guin S N, Vir P, Zhang Y, Kumar N, Watzman S J, Fu C, Liu E, Manna K, Schnelle W, Gooth J, Shekhar C, Sun Y, Felser C 2019 Adv. Mater. 31 1806622Google Scholar

    [130]

    Liu E K, Sun Y, Kumar N, Muechler L, Sun A L, Jiao L, Yang S Y, Liu D F, Liang A J, Xu Q N, Kroder J, Süß, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W H, Schnelle W, Wirth S, Chen Y L, Goennenwein S T B, Felser C 2018 Nat. Phys. 14 1125Google Scholar

    [131]

    Wang Q, Xu Y F, Lou R, Liu Z H, Li M, Huang Y B, Shen D W, Weng H M, Wang S C, Lei H C 2018 Nat. Commun. 9 3681Google Scholar

    [132]

    Nagpal V, Patnaik S 2020 J. Phys. Condens. Matter 32 405602Google Scholar

    [133]

    Nakatsuji S, Kiyohara N, Higo T 2015 Nature 527 212Google Scholar

    [134]

    Nayak A K, Fischer J E, Sun Y, Yan B, Karel J, Komarek A C, Shekhar C, Kumar N, Schnelle W, Kübler J, Felser C, Parkin S S P 2020 Sci. Adv. 2 e1501870Google Scholar

    [135]

    Chen T S, Tomita T, Minami S, Fu M X, Koretsune T, Kitatani M, Muhammad I, Nishio-Hamane D, Ishii R, Ishii F, Arita R, Nakatsuji S 2021 Nat. Commun. 12 572Google Scholar

    [136]

    Suzuki M T, Koretsune T, Ochi M, Arita R 2017 Phys. Rev. B 95 094406Google Scholar

    [137]

    Suzuki T, Chisnell R, Devarakonda A, Liu Y T, Feng W, Xiao D, Lynn J W, Checkelsky J G 2016 Nat. Phys. 12 1119Google Scholar

    [138]

    Schindler C, Galeski S, Schnelle W, Wawrzyńczak R, Abdel-Haq W, Guin S N, Kroder J, Kumar N, Fu C G, Borrmann H, Shekhar C, Felser C, Meng T, Grushin A G, Zhang Y, Sun Y, Gooth J 2020 Phys. Rev. B 101 125119Google Scholar

    [139]

    介万奇 2010 晶体生长原理与技术 (北京: 科学出版社) 第21—739页

    Jie W Q 2010 Principle and Technology of Crystal Growth (Beijing: Science Press) pp21–739 (in Chinses)

    [140]

    张克从, 张乐潓 1997 晶体生长科学与技术 (北京: 科学出版社) 第336—520页

    Zhang K C, Zhang L H 1997 Science and Technology of Crystal Growth (Beijing: Science Press) pp336–520 (in Chinses)

    [141]

    Paorici C, Attolini G 2004 Prog. Cryst. Growth Charact. Mater. 48 2Google Scholar

    [142]

    伊长江, 王乐, 冯子力, 杨萌, 闫大禹, 王翠香, 石友国 2018 物理学报 67 128102Google Scholar

    Yi C J, Wang L, Feng Z L, Yang M, Yan D Y, Wang C X, Shi Y G 2018 Acta Phys. Sin. 67 128102Google Scholar

    [143]

    Villars P, Okamoto H 2012 Ba-Ga Binary Phase Diagram 0–100 at.% Ga: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0108037

    [144]

    Gibson Q D, Schoop L M, Muechler L, Xie L S, Hirschberger M, Ong N P, Car R, Cava R J 2015 Phys. Rev. B 91 205128Google Scholar

    [145]

    Xu S, Bao C H, Guo P J, Wang Y Y, Yu Q H, Sun L L, Su Y, Liu K, Lu Z Y, Zhou S Y, Xia T L 2020 Nat. Commun. 11 2370Google Scholar

    [146]

    Nakamura A, Uejo T, Harima H, Araki S, Kobayashi T C, Nakashima M, Amako Y, Hedo M, Nakama T, ōnuki Y 2016 J. Alloys Compd. 654 290Google Scholar

    [147]

    Wang H, Xu S, Lu X Q, Dai Z Y, Wang Y Y, Wang X Y, Zeng X Y, Lin J F, Liu K, Lu Z Y, Xia T L 2021 Phys. Rev. B 104 205119Google Scholar

    [148]

    Villars P, Okamoto H 2012 Bi-Pt Binary Phase Diagram 0–100 at.% Pt: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0979935

    [149]

    Gao W S, Hao N N, Zheng F W, Ning W, Wu M, Zhu X D, Zheng G L, Zhang J L, Lu J W, Zhang H W, Xi C Y, Yang J Y, Du H F, Zhang P, Zhang Y H, Tian M L 2017 Phys. Rev. Lett. 118 256601Google Scholar

    [150]

    Gao W S, Zhu X D, Zheng F W, Wu M, Zhang J L, Xi C Y, Zhang P, Zhang Y H, Hao N, Ning W, Tian M L 2018 Nat. Commun. 9 3249Google Scholar

    [151]

    Thirupathaiah S, Kushnirenko Y, Haubold E, Fedorov A V, Rienks E D L, Kim T K, Yaresko A N, Blum C G F, Aswartham S, Büchner B, Borisenko S V 2018 Phys. Rev. B 97 035133Google Scholar

    [152]

    Xu C Q, Xing X Z, Xu X, Li B, Chen B, Che L Q, Lu X, Dai J, Shi Z X 2016 Phys. Rev. B 94 165119Google Scholar

    [153]

    Wang Y J, Zhang J L, Zhu W K, Zou Y M, Xi C Y, Ma L, Han T, Yang J, Wang J R, Xu J M, Zhang L, Pi L, Zhang C J, Zhang Y H 2016 Sci. Rep. 6 31554Google Scholar

    [154]

    Fei F C, Bo X Y, Wang R, Wu B, Jiang J, Fu D Z, Gao M, Zheng H, Chen Y L, Wang X F, Bu H J, Song F Q, Wan X G, Wang B G, Wang G H 2017 Phys. Rev. B 96 041201Google Scholar

    [155]

    Das S, Amit, Sirohi A, Yadav L, Gayen S, Singh Y, Sheet G 2018 Phys. Rev. B 97 014523Google Scholar

    [156]

    Villars P, Okamoto H 2012 Pd-Te Binary Phase Diagram 0–100% at Te: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0901894

    [157]

    Zheng W, Schönemann R, Aryal N, Zhou Q, Rhodes D, Chiu Y C, Chen K W, Kampert E, Förster T, Martin T J, McCandless G T, Chan J Y, Manousakis E, Balicas L 2018 Phys. Rev. B 97 235154Google Scholar

    [158]

    Koohpayeh S M, Fort D, Abell J S 2008 Prog. Cryst. Growth Charact. Mater. 54 121Google Scholar

    [159]

    Dhanaraj G, Byrappa K, Prasad V, Dudley M 2010 Springer Handbook of Crystal Growth (Berlin Heidelberg: Springer-Verlag) pp194–197

    [160]

    于昊 2021 博士学位论文 (天津: 天津理工大学)

    Yu H 2021 Ph.D. Dissertation (Tianjin: Tianjin University of Technology) (in Chinese)

    [161]

    Li G Y, Li X D, Wang H, Liu L 2009 Solid. State Sci. 11 2167Google Scholar

    [162]

    Tan L K, Liu B, Teng J H, Guo S, Low H Y, Loh K P 2014 Nanoscale 6 10584Google Scholar

    [163]

    Shi M L, Chen L, Zhang T, Xu J, Zhu H, Sun Q, Zhang D W 2017 Small 13 1603157Google Scholar

    [164]

    Villars P, Okamoto H 2012 As-Cd Binary Phase Diagram 0–100 at.% Cd: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0905914

    [165]

    Xiang Z J, Zhao D, Jin Z, Shang C, Ma L K, Ye G J, Lei B, Wu T, Xia Z C, Chen X H 2015 Phys. Rev. Lett. 115 226401Google Scholar

    [166]

    Hruby A, Petrová J 1971 Czech. J Phys. 21 890Google Scholar

    [167]

    Lovett D R 1972 J. Mater. Sci. 7 388Google Scholar

    [168]

    Rambo A, Aubin M J 1979 Can. J. Phys. 57 2093Google Scholar

    [169]

    Kloc K, Żdanowicz W 1984 J. Cryst. Growth 66 451Google Scholar

    [170]

    Wang K F, Graf D, Li L J, Wang L, Petrovic C 2014 Sci. Rep. 4 7328Google Scholar

    [171]

    Wang Y Y, Yu Q H, Guo P J, Liu K, Xia T L 2016 Phys. Rev. B 94 041103Google Scholar

    [172]

    Tafti F F, Gibson Q D, Kushwaha S K, Haldolaarachchige N, Cava R J 2016 Nat. Phys. 12 272Google Scholar

    [173]

    Guo P J, Yang H C, Liu K, Lu Z Y 2017 Phys. Rev. B 96 081112Google Scholar

    [174]

    Yu Q H, Wang Y Y, Lou R, Guo P J, Xu S, Liu K, Wang S C, Xia T L 2017 EPL 119 17002Google Scholar

    [175]

    Wang Y Y, Zhang H Y, Lu X Q, Sun L L, Xu S, Lu Z Y, Liu K, Zhou S Y, Xia T L 2018 Phys. Rev. B 97 085137Google Scholar

    [176]

    Wang Y Y, Sun L L, Xu S, Su Y, Xia T L 2018 Phys. Rev. B 98 045137Google Scholar

    [177]

    Villars P, Okamoto H 2012 Co-Te Binary Phase Diagram 0–100 at.% Te: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0905301

    [178]

    Villars P, Okamoto H 2012 Si-Te Binary Phase Diagram 0–100 at.% Te: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0905195

    [179]

    Villars P, Okamoto H 2012 Co-Sb Binary Phase Diagram 0–100 at.% Sb: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0904080

    [180]

    Villars P, Okamoto H 2012 Sb-Si Binary Phase Diagram 0–100 at.% Si: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0108181

    [181]

    Villars P, Okamoto H 2012 Co-Sn Binary Phase Diagram 0–100 at.% Sn: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0906080

    [182]

    Villars P, Okamoto H 2012 Si-Sn Binary Phase Diagram 0–100 at.% Sn: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0902102

    [183]

    Villars P, Okamoto H 2012 Bi-Rh Binary Phase Diagram 0–100 at.% Rh: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0902804

