搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于中频域维纳滤波的非视域成像算法研究

唐佳瑶 罗一涵 谢宗良 夏诗烨 刘雅卿 徐少雄 马浩统 曹雷

引用本文:
Citation:

基于中频域维纳滤波的非视域成像算法研究

唐佳瑶, 罗一涵, 谢宗良, 夏诗烨, 刘雅卿, 徐少雄, 马浩统, 曹雷

Non-line-of-sight imaging algorithm based on Wiener filtering of mid-frequency

Tang Jia-Yao, Luo Yi-Han, Xie Zong-Liang, Xia Shi-Ye, Liu Ya-Qing, Xu Shao-Xiong, Ma Hao-Tong, Cao Lei
PDF
HTML
导出引用
  • 非视域成像是对探测器视线外被遮挡的物体进行光学成像的新兴技术, 基于光锥变换反演法的非视域成像可以看作是一个反卷积的过程, 传统维纳滤波反卷积方法是使用经验值或者反复尝试得到瞬态图像的功率谱密度噪信比(power spectral density noise-to-signal ratio, PSDNSR)进行维纳滤波反卷积, 但非视域成像每个隐藏场景的PSDNSR都不同, 先验估计难以适用. 因此本文提出使用捕获瞬态图像的中频域信息来估计PSDNSR进行维纳滤波从而实现非视域成像. 实验表明, 基于中频域维纳滤波的非视域成像算法估计的PSDNSR能够落在一个重建效果较好的量级上. 相比其他方法, 本文算法能一步直接估计出PSDNSR, 没有迭代运算, 计算复杂度低, 能够在保证重建效果的前提下提升重建效率.
    Non-line-of-sight (NLOS) imaging is an emerging technology for optically imaging the objects blocked beyond the detector's line of sight. The NLOS imaging based on light-cone transform and inverted method can be regarded as a deconvolution process. The traditional Wiener filtering deconvolution method uses the empirical values or the repeated attempts to obtain the power spectral density noise-to-signal ratio (PSDNSR) of the transient image: each hidden scene has a different PSDNSR for NLOS imaging, so the prior estimation is not appropriate and repeated attempts make it difficult to quickly find the optimal value. Therefore, in this work proposed is a method of estimating the PSDNSR by using the mid-frequency information of captured transient images for Wiener filtering to achieve NLOS imaging. In this method, the turning points between the mid-frequency domain and the high-frequency domain of the transient image amplitude spectrum are determined, and then the PSDNSR value is solved by analyzing the characteristics and relationship among the noise power spectra at the low, middle and high frequency. Experiments show that the PSDNSR estimated by NLOS imaging algorithm based on Wiener filtering of mid-frequency domain has a better reconstruction effect. Compared with other methods, the algorithm in this work can directly estimate PSDNSR in one step, without iterative operations, and the computational complexity is low, therebysimplifying the parameter adjustment steps of the Wiener filtering deconvolution NLOS imaging algorithm based on light-cone transform. Therefore the reconstruction efficiency can be improved on the premise of ensuring the reconstruction effect.
      通信作者: 罗一涵, luo.yihan@foxmail.com
    • 基金项目: 国家自然科学基金(批准号: 62271468)和中国科学院青年创新促进会(批准号: 2020372)资助的课题.
      Corresponding author: Luo Yi-Han, luo.yihan@foxmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62271468 ) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences, China (Grant No. 2020372).
    [1]

    Laurenzis M, Velten A 2014 J. Electron. Imaging 23 063003Google Scholar

    [2]

    Chan S, Warburton R E, Gariepy G, Leach J, Faccio D 2017 Opt. Express 25 10109Google Scholar

    [3]

    Bouman K L, Ye V, Yedidia A B, Durand F, Wornell G W, Torralba A, Freeman W T 2017 Proceedings of the IEEE International Conference on Computer Vision Venice, Italy, October 22–29, 2017 pp2270–2278

    [4]

    Musarra G, Lyons A, Conca E, Altmann Y, Villa F, Zappa F, Padgett M J, Faccio D 2019 Phys. Rev. Appl. 12 011002Google Scholar

    [5]

    Liu X C, Guillén I, La Manna M, Nam J H, Reza S A, Huu Le T, Jarabo A, Gutierrez D, Velten A 2019 Nature 572 620Google Scholar

    [6]

    Xin S, Nousias S, Kutulakos K N, et al. 2019 Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Long Beach, CA, USA, June 15–20, 2019 pp6800–6809

    [7]

    Wang B, Zheng M Y, Han J J, Huang X, Xie X P, Xu F H, Zhang Q, Pan J W 2021 Phys. Rev. Lett. 127 053602Google Scholar

    [8]