    [184]

    Villars P, Okamoto H 2012 Bi-Sn Binary Phase Diagram 0–100 at.% Sn: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0904032

    [185]

    Villars P, Okamoto H 2012 Bi-Ga Binary Phase Diagram 0–100 at.% Ga: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0903445

    [186]

    Villars P, Okamoto H 2012 Bi-Pd Binary Phase Diagram 0–100 at.% Pd: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0906135

    [187]

    Borisenko S, Evtushinsky D, Gibson Q, Yaresko A, Koepernik K, Kim T, Ali M, Van D B J, Hoesch M, Fedorov A, Haubold E, Kushnirenko Y, Soldatov I, Schäfer R, Cava R J 2019 Nat. Commun. 10 3424Google Scholar

    [188]

    Lee G, Farhan M A, Kim J S, Shim J H 2013 Phys. Rev. B 87 245104Google Scholar

    [189]

    Klemenz S, Lei S M, Schoop L M 2019 Annu. Rev. Mater. Res. 49 185Google Scholar

    [190]

    Wang Y Y, Xu S, Sun L L, Xia T L 2018 Phys. Rev. Mater. 2 021201Google Scholar

    [191]

    Kealhofer R, Jang S, Griffin S M, John C, Benavides K A, Doyle S, Helm T, Moll P J W, Neaton J B, Chan J Y, Denlinger J D, Analytis J G 2018 Phys. Rev. B 97 045109Google Scholar

    [192]

    Yi C J, Yang S, Yang M, Wang L, Matsushita Y, Miao S S, Jiao Y Y, Cheng J G, Li Y Q, Yamaura K, Shi Y G, Luo J L 2017 Phys. Rev. B 96 205103Google Scholar

    [193]

    Nie S M, Sun Y, Prinz F B, Wang Z J, Weng H M, Fang Z, Dai X 2020 Phys. Rev. Lett. 124 076403Google Scholar

    [194]

    Gao S Y, Xu S, Li H, Yi C J, Nie S M, Rao Z C, Wang H, Hu Q X, Chen X Z, Fan W H, Huang J R, Huang Y B, Pryds N, Shi M, Wang Z J, Shi Y G, Xia T L, Qian T, Ding H 2021 Phys. Rev. X 11 021016Google Scholar

    [195]

    Liu W L, Zhang X, Nie S M, Liu Z T, Sun X Y, Wang H Y, Ding J Y, Sun L, Huang Z, Su H, Yang Y C, Jiang Z C, Lu X L, Liu X L, Liu J S, Liu Z H, Zhang S L, Weng H M, Guo Y F, Wang Z J, Shen D W, Liu Z 2021 arXiv: 2103.04658 [cond-mat.mtrl-sci]

    [196]

    Shen J L, Gao J C, Yi C J, Zeng Q Q, Zhang S, Yang J Y, Zhang X D, Wang B B, Cong J Z, Shi Y G, Xu X H, Wang Z J, Liu E K 2021 arXiv: 2106.02904 [cond-mat.mtrl-sci]

    [197]

    Yuan J, Shi X B, Su H, Zhang X, Wang X, Yu N, Zou Z Q, Zhao W W, Liu J P, Guo Y F 2022 Phys. Rev. B 106 054411Google Scholar

    [198]

    Zhang X H, Yu L Q, von Molnár S, Fisk Z, Xiong P 2009 Phys. Rev. Lett. 103 106602Google Scholar

    [199]

    Fisk Z, Johnston D C, Cornut B, von Molnar S, Oseroff S, Calvo R 1979 J. Appl. Phys. 50 1911Google Scholar

    [200]

    Villars P, Okamoto H 2012 Al-Eu Binary Phase Diagram 0–100 at.% Eu: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0900088

    [201]

    Villars P, Okamoto H 2012 Al-B Binary Phase Diagram 0–100 at.% B: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0903931

    [202]

    李璐 2020 物理 49 7Google Scholar

    Li L 2020 Physics 49 7Google Scholar

    [203]

    Villars P, Okamoto H 2012 Al-Sm Binary Phase Diagram 0–100 at.% Sm: Datasheet from PAULING FILE in: Inorganic Solid Phases, SpringerMaterials (online database) (Heidelberg: Springer) 0102024

    [204]

    Corps J, Vaqueiro P, Aziz A, Grau-Crespo R, Kockelmann W, Jumas J C, Powell A V 2015 Chem. Mater. 27 3946Google Scholar

    [205]

    Kassem M A, Tabata Y, Waki T, Nakamura H 2015 J. Cryst. Growth 426 208Google Scholar

    [206]

    Sims C 2021 Condens. Matter 6 18Google Scholar

    [207]

    Saadi A, Omari L el H, Boudali A 2020 Eur. Phys. J. B 93 180Google Scholar

    [208]

    McGuire M A, Zhang Q, Miao H, Luo W, Yoon M, Liu Y, Yilmaz T, Vescovo E 2021 Chem. Mater. 33 9741Google Scholar

    [209]

    Villars P, Okamoto H 2012 Fe-Sn Binary Phase Diagram 0–100 at.% Sn: PAULING FILE in: Inorganic Solid Phases, SpringerMaterials (online database) (Heidelberg: Springer) 0104128

    [210]

    Shi M Z, Lei B, Zhu C S, Ma D H, Cui J H, Sun Z L, Ying J J, Chen X H 2019 Phys. Rev. B 100 155144Google Scholar

    [211]

    Vidal R C, Zeugner A, Facio J I, Ray R, Haghighi M H, Wolter A U B, Bohorquez L T C, Caglieris F, Moser S, Figgemeier T, Peixoto T R F, Vasili H B, Valvidares M, Jung S, Cacho C, Alfonsov A, Mehlawat K, Kataev V, Hess C, Richter M, Büchner B, Brink J v d, Ruck M, Reinert F, Bentmann H, Isaeva A 2019 Phys. Rev. X 9 041065Google Scholar

    [212]

    Yan J Q, Liu Y H, Parker D, Wu Y, Aczel A A, Matsuda M, Mcguire M A, Sales B C 2020 Phys. Rev. Mater. 4 054202Google Scholar

    [213]

    Hu C W, Gordon K N, Liu P F, Liu J Y, Zhou X Q, Hao P P, Narayan D, Emmanouilidou E, Sun H Y, Liu Y T, Brawer H, Ramirez A P, Ding L, Cao H B, Liu Q H, Dessau D, Ni N 2020 Nat. Commun. 11 97Google Scholar

    [214]

    Tan A, Labracherie V, Kunchur N, Wolter A U.B, Cornejo J, Dufouleur J, Büchner B, Isaeva A, Giraud R 2020 Phys. Rev. Lett. 124 197201Google Scholar

    [215]

    Li H, Gao S Y, Duan S F, Xu Y F, Zhu K J, Tian S J, Gao J C, Fan W H, Rao Z C, Huang J R, Li J J, Yan D Y, Liu Z T, Liu W L, Huang Y B, Li Y L, Liu Y, Zhang G B, Zhang P, Kondo T, Shin S, Lei H C, Shi Y G, Zhang W T, Weng H M, Qian T, Ding H 2019 Phys. Rev. X 9 041039Google Scholar

    [216]

    Jo N H, Wang L L, Slager R J, Yan J Q, Wu Y, Lee K, Schrunk B, Vishwanath A, Kaminski A 2019 Phys. Rev. B 102 045130Google Scholar

    [217]

    Hu Y, Xu L X, Shi M Z, Luo A Y, Peng S T, Wang Z Y, Ying J J, Wu T, Liu Z K, Zhang C F, Chen Y L, Xu G, Chen X H, He J F 2020 Phys. Rev. B 101 161113Google Scholar

    [218]

    Klimovskikh I I, Otrokov M M, Estyunin D, Eremeev S V, Filnov S O, Koroleva A, Shevchenko E, Voroshnin V, Rybkin A G, Rusinov I P, Blanco R M, Hoffmann M, Aliev Z S, Babanly M B, Amiraslanov I R, Abdullayev N A, Zverev V N, Kimura A, Tereshchenko O E, Kokh K A, Petaccia L, Di S G, Ernst A, Echenique P M, Mamedov N T, Shikin A M, Chulkov E V 2020 npj Quantum Mater. 5 54Google Scholar

    [219]

    Tian S J, Gao S Y, Nie S M, Qian Y T, Gong C S, Fu Y, Li H, Fan W H, Zhang P, Kondo T, Shin S, Adell J, Fedderwitz H, Ding H, Wang Z J, Qian T, Lei H C 2020 Phys. Rev. B 102 035144Google Scholar

    [220]

    Hu C W, Ding L, Gordon K N, Ghosh B, Tien H J, Li H X, Linn A G, Lien S W, Huang C Y, Mackey S, Liu J Y, Reddy P V S, Singh B, Agarwal A, Bansil A, Song M, Li D S, Xu S Y, Lin H, Cao H B, Chang T R, Dessau D, Ni N 2020 Sci. Adv. 6 eaba4275Google Scholar

    [221]

    Lu R E, Sun H Y, Kumar S, Wang Y, Gu M Q, Zeng M, Hao Y J, Li J Y, Shao J F, Ma X M, Hao Z Y, Zhang K, Mansuer W, Mei J W, Zhao Y, Liu C, Deng K, Huang W, Shen B, Shimada K, Schwier E F, Liu C, Liu Q H, Chen C Y 2021 Phys. Rev. X 11 011039Google Scholar

    [222]

    Zhong H Y, Bao C H, Wang H, Li J H, Yin Z C, Xu Y, Duan W H, Xia T L, Zhou S Y 2021 Nano Lett. 21 6080Google Scholar

    [223]

    Aliev Z S, Amiraslanov I R, Nasonova D I, Shevelkov A V, Abdullayev N A, Jahangirli Z A, Orujlu E N, Otrokov M M, Mamedov N T, Babanly M B, Chulkov E V 2019 J. Alloys Compd. 789 443Google Scholar

    [224]

    Hu C W, Gao A Y, Berggren B S, Li H, Kurleto R, Narayan D, Zeljkovic I, Dessau D, Xu S Y, Ni N 2021 Phys. Rev. Mater. 5 124206Google Scholar

    [225]

    Yan J Q, Huang Z L, Wu W D, May A F 2022 J. Alloys Compd. 906 164327Google Scholar

    [226]

    Xu Y F, Song Z D, Wang Z J, Weng H M, Dai X 2019 Phys. Rev. Lett. 122 256402Google Scholar

    [227]

    Zhang Y, Deng K, Zhang X, Wang M, Wang Y, Liu C, Mei J W, Kumar S, Schwier E F, Shimada K, Chen C Y, Shen B 2020 Phys. Rev. B 101 205126Google Scholar

    [228]

    易恩魁, 王彬, 沈韩, 沈冰 2021 物理学报 70 127502Google Scholar

    Yi E K, Wang B, Shen H, Shen B 2021 Acta Phys. Sin. 70 127502Google Scholar

    [229]

    Villars P, Okamoto H 2012 Eu-In Binary Phase Diagram 0-100 at.%In: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0901007

    [230]

    Villars P, Okamoto H 2012 As-In Binary Phase Diagram 0-100 at.% In: PAULING FILE in: Inorganic Solid Phases, SpringerMaterials (online database) (Heidelberg: Springer) 0102034

    [231]

    王昕炜 2007 硕士学位论文 (武汉: 中国地质大学)

    Wang X W 2007 M. S. Thesis (Wuhan: China University of Geosciences) (in Chinese)

    [232]

    Feder T 2007 Phys. Today 60 26

  • 图 1  Ba-Ga元素二元相图[143], 其中插图为自助溶方法生长的BaGa2及BaGa4单晶

    Fig. 1.  Ba-Ga binary phase diagram. Insets are typical grown single crystal of BaGa2 and BaGa4, respectively

    图 2  Pt-Bi元素二元相图[148], 其中插图为所生长的不同结构的PtBi2单晶

    Fig. 2.  Pt-Bi binary phase diagram. Insets are typical grown single crystal of PtBi2 with different structures

    图 3  (a) 常用石英管类型; (b) 常用石英堵头与坩埚类型; (c) 封管后的样品离心前后对比示意图

    Fig. 3.  (a) Different types of quartz tube frequently used; (b) different types of quartz plug and crucible frequently used; (c) sealed sample before and after centrifugation

    图 4  物理气相输运以及化学气相输运过程示意图, 以(T(S) > T(C)) 为例

    Fig. 4.  Physical vapour transport and chemical vapour transport. Take the case (T(S) > T(C)) as an example

    图 5  Pd-Te元素二元相图[156], 插图为生长出的PdTe2单晶

    Fig. 5.  Pd-Te binary phase diagram. Inset is the typical grown single crystal of PdTe2

    图 6  (a) Cd-As元素二元相图[164]; (b) 助溶剂方法生长出的单晶; (c) 气相输运方法生长的单晶

    Fig. 6.  (a) Cd-As binary phase diagram; (b) the single crystal grown from the flux method; (c) the single crystal grown from the vapour transport method

    图 7  通过气相输运方法得到的(a) NbAs2和(b) TaAs2单晶样品

    Fig. 7.  Single crystals of (a) NbAs2 and (b) TaAs2 grown from the vapour transport method

    图 8  助溶剂方法生长出的(a) RuAs2, (b) IrAs2, (c) CoAs2单晶

    Fig. 8.  Single crystals of (a) RuAs2, (b) IrAs2 and (c) CoAs2 grown by flux method

    图 9  (a) YSb, (b) TmSb, (c) HoSb, (d) DyBi单晶图片

    Fig. 9.  Photos of single crystal (a) YSb, (b) TmSb, (c) HoSb and (d) DyBi

    图 10  (a) Co-Te[177]和(b) Si-Te[178]二元相图; (c), (d) 通过化学气相输运方法得到的CoSi单晶; (e) 助溶剂方法生长的CoSi单晶

    Fig. 10.  Binary phase diagram of (a) Co-Te[177] and (b) Si-Te[178]. The single crystal of CoSi grown from the vapour transport (c), (d) and flux method (e)

    图 11  (a) Co-Sb[179], (b) Sb-Si[180], (c) Co-Sn[181] 与(d) Si-Sn[182]元素二元相图. (b)中插图与 (d)中插图分别为用Sb和Sn作为助溶剂生长的CoSi单晶

    Fig. 11.  (a) Co-Sb[179], (b) Sb-Si[180], (c) Co-Sn[181] and (d) Si-Sn[182] binary phase diagram. Insets in panels (b) and (d) are the single crystal of CoSi grown from the Sb and Sn flux

    图 12  (a) Bi-Rh[183]及(b) Bi-Sn[184]元素的二元相图, 插图为典型的RhSn单晶; (c) 同一块单晶中不同晶面的单晶XRD衍射图谱

    Fig. 12.  (a) Bi-Rh[183] and (b) Bi-Sn[184] binary phase diagram. Inset is the single crystal of RhSn grown from flux method. (c) Single-crystal XRD pattern of RhSn with different crystal faces

    图 13  (a) Bi-Pt[148]以及(b) Bi-Ga[185]元素的二元相图, 插图为助溶剂方法生长出的PtGa单晶

    Fig. 13.  (a) Pt-Bi[148] and (b) Bi-Ga[185] binary phase diagram. Insets are the single crystals of PtGa grown from flux method

    图 14  (a) Bi-Pd[186]以及(b) Bi-Ga[185]元素的二元相图; (c), (d) 不同晶面的单晶XRD衍射图谱

    Fig. 14.  (a) Bi-Pd[186] and (b) Bi-Ga[185] binary phase diagram; (c), (d) single-crystal XRD patterns of PdGa with different crystal faces

    图 15  (a) YbMnSb2与 (b) EuMnSb2单晶照片及单晶X射线衍射谱图

    Fig. 15.  Photos and XRD sprctras of single crystal (a) YbMnSb2 and (b) EuMnSb2

    图 16  (a) Al-Eu[200]以及(b) Al-B[201]元素二元相图; (c), (d) 典型的EuB6单晶样品

    Fig. 16.  (a) Al-Eu[200] and (b) Al-B[201] binary phase diagram; (c), (d) typical grown single crystals of EuB6

    图 17  (a) Al-Sm[203]以及(b) Al-B[201]元素二元相图, 插图为典型的SmB6单晶样品

    Fig. 17.  (a) Al-Sm[203] and (b) Al-B[201] binary phase diagram. Insets are typical grown single crystals of SmB6

    图 18  (a) Co3Sn2S2与 (b) Co3In2S2单晶样品

    Fig. 18.  Single crystals of (a) Co3Sn2S2 and (b) Co3In2S2

    图 19  (a) Fe-Sn[209]元素二元相图, 插图为自助溶剂方法生长的Fe3Sn2单晶样品; (b) 气相输运方法生长的Fe3Sn2单晶样品

    Fig. 19.  (a) Fe-Sn[209] binary phase diagram. Inset is the single crystal of Fe3Sn2 grown from the flux method. (b) The single crystals grown from the vapour transport

    图 20  (a) MnBi2Te4, (b) MnBi4Te7, (c) MnBi6Te10与(d) MnBi8Te13的晶体图以及相应的单晶X射线衍射图谱

    Fig. 20.  Single-crystal XRD patterns of (a) MnBi2Te4, (b) MnBi4Te7, (c) MnBi6Te10 and (d) MnBi8Te13. Insets are corresponding photos of single crystals

    图 21  (a) Eu-In[229]元素二元相图; (b) As-In[230]元素二元相图, 其中插图为生长的EuIn2As2单晶

    Fig. 21.  (a) Eu-In[229] and (b) As-In[230] binary phase diagram. Inset is the grown single crystals

    表 1  常用的金属助溶剂性质

    Table 1.  Properties of the frequently-used fluxes.

    熔点/℃ 沸点/℃ 可溶于酸或碱溶液 密度/(g·cm-3) 毒性
    Al 660.3 2327 硫酸/硝酸/盐酸/氢氧化钠/氢氧化钾 2.70
    Ga 29.8 2400 盐酸/硫酸 5.90
    In 156.6 2000 硝酸/盐酸/硫酸 7.31
    Sn 231.9 2270 盐酸/硝酸/碱溶液 7.28
    Pb 327.5 1740 硫酸/硝酸/有机酸溶液/碱溶液 11.34
    Sb 630.6 1635 硫酸 6.69
    Bi 271.3 1500 硝酸 9.78
    Te 449.5 989.8 硝酸/盐酸/氢氧化钾 6.24
    Cd 321.2 765 盐酸 8.65
    下载: 导出CSV

    表 2  常用的输运剂性质

    Table 2.  Properties of the frequently-used transport agents

    熔点/℃ 沸点/℃ 稳定性 可溶于溶液 形貌 储存
    I2 113 184 易挥发/易升华 乙醇 紫红色颗粒 密封干燥
    TeCl4 224 380 易潮解 水/盐酸 白色粉末 密封干燥
    BiCl3 230 447 易潮解 水/盐酸 白色粉末 密封干燥
    BiBr3 218 441 易潮解 水/稀盐酸/丙酮 黄色粉末 密封干燥
    TeBr4 380 420 易潮解 水/氢氧化钠 黄色粉末 避光/密封
    SnI4 144.5 364 / 乙醇 橘黄色粉末 密封干燥
    TeI4 280 118 (升华点) 灼热易分解 乙醇/丙酮 灰色粉末 密封干燥
    下载: 导出CSV

    表 3  不同生长方法的优缺点及适用范围

    Table 3.  Advantages and disadvantages of different growth methods and their application scope

    优点 缺点 适用范围
    熔融重结晶法 1. 不需要加入其他试剂如助溶剂或输运剂, 损耗少且不引入杂质;
    2. 不需要额外处理其他溶剂的分离或回收, 操作简单.
    适用性不强 适合生长具有低熔点的目标材料
    助溶
    剂法
    1. 适用性强, 几乎对于所有材料只要找到合适的助溶剂都可以将其以单晶形式生长出来;
    2. 生长温度低, 适合熔点很高的化合物;
    3. 生长出的晶体均匀完整.
    1. 生长周期长;
    2. 许多助溶剂都有不同程度的毒性 处理后的助溶剂或含有助溶剂的溶液具有腐蚀性还会产生污染, 要做好分类并小心处理;
    3. 使用坩埚, 可能会影响品体成核与生长取向.
    适合生长本身熔点较高的化合物
    气相输运法 1. 可以实现常压下难以合成的化合物;
    2. 可以合成难以通过固-固, 固-液反应合成的化合物;
    3. 温度调节灵活, 可以直接调控晶体生长时所需的应力, 饱和度等参量, 进而影响晶体的生长速度.
    1. 产量较低;
    2. 需要精准掌控输运剂的浓度和低沸点反应物的总量, 否则容易因为管内压强过大造成爆管;
    3. 有些气相输运法需要通惰性气体或氢气, 操作复杂, 有一定的危险;
    4. 管壁会限制晶体生长方向, 与管壁接触的晶面呈曲面.
    适合生长反应物中沸点较低的化合物或其它难以通过固-固、固-液合成的化合物
    下载: 导出CSV
  • [1]