    Kirmani A, Hutchison T, Davis J, Raskar R 2009 2009 IEEE 12 th International Conference on Computer Vision Kyoto, Japan, September 29–Octorber 2, 2009 pp159–166

    [9]

    Velten A, Willwacher T, Gupta O, Veeraraghavan A, Bawendi M G, Raskar R 2012 Nat. Commun. 3 1

    [10]

    Klein J, Laurenzis M, Hullin M 2016 Electro-Optical Remote Sensing X Edinburgh, UK, September 26–29, 2016 p998802

    [11]

    O’Toole M, Lindell D B, Wetzstein G 2018 Nature 555 338Google Scholar

    [12]

    任禹, 罗一涵, 徐少雄, 马浩统, 谭毅 2021 光电工程 48 200124

    Ren Y, Luo Y H, Xu S X, Ma H T, Tan Y 2021 Opto-Electron. Eng. 48 200124 (in Chinese)

    [13]

    Jin C F, Xie J H, Zhang S Q, Zhang Z, Zhao Y 2018 Opt. Express 26 20089Google Scholar

    [14]

    Arellano V, Gutierrez D, Jarabo A 2017 Opt. Express 25 11574Google Scholar

    [15]

    Wu C, Liu J J, Huang X, Li Z P, Yu C, Ye J T, Zhang J, Zhang Q, Dou X K, Goyal V K 2021 P. Natl. Acad. Sci. 118 e2024468118Google Scholar

    [16]

    Satat G, Tancik M, Gupta O, Heshmat B, Raskar R 2017 Opt. Express 25 17466Google Scholar

    [17]

    Caramazza P, Boccolini A, Buschek D, Hullin M, Higham C F, Henderson R, Murray-Smith R, Faccio D 2018 Sci. Rep-uk. 8 1

    [18]

    Musarra G, Caramazza P, Turpin A, Lyons A, Higham C F, Murray-Smith R, Faccio D 2019 Advanced Photon Counting Techniques XIII Baltimore, Maryland, United States, May 13, 2019 p1097803

    [19]

    Isogawa M, Yuan Y, O'Toole M, Kitani K M 2020 Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Seattle, WA, USA, June 13–19, 2020 pp7013–7022

    [20]

    Gariepy G, Tonolini F, Henderson R, Leach J, Faccio D 2016 Nat. Photonics 10 23Google Scholar

    [21]

    Hullin M B 2014 Optoelectronic Imaging and Multimedia Technology III Beijing, China, October 29, 2014 pp197–204

    [22]

    Luo Y H, Fu C Y 2011 Opt Eng 50 047004Google Scholar

    [23]

    许丽娜, 肖奇, 何鲁晓 2019 武汉大学学报(信息科学版) 44 546

    Xu L N, Xiao Q, He L X 2019 Geomat. Inf. Sci. Wuhan Univ. 44 546

  • 图 1  实验场景示意图, 激光通过振镜对中介面扫描, 探测器接收来自中介面反射的直接光和来自隐藏物体的间接光

    Fig. 1.  Experimental scene, the laser scans the intermediate surface through the galvanometer, and the detector receives direct light reflected from the intermediate surface and indirect light from a hidden object.

    图 2  $ w = 50 $时瞬态图像的频谱图$ \left| {G(u, v, w)} \right| $

    Fig. 2.  Spectrum $ \left| {G(u, v, w)} \right| $ of the transient image at$ w = 50 $.

    图 3  幅度$ \left| {G(u, v, w)} \right| $中过原点的一条线$ \left| {G(u, 0, 50)} \right| $

    Fig. 3.  A line $ \left| {G(u, 0, 50)} \right| $ through the origin in the spectral magnitude $ \left| {G(u, v, w)} \right| $.

    图 4  幅度$ \ln \left| {G(u, 0, 50)} \right| $平滑之后的曲线$ {G_r}(u) $

    Fig. 4.  Curve $ {G_r}(u) $ after amplitude $ \ln \left| {G(u, 0, 50)} \right| $ smoothing.

    图 5  $ u = 0 $时瞬态图像的频谱图$ \left| {G(u, v, w)} \right| $

    Fig. 5.  Spectrum $ \left| {G(u, v, w)} \right| $ of the transient image at$ u = 0 $.

    图 6  幅度$ \left| {G(u, v, w)} \right| $中过原点的一条线$ \left| {G(0, 0, w)} \right| $

    Fig. 6.  A line $ \left| {G(0, 0, w)} \right| $ through the origin in the spectral magnitude $ \left| {G(u, v, w)} \right| $.