    Moore J E 2010 Nature 464 194Google Scholar

    [2]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [3]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [4]

    Wehling T, Black-Schaffer A M, Balatsky A V 2014 Adv. Phys. 63 1Google Scholar

    [5]

    Fang Z, Nagaosa N, Takahashi K S, Asamitsu A, Mathieu R, Ogasawara T, Yamada H, Kawasaki M, Tokura Y, Terakura K 2003 Science 302 92Google Scholar

    [6]

    Wan X, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101Google Scholar

    [7]

    Weng H M, Dai X, Fang Z 2016 J. Phys. Condens. Matter 28 303001Google Scholar

    [8]

    Yu R, Fang Z, Dai X, Weng H M 2017 Front. Phys. 12 127202Google Scholar

    [9]

    Bradlyn B, Cano J, Wang Z, Vergniory M G, Felser C, Cava R J, Bernevig B A 2016 Science 353 aaf5037Google Scholar

    [10]

    Tang P Z, Zhou Q, Zhang S C 2017 Phys. Rev. Lett. 119 206402Google Scholar

    [11]

    Pshenay Severin D A, Ivanov Y V, Burkov A A, Burkov A T 2018 J. Phys. Condens. Matter 30 135501Google Scholar

    [12]

    Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner B, Cava R J 2014 Phys. Rev. Lett. 113 027603Google Scholar

    [13]

    Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z, Chen Y L 2014 Nat. Mater. 13 677Google Scholar

    [14]

    Neupane M, Xu S Y, Sankar R, Alidoust N, Bian G, Liu C, Belopolski I, Chang T R, Jeng H T, Lin H, Bansil A, Chou F C, Hasan M Z 2014 Nat. Commun. 5 3786Google Scholar

    [15]

    Liang T, Gibson Q, Ali M N, Liu M H, Cava R J, Ong N P 2015 Nat. Mater. 14 280Google Scholar

    [16]

    Li C Z, Wang L X, Liu H W, Wang J, Liao Z M, Yu D P 2015 Nat. Commun. 6 10137Google Scholar

    [17]

    Li H, He H T, Lu H Z, Zhang H C, Liu H C, Ma R, Fan Z Y, Shen S Q, Wang J N 2016 Nat. Commun. 7 10301Google Scholar

    [18]

    Wang Z J, Sun Y, Chen X Q, Franchini C, Xu G, Weng H M, Dai X, Fang Z 2012 Phys. Rev. B 85 195320Google Scholar

    [19]

    Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 Science 343 864Google Scholar

    [20]

    Xu S Y, Liu C, Kushwaha S K, Sankar R, Krizan J W, Belopolski I, Neupane M, Bian G, Alidoust N, Chang T R, Jeng H T, Huang C Y, Tsai W F, Lin H, Shibayev P P, Chou F C, Cava R J, Hasan M Z 2015 Science 347 294Google Scholar

    [21]

    Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W D, Cava R J, Ong N P 2015 Science 350 413Google Scholar

    [22]

    Xiong J, Kushwaha S, krizan J, Liang T, Cava R J, Ong N P 2016 Europhys. Lett. 114 27002Google Scholar

    [23]

    Weng H M, Fang C, Fang Z, Bernevig B A, Dai X 2015 Phys. Rev. X 5 011029Google Scholar

    [24]

    Huang S M, Xu S Y, Belopolski I, Lee C C, Chang G Q, Wang B K, Alidoust N, Bian G, Neupane M, Zhang C L, Jia S, Bansil A, Lin H, Hasan M Z 2015 Nat. Commun. 6 7373Google Scholar

    [25]

    Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T, Ding H 2015 Phys. Rev. X 5 031013Google Scholar

    [26]

    Lv B Q, Xu N, Weng H M, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E, Bisti F, Strocov V N, Mesot J, Fang Z, Dai X, Qian T, Shi M, Ding H 2015 Nat. Phys. 11 724Google Scholar

    [27]

    Xu S Y, Belopolski I, Sanchez D S, Zhang C L, Chang G Q, Guo C, Bian G, Yuan Z J, Lu H, Chang T R, Shibayev P P, Prokopovych M L, Alidoust N, Zheng H, Lee C C, Huang S M, Sankar R, Chou F C, Hsu C H, Jeng H T, Bansil A, Neupert T, Strocov V N, Lin H, Jia S, Hasan M Z 2015 Sci. Adv. 1 e1501092Google Scholar

    [28]

    Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C L, Sankar R, Chang G Q, Yuan Z J, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B K, Bansil A, Chou F C, Shibayev P P, Lin H, Jia S, Hasan M Z 2015 Science 349 613Google Scholar

    [29]

    Xu S Y, Alidoust N, Belopolski I, Yuan Z, Bian G, Chang T R, Zheng H, Strocov V N, Sanchez D S, Chang G 2015 Nat. Phys. 11 748Google Scholar

    [30]

    Liu Z K, Yang L X, Sun Y, Zhang T, Peng H, Yang H F, Chen C, Zhang Y, Guo Y F, Prabhakaran D, Schmidt M, Hussain Z, Mo S K, Felser C, Yan B, Chen Y L 2016 Nat. Mater. 15 27Google Scholar

    [31]

    Xu N, Weng H M, Lv B Q, Matt C E, Park J, Bisti F, Strocov V N, Gawryluk D, Pomjakushina E, Conder K, Plumb N C, Radovic M, Autès G, Yazyev O V, Fang Z, Dai X, Qian T, Mesot J, Ding H, Shi M 2016 Nat. Commun. 7 11006Google Scholar

    [32]

    Huang X C, Zhao L X, Long Y J, Wang P P, Chen D, Yang Z H, Liang H, Xue M Q, Weng H, Fang Z, Dai X, Chen G F 2015 Phys. Rev. X 5 031023Google Scholar

    [33]

    Arnold F, Shekhar C, Wu S C, Sun Y, dos Reis R D, Kumar N, Naumann M, Ajeesh M O, Schmidt M, Grushin A G, Bardarson J H, Baenitz M, Sokolov D, Borrmann H, Nicklas M, Felser C, Hassinger E, Yan B H 2016 Nat. Commun. 7 11615Google Scholar

    [34]

    Zhang C L, Xu S Y, Belopolski I, Yuan Z J, Lin Z Q, Tong B B, Bian G, Alidoust N, Lee C C, Huang S M, Chang T R, Chang G Q, Hsu C H, Jeng H T, Neupane M, Sanchez D S, Zheng H, Wang J F, Lin H, Zhang C, Lu H Z, Shen S Q, Neupert T, Hasan M Z, Jia S 2016 Nat. Commun. 7 10735Google Scholar

    [35]

    Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar

    [36]

    Sekine A, Nomura K 2021 J. Appl. Phys. 129 141101Google Scholar

    [37]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [38]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [39]

    Wen X G 1990 Int. J. Mod. Phys. B 04 239Google Scholar

    [40]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [41]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [42]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [43]

    Bernevig B A, Zhang S C 2006 Phys. Rev. Lett. 96 106802Google Scholar

    [44]

    Yao Y, Ye F, Qi X L, Zhang S C, Fang Z 2007 Phys. Rev. B 75 041401Google Scholar

    [45]

    Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L, MacDonald A H 2006 Phys. Rev. B 74 165310Google Scholar

    [46]

    König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [47]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [48]

    Liu C X, Hughes T L, Qi X L, Wang K, Zhang S C 2008 Phys. Rev. Lett. 100 236601Google Scholar

    [49]

    Knez I, Du R R, Sullivan G 2011 Phys. Rev. Lett. 107 136603Google Scholar

    [50]

    Fu L, Kane C L, Mele E J 2007 Phys. Rev. Lett. 98 106803Google Scholar

    [51]

    Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J, Hasan M Z 2008 Nature 452 970Google Scholar

    [52]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [53]

    Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J, Hasan M Z 2009 Nat. Phys. 5 398Google Scholar

    [54]

    Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z, Shen Z X 2009 Science 325 178Google Scholar

    [55]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [56]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [57]

    Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2020 Nature 583 215Google Scholar

    [58]

    Uri A, Grover S, Cao Y, Crosse J A, Bagani K, Rodan-Legrain D, Myasoedov Y, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Zeldov E 2020 Nature 581 47Google Scholar

    [59]

    Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J, Rappe A M 2012 Phys. Rev. Lett. 108 140405Google Scholar

    [60]

    Tang P Z, Zhou Q, Xu G, Zhang S C 2016 Nat. Phys. 12 1100Google Scholar

    [61]

    Hua G Y, Nie S M, Song Z D, Yu R, Xu G, Yao K L 2018 Phys. Rev. B. 98 201116Google Scholar

    [62]

    Wang Z J, Weng H M, Wu Q S, Dai X, Fang Z 2013 Phys. Rev. B 88 125427Google Scholar

    [63]

    Wang C M, Sun H P, Lu H Z, Xie X C 2017 Phys. Rev. Lett. 119 136806Google Scholar

    [64]

    Zhang C, Narayan A, Lu S H, Zhang J L, Zhang H Q, Ni Z L, Yuan X, Liu Y W, Park J H, Zhang E Z, Wang W Y, Liu S S, Cheng L, Pi L, Sheng Z G, Sanvito S, Xiu F X 2017 Nat. Commun. 8 1272Google Scholar

    [65]

    Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495Google Scholar

    [66]

    Wang Z, Gresch D, Soluyanov A A, Xie W, Kushwaha S, Dai X, Troyer M, Cava R J, Bernevig B A 2016 Phys. Rev. Lett. 117 056805Google Scholar

    [67]

    Xu N, Wang Z J, Weber A P, Magrez A, Bugnon P, Berger H, Fu B B, Lv B Q, Plumb N C, Radovic M, Conder K, Qian T, Dil J H, Mesot J, Ding H, Shi M 2016 arXiv: 1604.02116 [cond-mat.mtrl-sci]

    [68]

    Jiang J, Liu Z K, Sun Y, Yang H F, Rajamathi C R, Qi Y P, Yang L X, Chen C, Peng H, Hwang C C, Sun S Z, Mo S K, Vobornik I, Fujii J, Parkin S S P, Felser C, Yan B H, Chen Y L 2017 Nat. Commun. 8 13973Google Scholar

    [69]

    Tamai A, Wu Q S, Cucchi I, Bruno F Y, Riccò S, Kim T K, Hoesch M, Barreteau C, Giannini E, Besnard C, Soluyanov A A, Baumberger F 2016 Phys. Rev. X 6 031021Google Scholar

    [70]

    Sun Y, Wu S C, Ali M N, Felser C, Yan B H 2015 Phys. Rev. B 92 161107Google Scholar

    [71]

    Deng K, Wan G L, Deng P, Zhang K N, Ding S J, Wang E Y, Yan M Z, Huang H Q, Zhang H Y, Xu Z L, Denlinger J, Fedorov A, Yang H T, Duan W H, Yao H, Wu Y, Fan S S, Zhang H J, Chen X, Zhou S Y 2016 Nat. Phys. 12 1105Google Scholar

    [72]

    Autès G, Gresch D, Troyer M, Soluyanov A A, Yazyev O V 2016 Phys. Rev. Lett. 117 066402Google Scholar

    [73]

    Koepernik K, Kasinathan D, Efremov D V, Khim S, Borisenko S, Büchner B, van den Brink J 2016 Phys. Rev. B 93 201101Google Scholar

    [74]

    Wu Y, Mou D, Jo N H, Sun K, Huang L, Bud’ko S L, Canfield P C, Kaminski A 2016 Phys. Rev. B 94 121113Google Scholar

    [75]

    Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P, Cava R J 2014 Nature 514 205Google Scholar

    [76]

    Li P, Wen Y, He X, Zhang Q, Xia C, Yu Z M, Yang S A, Zhu Z, Alshareef H N, Zhang X X 2017 Nat. Commun. 8 2150Google Scholar

    [77]

    Kang D F, Zhou Y Z, Yi W, Yang C L, Guo J, Shi Y G, Zhang S, Wang Z, Zhang C, Jiang S, Li A G, Yang K, Wu Q, Zhang G M, Sun L L, Zhao Z X 2015 Nat. Commun. 6 7804Google Scholar

    [78]

    Burkov A A, Hook M D, Balents L 2011 Phys. Rev. B 84 235126Google Scholar

    [79]

    Hosen M M, Dimitri K, Belopolski I, Maldonado P, Sankar R, Dhakal N, Dhakal G, Cole T, Oppeneer P M, Kaczorowski D, Chou F, Hasan M Z, Durakiewicz T, Neupane M 2017 Phys. Rev. B 95 161101Google Scholar

    [80]

    Neupane M, Belopolski I, Hosen M M, Sanchez D S, Sankar R, Szlawska M, Xu S Y, Dimitri K, Dhakal N, Maldonado P, Oppeneer P M, Kaczorowski D, Chou F, Hasan M Z, Durakiewicz T 2016 Phys. Rev. B 93 201104Google Scholar

    [81]

    Schoop L M, Ali M N, Straßer C, Topp A, Varykhalov A, Marchenko D, Duppel V, Parkin S S P, Lotsch B V, Ast C R 2016 Nat. Commun. 7 11696Google Scholar

    [82]

    Hu J, Tang Z J, Liu J Y, Liu X, Zhu Y L, Graf D, Myhro K, Tran S, Lau C N, Wei J, Mao Z Q 2016 Phys. Rev. Lett. 117 016602Google Scholar

    [83]

    Takane D, Wang Z, Souma S, Nakayama K, Trang C X, Sato T, Takahashi T, Ando Y 2016 Phys. Rev. B 94 121108Google Scholar

    [84]

    Bian G, Chang T R, Sankar R, Xu S Y, Zheng H, Neupert T, Chiu C K, Huang S M, Chang G, Belopolski I, Sanchez D S, Neupane M, Alidoust N, Liu C, Wang B, Lee C C, Jeng H T, Zhang C, Yuan Z, Jia S, Bansil A, Chou F, Lin H, Hasan M Z 2016 Nat. Commun. 7 10556Google Scholar

    [85]

    Zhu Z M, Winkler G W, Wu Q S, Li J, Soluyanov A A 2016 Phys. Rev. X 6 031003Google Scholar

    [86]

    Lv B Q, Feng Z L, Xu Q N, Gao X, Ma J Z, Kong L Y, Richard P, Huang Y B, Strocov V N, Fang C, Weng H M, Shi Y G, Qian T, Ding H 2017 Nature 546 627Google Scholar

    [87]

    Ma J Z, He J B, Xu Y F, Lv B Q, Chen D, Zhu W L, Zhang S, Kong L Y, Gao X, Rong L Y, Huang Y B, Richard P, Xi C Y, Choi E S, Shao Y, Wang Y L, Gao H J, Dai X, Fang C, Weng H M, Chen G F, Qian T, Ding H 2018 Nat. Phys. 14 349Google Scholar

    [88]

    He J B, Chen D, Zhu W L, Zhang S, Zhao L X, Ren Z A, Chen G F 2017 Phys. Rev. B 95 195165Google Scholar

    [89]

    Rao Z C, Li H, Zhang T, Tian S J, Li C H, Fu B B, Tang C Y, Wang L, Li Z L, Fan W H, Li J J, Huang Y B, Liu Z H, Long Y W, Fang C, Weng H M, Shi Y G, Lei H C, Sun Y J, Qian T, Ding H 2019 Nature 567 496Google Scholar

    [90]

    Sanchez D S, Belopolski I, Cochran T A, Xu X, Yin J X, Chang G, Xie W, Manna K, Süß V, Huang C Y, Alidoust N, Multer D, Zhang S S, Shumiya N, Wang X, Wang G Q, Chang T R, Felser C, Xu S Y, Jia S, Lin H, Hasan M Z 2019 Nature 567 500Google Scholar

    [91]

    Takane D, Wang Z W, Souma S, Nakayama K, Nakamura T, Oinuma H, Nakata Y, Iwasawa H, Cacho C, Kim T, Horiba K, Kumigashira H, Takahashi T, Ando Y, Sato T 2019 Phys. Rev. Lett. 122 076402Google Scholar

    [92]

    Wu D S, Mi Z Y, Li Y J, Wu W, Li P L, Song Y T, Liu G T, Li G, Luo J L 2019 Chin. Phys. Lett. 36 077102Google Scholar

    [93]

    Xu X T, Wang X R, Cochran T A, Sanchez D S, Chang G, Belopolski I, Wang G Q, Liu Y Y, Tien H J, Gui X, Xie W W, Hasan M Z, Chang T R, Jia S 2019 Phys. Rev. B 100 045104Google Scholar

    [94]

    Wang H, Xu S, Lu X Q, Wang X Y, Zeng X Y, Lin J F, Liu K, Lu Z Y, Xia T L 2020 Phys. Rev. B 102 115129Google Scholar

    [95]

    Xu S, Zhou L Q, Wang H, Wang X Y, Su Y, Cheng P, Weng H M, Xia T L 2019 Phys. Rev. B 100 245146Google Scholar

    [96]

    Li H, Xu S, Rao Z C, Zhou L Q, Wang Z J, Zhou S M, Tian S J, Gao S Y, Li J J, Huang Y B, Lei H C, Weng H M, Sun Y J, Xia T L, Qian T, Ding H 2019 Nat. Commun. 10 5505Google Scholar

    [97]

    Chang G, Xu S Y, Wieder B J, Sanchez D S, Huang S M, Belopolski I, Chang T R, Zhang S, Bansil A, Lin H, Hasan M Z 2017 Phys. Rev. Lett. 119 206401Google Scholar

    [98]

    Schröter N B M, Pei D, Vergniory M G, Sun Y, Manna K, de Juan F, Krieger J A, Süss V, Schmidt M, Dudin P, Bradlyn B, Kim T K, Schmitt T, Cacho C, Felser C, Strocov V N, Chen Y L 2019 Nat. Phys. 15 759Google Scholar

    [99]

    Saini V, Sasmal S, Kulkarni R, Singh B, Thamizhavel A, Nakamura A, Aoki D 2022 Phys. Rev. B 106 125126Google Scholar

    [100]

    Yao M Y, Manna K, Yang Q, Fedorov A, Voroshnin V, Valentin S B, Hornung J, Chattopadhyay S, Sun Z, Guin S N, Wosnitza J, Borrmann H, Shekhar C, Kumar N, Fink J, Sun Y, Felser C 2020 Nat. Commun. 11 2033Google Scholar

    [101]

    Xu S, Zhou L Q, Wang X Y, Wang H, Lin J F, Zeng X Y, Cheng P, Weng H M, Xia T L 2020 Chin. Phys. Lett. 37 107504Google Scholar

    [102]

    Schroter N B M, Stolz S, Manna K, Juan F d, Vergniory M G, Krieger J A, Pei D, Schmitt T, Dudin P, Kim T K, Cacho C, Bradlyn B, Borrmann H, Schmidt M, Widmer R, Strocov V N, Felser C 2020 Science 369 179Google Scholar

    [103]

    Zeng X Y, Dai Z Y, Xu S, Zhao N N, Wang H, Wang X Y, Lin J F, Gong J, Ma X P, Han K, Wang Y T, Cheng P, Liu K, Xia T L 2022 Phys. Rev. B 106 205120Google Scholar

    [104]

    He K 2020 npj Quantum Mater. 5 90Google Scholar

    [105]

    Wang P Y, Ge J, Li J H, Liu Y Z, Xu Y, Wang J 2021 The Innovation 2 100098Google Scholar

    [106]

    Nagaosa N, Sinova J, Onoda S, MacDonald A H, Ong N P 2010 Rev. Mod. Phys. 82 1539Google Scholar

    [107]

    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Böni P 2009 Phys. Rev. Lett. 102 186602Google Scholar

    [108]

    何珂 2019 物理 49 12Google Scholar

    He K 2019 Physics 49 12Google Scholar

    [109]

    Ou Y B, Liu C, Zhang L G, Feng Y, Jiang G Y, Zhao D Y, Zang Y Y, Zhang Q H, Gu L, Wang Y H, He K, Ma X C, Xue Q K 2016 APL Mater. 4 086101Google Scholar

    [110]

    Qi X L, Hughes T L, Zhang S C 2008 Phys. Rev. B 78 195424Google Scholar

    [111]

    Mogi M, Yoshimi R, Tsukazaki A, Yasuda K, Kozuka Y, Takahashi K S, Kawasaki M, Tokura Y 2015 APL Mater. 107 182401Google Scholar

    [112]

    Otrokov M M, Menshchikova T V, Vergniory M G, Rusinov I P, Vyazovskaya A Y, Koroteev Y M, Bihlmayer G, Ernst A, Echenique P M, Arnau A, Chulkov E V 2017 2D Mater. 4 025082

    [113]

    Gong Y, Guo J W, Li J H, Zhu K J, Liao M H, Liu X Z, Zhang Q H, Gu L, Tang L, Feng X, Zhang D, Li W, Song C L, Wang L, Yu P, Chen X, Wang Y Y, Yao H, Duan W H, Xu Y, Zhang S C, Ma X C, Xue Q K, He K 2019 Chin. Phys. Lett. 36 076801Google Scholar

    [114]

    Tang E, Mei J W, Wen X G 2011 Phys. Rev. Lett. 106 236802Google Scholar

    [115]

    Ye L, Kang M G, Liu J W, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R, Checkelsky J G 2018 Nature 555 638Google Scholar

    [116]

    Wang Q, Sun S S, Zhang X, Pang F, Lei H C 2016 Phys. Rev. B 94 075135Google Scholar

    [117]

    Yin J X, Zhang S T, Li H, Jiang K, Chang G Q, Zhang B J, Lian B, Xiang C, Belopolski I, Zheng H, Cochran T A, Xu S Y, Bian G, Liu K, Chang T R, Lin H, Lu Z Y, Wang Z Q, Jia S, Wang W H, Hasan M Z 2018 Nature 562 91Google Scholar

    [118]

    Hou Z P, Ren W J, Ding B, Xu G Z, Wang Y, Yang B, Zhang Q, Zhang Y, Liu E K, Xu F, Wang W H, Wu G H, Zhang X X, Shen B G, Zhang Z D 2017 Adv. Mater. 29 1701144Google Scholar

    [119]

    Wang L L, Jo N H, Kuthanazhi B, Wu Y, McQueeney R J, Kaminski A, Canfield P C 2019 Phys. Rev. B 99 245147Google Scholar

    [120]

    Ma J Z, Nie S M, Yi C J, Jandke J, Shang T, Yao M Y, Naamneh M, Yan L Q, Sun Y, Chikina A, Strocov V N, Medarde M, Song M, Xiong Y M, Xu G, Wulfhekel W, Mesot J, Reticcioli M, Franchini C, Mudry C, Müller M, Shi Y G, Qian T, Ding H, Shi M 2019 Sci. Adv. 5 eaaw4718Google Scholar

    [121]

    Soh J R, de Juan F, Vergniory M G, Schröter N B M, Rahn M C, Yan D Y, Jiang J, Bristow M, Reiss P, Blandy J N, Guo Y F, Shi Y G, Kim T K, McCollam A, Simon S H, Chen Y, Coldea A I, Boothroyd A T 2019 Phys. Rev. B 100 201102Google Scholar

    [122]

    Rahn M C, Soh J R, Francoual S, Veiga L S I, Strempfer J, Mardegan J, Yan D Y, Guo Y F, Shi Y G, Boothroyd A T 2018 Phys. Rev. B 97 214422Google Scholar

    [123]

    Xu G, Weng H M, Wang Z J, Dai X, Fang Z 2011 Phys. Rev. Lett. 107 186806Google Scholar

    [124]

    Guan T, Lin C J, Yang C L, Shi Y G, Ren C, Li Y Q 2015 Phys. Rev. Lett. 115 087002Google Scholar

    [125]

    Yang S, Li Z L, Lin C J, Yi C J, Shi Y G, Culcer D, Li Y Q 2019 Phys. Rev. Lett. 123 096601Google Scholar

    [126]

    Sun J P, Jiao Y Y, Yi C J, Dissanayake S E, Matsuda M, Uwatoko Y, Shi Y G, Li Y Q, Fang Z, Cheng J G 2019 Phys. Rev. Lett. 123 047201Google Scholar

    [127]

    Morali N, Batabyal R, Nag P K, Liu E K, Xu Q N, Sun Y, Yan B H, Felser C, Avraham N, Beidenkopf H 2019 Science 365 1286Google Scholar

    [128]

    Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C, Chen Y L 2019 Science 365 1282Google Scholar

    [129]

    Guin S N, Vir P, Zhang Y, Kumar N, Watzman S J, Fu C, Liu E, Manna K, Schnelle W, Gooth J, Shekhar C, Sun Y, Felser C 2019 Adv. Mater. 31 1806622Google Scholar

    [130]

    Liu E K, Sun Y, Kumar N, Muechler L, Sun A L, Jiao L, Yang S Y, Liu D F, Liang A J, Xu Q N, Kroder J, Süß, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W H, Schnelle W, Wirth S, Chen Y L, Goennenwein S T B, Felser C 2018 Nat. Phys. 14 1125Google Scholar

    [131]

    Wang Q, Xu Y F, Lou R, Liu Z H, Li M, Huang Y B, Shen D W, Weng H M, Wang S C, Lei H C 2018 Nat. Commun. 9 3681Google Scholar

    [132]

    Nagpal V, Patnaik S 2020 J. Phys. Condens. Matter 32 405602Google Scholar

    [133]

    Nakatsuji S, Kiyohara N, Higo T 2015 Nature 527 212Google Scholar

    [134]

    Nayak A K, Fischer J E, Sun Y, Yan B, Karel J, Komarek A C, Shekhar C, Kumar N, Schnelle W, Kübler J, Felser C, Parkin S S P 2020 Sci. Adv. 2 e1501870Google Scholar

    [135]

    Chen T S, Tomita T, Minami S, Fu M X, Koretsune T, Kitatani M, Muhammad I, Nishio-Hamane D, Ishii R, Ishii F, Arita R, Nakatsuji S 2021 Nat. Commun. 12 572Google Scholar

    [136]

    Suzuki M T, Koretsune T, Ochi M, Arita R 2017 Phys. Rev. B 95 094406Google Scholar

    [137]

    Suzuki T, Chisnell R, Devarakonda A, Liu Y T, Feng W, Xiao D, Lynn J W, Checkelsky J G 2016 Nat. Phys. 12 1119Google Scholar

    [138]

    Schindler C, Galeski S, Schnelle W, Wawrzyńczak R, Abdel-Haq W, Guin S N, Kroder J, Kumar N, Fu C G, Borrmann H, Shekhar C, Felser C, Meng T, Grushin A G, Zhang Y, Sun Y, Gooth J 2020 Phys. Rev. B 101 125119Google Scholar

    [139]

    介万奇 2010 晶体生长原理与技术 (北京: 科学出版社) 第21—739页

    Jie W Q 2010 Principle and Technology of Crystal Growth (Beijing: Science Press) pp21–739 (in Chinses)

    [140]

    张克从, 张乐潓 1997 晶体生长科学与技术 (北京: 科学出版社) 第336—520页

    Zhang K C, Zhang L H 1997 Science and Technology of Crystal Growth (Beijing: Science Press) pp336–520 (in Chinses)

    [141]

    Paorici C, Attolini G 2004 Prog. Cryst. Growth Charact. Mater. 48 2Google Scholar

    [142]

    伊长江, 王乐, 冯子力, 杨萌, 闫大禹, 王翠香, 石友国 2018 物理学报 67 128102Google Scholar

    Yi C J, Wang L, Feng Z L, Yang M, Yan D Y, Wang C X, Shi Y G 2018 Acta Phys. Sin. 67 128102Google Scholar

    [143]

    Villars P, Okamoto H 2012 Ba-Ga Binary Phase Diagram 0–100 at.% Ga: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0108037

    [144]

    Gibson Q D, Schoop L M, Muechler L, Xie L S, Hirschberger M, Ong N P, Car R, Cava R J 2015 Phys. Rev. B 91 205128Google Scholar

    [145]

    Xu S, Bao C H, Guo P J, Wang Y Y, Yu Q H, Sun L L, Su Y, Liu K, Lu Z Y, Zhou S Y, Xia T L 2020 Nat. Commun. 11 2370Google Scholar

    [146]

    Nakamura A, Uejo T, Harima H, Araki S, Kobayashi T C, Nakashima M, Amako Y, Hedo M, Nakama T, ōnuki Y 2016 J. Alloys Compd. 654 290Google Scholar

    [147]

    Wang H, Xu S, Lu X Q, Dai Z Y, Wang Y Y, Wang X Y, Zeng X Y, Lin J F, Liu K, Lu Z Y, Xia T L 2021 Phys. Rev. B 104 205119Google Scholar

    [148]

    Villars P, Okamoto H 2012 Bi-Pt Binary Phase Diagram 0–100 at.% Pt: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0979935

    [149]

    Gao W S, Hao N N, Zheng F W, Ning W, Wu M, Zhu X D, Zheng G L, Zhang J L, Lu J W, Zhang H W, Xi C Y, Yang J Y, Du H F, Zhang P, Zhang Y H, Tian M L 2017 Phys. Rev. Lett. 118 256601Google Scholar

    [150]

    Gao W S, Zhu X D, Zheng F W, Wu M, Zhang J L, Xi C Y, Zhang P, Zhang Y H, Hao N, Ning W, Tian M L 2018 Nat. Commun. 9 3249Google Scholar

    [151]

    Thirupathaiah S, Kushnirenko Y, Haubold E, Fedorov A V, Rienks E D L, Kim T K, Yaresko A N, Blum C G F, Aswartham S, Büchner B, Borisenko S V 2018 Phys. Rev. B 97 035133Google Scholar

    [152]

    Xu C Q, Xing X Z, Xu X, Li B, Chen B, Che L Q, Lu X, Dai J, Shi Z X 2016 Phys. Rev. B 94 165119Google Scholar

    [153]

    Wang Y J, Zhang J L, Zhu W K, Zou Y M, Xi C Y, Ma L, Han T, Yang J, Wang J R, Xu J M, Zhang L, Pi L, Zhang C J, Zhang Y H 2016 Sci. Rep. 6 31554Google Scholar

    [154]

    Fei F C, Bo X Y, Wang R, Wu B, Jiang J, Fu D Z, Gao M, Zheng H, Chen Y L, Wang X F, Bu H J, Song F Q, Wan X G, Wang B G, Wang G H 2017 Phys. Rev. B 96 041201Google Scholar

    [155]

    Das S, Amit, Sirohi A, Yadav L, Gayen S, Singh Y, Sheet G 2018 Phys. Rev. B 97 014523Google Scholar

    [156]

    Villars P, Okamoto H 2012 Pd-Te Binary Phase Diagram 0–100% at Te: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0901894

    [157]

    Zheng W, Schönemann R, Aryal N, Zhou Q, Rhodes D, Chiu Y C, Chen K W, Kampert E, Förster T, Martin T J, McCandless G T, Chan J Y, Manousakis E, Balicas L 2018 Phys. Rev. B 97 235154Google Scholar

    [158]

    Koohpayeh S M, Fort D, Abell J S 2008 Prog. Cryst. Growth Charact. Mater. 54 121Google Scholar

    [159]

    Dhanaraj G, Byrappa K, Prasad V, Dudley M 2010 Springer Handbook of Crystal Growth (Berlin Heidelberg: Springer-Verlag) pp194–197

    [160]

    于昊 2021 博士学位论文 (天津: 天津理工大学)

    Yu H 2021 Ph.D. Dissertation (Tianjin: Tianjin University of Technology) (in Chinese)

    [161]

    Li G Y, Li X D, Wang H, Liu L 2009 Solid. State Sci. 11 2167Google Scholar

    [162]

    Tan L K, Liu B, Teng J H, Guo S, Low H Y, Loh K P 2014 Nanoscale 6 10584Google Scholar

    [163]

    Shi M L, Chen L, Zhang T, Xu J, Zhu H, Sun Q, Zhang D W 2017 Small 13 1603157Google Scholar

    [164]

    Villars P, Okamoto H 2012 As-Cd Binary Phase Diagram 0–100 at.% Cd: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0905914

    [165]

    Xiang Z J, Zhao D, Jin Z, Shang C, Ma L K, Ye G J, Lei B, Wu T, Xia Z C, Chen X H 2015 Phys. Rev. Lett. 115 226401Google Scholar

    [166]

    Hruby A, Petrová J 1971 Czech. J Phys. 21 890Google Scholar

    [167]

    Lovett D R 1972 J. Mater. Sci. 7 388Google Scholar

    [168]

    Rambo A, Aubin M J 1979 Can. J. Phys. 57 2093Google Scholar

    [169]

    Kloc K, Żdanowicz W 1984 J. Cryst. Growth 66 451Google Scholar

    [170]

    Wang K F, Graf D, Li L J, Wang L, Petrovic C 2014 Sci. Rep. 4 7328Google Scholar

    [171]

    Wang Y Y, Yu Q H, Guo P J, Liu K, Xia T L 2016 Phys. Rev. B 94 041103Google Scholar

    [172]

    Tafti F F, Gibson Q D, Kushwaha S K, Haldolaarachchige N, Cava R J 2016 Nat. Phys. 12 272Google Scholar

    [173]

    Guo P J, Yang H C, Liu K, Lu Z Y 2017 Phys. Rev. B 96 081112Google Scholar

    [174]

    Yu Q H, Wang Y Y, Lou R, Guo P J, Xu S, Liu K, Wang S C, Xia T L 2017 EPL 119 17002Google Scholar

    [175]

    Wang Y Y, Zhang H Y, Lu X Q, Sun L L, Xu S, Lu Z Y, Liu K, Zhou S Y, Xia T L 2018 Phys. Rev. B 97 085137Google Scholar

    [176]

    Wang Y Y, Sun L L, Xu S, Su Y, Xia T L 2018 Phys. Rev. B 98 045137Google Scholar

    [177]

    Villars P, Okamoto H 2012 Co-Te Binary Phase Diagram 0–100 at.% Te: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0905301

    [178]

    Villars P, Okamoto H 2012 Si-Te Binary Phase Diagram 0–100 at.% Te: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0905195

    [179]

    Villars P, Okamoto H 2012 Co-Sb Binary Phase Diagram 0–100 at.% Sb: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0904080

    [180]

    Villars P, Okamoto H 2012 Sb-Si Binary Phase Diagram 0–100 at.% Si: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0108181

    [181]

    Villars P, Okamoto H 2012 Co-Sn Binary Phase Diagram 0–100 at.% Sn: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0906080

    [182]

    Villars P, Okamoto H 2012 Si-Sn Binary Phase Diagram 0–100 at.% Sn: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0902102

    [183]

    Villars P, Okamoto H 2012 Bi-Rh Binary Phase Diagram 0–100 at.% Rh: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0902804

    [184]

    Villars P, Okamoto H 2012 Bi-Sn Binary Phase Diagram 0–100 at.% Sn: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0904032

    [185]

    Villars P, Okamoto H 2012 Bi-Ga Binary Phase Diagram 0–100 at.% Ga: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0903445

    [186]

    Villars P, Okamoto H 2012 Bi-Pd Binary Phase Diagram 0–100 at.% Pd: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0906135

    [187]

    Borisenko S, Evtushinsky D, Gibson Q, Yaresko A, Koepernik K, Kim T, Ali M, Van D B J, Hoesch M, Fedorov A, Haubold E, Kushnirenko Y, Soldatov I, Schäfer R, Cava R J 2019 Nat. Commun. 10 3424Google Scholar

    [188]

    Lee G, Farhan M A, Kim J S, Shim J H 2013 Phys. Rev. B 87 245104Google Scholar

    [189]

    Klemenz S, Lei S M, Schoop L M 2019 Annu. Rev. Mater. Res. 49 185Google Scholar

    [190]

    Wang Y Y, Xu S, Sun L L, Xia T L 2018 Phys. Rev. Mater. 2 021201Google Scholar

    [191]

    Kealhofer R, Jang S, Griffin S M, John C, Benavides K A, Doyle S, Helm T, Moll P J W, Neaton J B, Chan J Y, Denlinger J D, Analytis J G 2018 Phys. Rev. B 97 045109Google Scholar

    [192]

    Yi C J, Yang S, Yang M, Wang L, Matsushita Y, Miao S S, Jiao Y Y, Cheng J G, Li Y Q, Yamaura K, Shi Y G, Luo J L 2017 Phys. Rev. B 96 205103Google Scholar

    [193]

    Nie S M, Sun Y, Prinz F B, Wang Z J, Weng H M, Fang Z, Dai X 2020 Phys. Rev. Lett. 124 076403Google Scholar

    [194]

    Gao S Y, Xu S, Li H, Yi C J, Nie S M, Rao Z C, Wang H, Hu Q X, Chen X Z, Fan W H, Huang J R, Huang Y B, Pryds N, Shi M, Wang Z J, Shi Y G, Xia T L, Qian T, Ding H 2021 Phys. Rev. X 11 021016Google Scholar

    [195]

    Liu W L, Zhang X, Nie S M, Liu Z T, Sun X Y, Wang H Y, Ding J Y, Sun L, Huang Z, Su H, Yang Y C, Jiang Z C, Lu X L, Liu X L, Liu J S, Liu Z H, Zhang S L, Weng H M, Guo Y F, Wang Z J, Shen D W, Liu Z 2021 arXiv: 2103.04658 [cond-mat.mtrl-sci]

    [196]

    Shen J L, Gao J C, Yi C J, Zeng Q Q, Zhang S, Yang J Y, Zhang X D, Wang B B, Cong J Z, Shi Y G, Xu X H, Wang Z J, Liu E K 2021 arXiv: 2106.02904 [cond-mat.mtrl-sci]

    [197]

    Yuan J, Shi X B, Su H, Zhang X, Wang X, Yu N, Zou Z Q, Zhao W W, Liu J P, Guo Y F 2022 Phys. Rev. B 106 054411Google Scholar

    [198]

    Zhang X H, Yu L Q, von Molnár S, Fisk Z, Xiong P 2009 Phys. Rev. Lett. 103 106602Google Scholar

    [199]

    Fisk Z, Johnston D C, Cornut B, von Molnar S, Oseroff S, Calvo R 1979 J. Appl. Phys. 50 1911Google Scholar

    [200]

    Villars P, Okamoto H 2012 Al-Eu Binary Phase Diagram 0–100 at.% Eu: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0900088

    [201]

    Villars P, Okamoto H 2012 Al-B Binary Phase Diagram 0–100 at.% B: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0903931

    [202]

    李璐 2020 物理 49 7Google Scholar

    Li L 2020 Physics 49 7Google Scholar

    [203]

    Villars P, Okamoto H 2012 Al-Sm Binary Phase Diagram 0–100 at.% Sm: Datasheet from PAULING FILE in: Inorganic Solid Phases, SpringerMaterials (online database) (Heidelberg: Springer) 0102024

    [204]

    Corps J, Vaqueiro P, Aziz A, Grau-Crespo R, Kockelmann W, Jumas J C, Powell A V 2015 Chem. Mater. 27 3946Google Scholar

    [205]

    Kassem M A, Tabata Y, Waki T, Nakamura H 2015 J. Cryst. Growth 426 208Google Scholar

    [206]

    Sims C 2021 Condens. Matter 6 18Google Scholar

    [207]

    Saadi A, Omari L el H, Boudali A 2020 Eur. Phys. J. B 93 180Google Scholar

    [208]

    McGuire M A, Zhang Q, Miao H, Luo W, Yoon M, Liu Y, Yilmaz T, Vescovo E 2021 Chem. Mater. 33 9741Google Scholar

    [209]

    Villars P, Okamoto H 2012 Fe-Sn Binary Phase Diagram 0–100 at.% Sn: PAULING FILE in: Inorganic Solid Phases, SpringerMaterials (online database) (Heidelberg: Springer) 0104128

    [210]

    Shi M Z, Lei B, Zhu C S, Ma D H, Cui J H, Sun Z L, Ying J J, Chen X H 2019 Phys. Rev. B 100 155144Google Scholar

    [211]

    Vidal R C, Zeugner A, Facio J I, Ray R, Haghighi M H, Wolter A U B, Bohorquez L T C, Caglieris F, Moser S, Figgemeier T, Peixoto T R F, Vasili H B, Valvidares M, Jung S, Cacho C, Alfonsov A, Mehlawat K, Kataev V, Hess C, Richter M, Büchner B, Brink J v d, Ruck M, Reinert F, Bentmann H, Isaeva A 2019 Phys. Rev. X 9 041065Google Scholar

    [212]

    Yan J Q, Liu Y H, Parker D, Wu Y, Aczel A A, Matsuda M, Mcguire M A, Sales B C 2020 Phys. Rev. Mater. 4 054202Google Scholar

    [213]

    Hu C W, Gordon K N, Liu P F, Liu J Y, Zhou X Q, Hao P P, Narayan D, Emmanouilidou E, Sun H Y, Liu Y T, Brawer H, Ramirez A P, Ding L, Cao H B, Liu Q H, Dessau D, Ni N 2020 Nat. Commun. 11 97Google Scholar

    [214]

    Tan A, Labracherie V, Kunchur N, Wolter A U.B, Cornejo J, Dufouleur J, Büchner B, Isaeva A, Giraud R 2020 Phys. Rev. Lett. 124 197201Google Scholar

    [215]

    Li H, Gao S Y, Duan S F, Xu Y F, Zhu K J, Tian S J, Gao J C, Fan W H, Rao Z C, Huang J R, Li J J, Yan D Y, Liu Z T, Liu W L, Huang Y B, Li Y L, Liu Y, Zhang G B, Zhang P, Kondo T, Shin S, Lei H C, Shi Y G, Zhang W T, Weng H M, Qian T, Ding H 2019 Phys. Rev. X 9 041039Google Scholar

    [216]

    Jo N H, Wang L L, Slager R J, Yan J Q, Wu Y, Lee K, Schrunk B, Vishwanath A, Kaminski A 2019 Phys. Rev. B 102 045130Google Scholar

    [217]

    Hu Y, Xu L X, Shi M Z, Luo A Y, Peng S T, Wang Z Y, Ying J J, Wu T, Liu Z K, Zhang C F, Chen Y L, Xu G, Chen X H, He J F 2020 Phys. Rev. B 101 161113Google Scholar

    [218]

    Klimovskikh I I, Otrokov M M, Estyunin D, Eremeev S V, Filnov S O, Koroleva A, Shevchenko E, Voroshnin V, Rybkin A G, Rusinov I P, Blanco R M, Hoffmann M, Aliev Z S, Babanly M B, Amiraslanov I R, Abdullayev N A, Zverev V N, Kimura A, Tereshchenko O E, Kokh K A, Petaccia L, Di S G, Ernst A, Echenique P M, Mamedov N T, Shikin A M, Chulkov E V 2020 npj Quantum Mater. 5 54Google Scholar

    [219]

    Tian S J, Gao S Y, Nie S M, Qian Y T, Gong C S, Fu Y, Li H, Fan W H, Zhang P, Kondo T, Shin S, Adell J, Fedderwitz H, Ding H, Wang Z J, Qian T, Lei H C 2020 Phys. Rev. B 102 035144Google Scholar

    [220]

    Hu C W, Ding L, Gordon K N, Ghosh B, Tien H J, Li H X, Linn A G, Lien S W, Huang C Y, Mackey S, Liu J Y, Reddy P V S, Singh B, Agarwal A, Bansil A, Song M, Li D S, Xu S Y, Lin H, Cao H B, Chang T R, Dessau D, Ni N 2020 Sci. Adv. 6 eaba4275Google Scholar

    [221]

    Lu R E, Sun H Y, Kumar S, Wang Y, Gu M Q, Zeng M, Hao Y J, Li J Y, Shao J F, Ma X M, Hao Z Y, Zhang K, Mansuer W, Mei J W, Zhao Y, Liu C, Deng K, Huang W, Shen B, Shimada K, Schwier E F, Liu C, Liu Q H, Chen C Y 2021 Phys. Rev. X 11 011039Google Scholar

    [222]

    Zhong H Y, Bao C H, Wang H, Li J H, Yin Z C, Xu Y, Duan W H, Xia T L, Zhou S Y 2021 Nano Lett. 21 6080Google Scholar

    [223]

    Aliev Z S, Amiraslanov I R, Nasonova D I, Shevelkov A V, Abdullayev N A, Jahangirli Z A, Orujlu E N, Otrokov M M, Mamedov N T, Babanly M B, Chulkov E V 2019 J. Alloys Compd. 789 443Google Scholar

    [224]

    Hu C W, Gao A Y, Berggren B S, Li H, Kurleto R, Narayan D, Zeljkovic I, Dessau D, Xu S Y, Ni N 2021 Phys. Rev. Mater. 5 124206Google Scholar

    [225]

    Yan J Q, Huang Z L, Wu W D, May A F 2022 J. Alloys Compd. 906 164327Google Scholar

    [226]

    Xu Y F, Song Z D, Wang Z J, Weng H M, Dai X 2019 Phys. Rev. Lett. 122 256402Google Scholar

    [227]

    Zhang Y, Deng K, Zhang X, Wang M, Wang Y, Liu C, Mei J W, Kumar S, Schwier E F, Shimada K, Chen C Y, Shen B 2020 Phys. Rev. B 101 205126Google Scholar

    [228]

    易恩魁, 王彬, 沈韩, 沈冰 2021 物理学报 70 127502Google Scholar

    Yi E K, Wang B, Shen H, Shen B 2021 Acta Phys. Sin. 70 127502Google Scholar

    [229]

    Villars P, Okamoto H 2012 Eu-In Binary Phase Diagram 0-100 at.%In: PAULING FILE in: Inorganic Solid Phases, Springer Materials (online database) (Heidelberg: Springer) 0901007

    [230]

    Villars P, Okamoto H 2012 As-In Binary Phase Diagram 0-100 at.% In: PAULING FILE in: Inorganic Solid Phases, SpringerMaterials (online database) (Heidelberg: Springer) 0102034

    [231]

    王昕炜 2007 硕士学位论文 (武汉: 中国地质大学)

    Wang X W 2007 M. S. Thesis (Wuhan: China University of Geosciences) (in Chinese)

    [232]

    Feder T 2007 Phys. Today 60 26

  • [1] 孙贵花, 张庆礼, 罗建乔, 王小飞, 谷长江. Pr, Yb, Ho:GdScO3晶体生长及光谱性能. 物理学报, 2024, 73(5): 059801. doi: 10.7498/aps.73.20231362
    [2] 江龙兴, 李庆超, 张旭, 李京峰, 张静, 陈祖信, 曾敏, 吴昊. 基于拓扑/二维量子材料的自旋电子器件. 物理学报, 2024, 73(1): 017505. doi: 10.7498/aps.73.20231166
    [3] 牛佳林, 董思远, 魏永星, 靳长清, 南瑞华, 杨斌. 助溶剂法生长的AgNbO3晶体相转变特征、电学和光学性能. 物理学报, 2024, 73(3): 038101. doi: 10.7498/aps.73.20230984
    [4] 鲍昌华, 范本澍, 汤沛哲, 段文晖, 周树云. 量子材料的弗洛凯调控. 物理学报, 2023, 72(23): 234202. doi: 10.7498/aps.72.20231423
    [5] 巴佳燕, 陈复洋, 段后建, 邓明勋, 王瑞强. 拓扑材料中的平面霍尔效应. 物理学报, 2023, 72(20): 207201. doi: 10.7498/aps.72.20230905
    [6] 孙贵花, 张庆礼, 罗建乔, 王小飞, 谷长江. Pr,Yb,Ho:GdScO3晶体生长及光谱性能研究. 物理学报, 2023, 0(0): . doi: 10.7498/aps.72.20231362
    [7] 邱子阳, 陈岩, 邱祥冈. 拓扑材料BaMnSb2的红外光谱学研究. 物理学报, 2022, 71(10): 107201. doi: 10.7498/aps.71.20220011
    [8] 姜天舒, 肖孟, 张昭庆, 陈子亭. 周期与非周期传输线网络的物理与拓扑性质. 物理学报, 2020, 69(15): 150301. doi: 10.7498/aps.69.20200258
    [9] 顾开元, 罗天创, 葛军, 王健. 拓扑材料中的超导. 物理学报, 2020, 69(2): 020301. doi: 10.7498/aps.69.20191627
    [10] 孙贵花, 张庆礼, 罗建乔, 孙敦陆, 谷长江, 郑丽丽, 韩松, 李为民. Ti:MgAl2O4激光晶体的提拉法生长及性能表征. 物理学报, 2020, 69(1): 014210. doi: 10.7498/aps.69.20191150
    [11] 王珊珊, 吴维康, 杨声远. 拓扑节线与节面金属的研究进展. 物理学报, 2019, 68(22): 227101. doi: 10.7498/aps.68.20191538
    [12] 张妮, 刘丁, 冯雪亮. 直拉硅单晶生长过程中工艺参数对相变界面形态的影响. 物理学报, 2018, 67(21): 218701. doi: 10.7498/aps.67.20180305
    [13] 郭灿, 王锦程, 王志军, 李俊杰, 郭耀麟, 唐赛. BCC枝晶生长原子堆垛过程的晶体相场研究. 物理学报, 2015, 64(2): 028102. doi: 10.7498/aps.64.028102
    [14] 黄伟超, 刘丁, 焦尚彬, 张妮. 直拉法晶体生长过程非稳态流体热流耦合. 物理学报, 2015, 64(20): 208102. doi: 10.7498/aps.64.208102
    [15] 周鹏宇, 张庆礼, 杨华军, 宁凯杰, 孙敦陆, 罗建乔, 殷绍唐. 5 at%Yb3+: YNbO4 的提拉法晶体生长和光谱特性. 物理学报, 2012, 61(22): 228103. doi: 10.7498/aps.61.228103
    [16] 邢辉, 陈长乐, 金克新, 谭兴毅, 范飞. 相场晶体法模拟过冷熔体中的晶体生长. 物理学报, 2010, 59(11): 8218-8225. doi: 10.7498/aps.59.8218
    [17] 牛睿祺, 董慧茹, 王云平. 非线性光学晶体4-(4-二甲基氨基苯乙烯基)甲基吡啶对甲基苯磺酸盐的制备与性能研究. 物理学报, 2007, 56(7): 4235-4241. doi: 10.7498/aps.56.4235
    [18] 王英伟, 王自东, 程灏波. 新型激光晶体Yb:KY(WO4)2的结构与光谱. 物理学报, 2006, 55(9): 4803-4808. doi: 10.7498/aps.55.4803
    [19] 刘向荣, 王 楠, 魏炳波. 无容器条件下Cu-Pb偏晶的快速生长. 物理学报, 2005, 54(4): 1671-1678. doi: 10.7498/aps.54.1671
    [20] 徐锦锋, 魏炳波. 急冷快速凝固过程中液相流动与组织形成的相关规律. 物理学报, 2004, 53(6): 1909-1915. doi: 10.7498/aps.53.1909
计量
  • 文章访问数:  12754
  • PDF下载量:  484
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-04
  • 修回日期:  2022-11-04
  • 上网日期:  2023-01-16
  • 刊出日期:  2023-02-05

/

返回文章
返回