    图 7  实验场景 (a)为在实验室搭建的共焦非视域成像场景; (b)为共焦非视域成像系统

    Fig. 7.  Experimental scene: (a) The confocal non-horizontal imaging scene built in the laboratory; (b) demonstrates the confocal non-horizontal imaging system.

    图 8  隐藏场景 (a) T形纸板; (b)人偶模型手臂向下; (c)房屋形纸板; (d)C形纸板; (e)人偶模型手臂向上

    Fig. 8.  Hidden scene: (a) T-shaped cardboard; (b) puppet model with arms down; (c) house-shaped cardboard; (d) C- shaped cardboard; (e) puppet model with arms up.

    图 9  隐藏物体T形纸板和基于中频域的维纳滤波的重建结果

    Fig. 9.  T-shaped cardboard and reconstruction results of NLOS imaging based on mid-frequency Wiener filtering.

    图 10  传统维纳滤波的重建结果与基于中频域的维纳滤波的重建结果对比 (a)−(f) T形纸板的隐藏场景分别取K为0.01, 0.1, 1, 10, 100, 1000进行维纳滤波复原的结果; (h) T形纸板基于中频域的维纳滤波重建的结果, 估出K为2.8678

    Fig. 10.  Comparison between the reconstruction results of traditional Wiener filtering and the reconstruction results based on Wiener filtering in the mid-frequency domain: (a)−(f) The results of Wiener filtering reconstruction with K as 0.01, 0.1, 1, 10, 100, and 1000 for T-shaped cardboard respectively; (h) the reconstruction result of T-shaped cardboard using the NLOS imaging algorithm based on Wiener filtering of mid-frequency domain, and the estimated K is 2.8678.

    图 11  隐藏场景人偶模型手臂向下和基于中频域的维纳滤波的重建结果

    Fig. 11.  Puppet model with arms down and reconstruction results of NLOS imaging based on mid-frequency Wiener filtering.

    图 12  传统维纳滤波的重建结果与基于中频域的维纳滤波的重建结果对比 (a)−(f)人偶模型隐藏场景分别取K为0.01, 0.1, 1, 10, 100, 1000进行维纳滤波复原的结果; (h)人偶模型隐藏场景基于中频域的维纳滤波重建的结果, 估计出的K为1.2353

    Fig. 12.  Comparison between the reconstruction results of traditional Wiener filtering and the reconstruction results based on Wiener filtering in the mid-frequency domain: (a)−(f) The results of Wiener filtering reconstruction with K as 0.01, 0.1, 1, 10, 100, and 1000 for puppet model with arms down respectively; (h) the reconstruction result of puppet model with arms down using the NLOS imaging algorithm based on Wiener filtering of mid-frequency domain, and the estimated K is 1.2353.

    图 13  隐藏场景房屋形纸板和基于中频域的维纳滤波的重建结果

    Fig. 13.  House-shaped cardboard and reconstruction results of NLOS imaging based on mid-frequency Wiener filtering.

    图 14  传统维纳滤波的重建结果与基于中频域的维纳滤波的重建结果对比 (a)−(f)为房屋形纸板的隐藏场景分别取K为0.01, 0.1, 1, 10, 100, 1000进行维纳滤波复原的结果; (h)房屋形纸板隐藏场景基于中频域的维纳滤波重建的结果, 估计出的K为3.6711

    Fig. 14.  Comparison between the reconstruction results of traditional Wiener filtering and the reconstruction results based on Wiener filtering in the mid-frequency domain: (a)−(f) The results of Wiener filtering reconstruction with K as 0.01, 0.1, 1, 10, 100, and 1000 for House-shaped cardboard respectively; (h) the reconstruction result of house-shaped cardboard using the NLOS imaging algorithm based on Wiener filtering of mid-frequency domain, and the estimated K is 3.6711.

    图 15  隐藏场景C形纸板和基于中频域的维纳滤波的重建结果

    Fig. 15.  C- shaped cardboard and reconstruction results of NLOS imaging based on mid-frequency Wiener filtering.

    图 17  隐藏场景人偶模型手臂向上和基于中频域的维纳滤波的重建结果

    Fig. 17.  Puppet model with arms up and reconstruction results of NLOS imaging based on mid-frequency Wiener filtering.

    图 18  传统维纳滤波的重建结果与基于中频域的维纳滤波的重建结果对比 (a)−(f)人偶模型手臂向上的隐藏场景分别取K为0.01, 0.1, 1, 10, 100, 1000进行维纳滤波复原的结果; (h)人偶模型手臂向上隐藏场景基于中频域的维纳滤波重建的结果, 估出的K为1.5939

    Fig. 18.  Comparison between the reconstruction results of traditional Wiener filtering and the reconstruction results based on Wiener filtering in the mid-frequency domain: (a)−(f) The results of Wiener filtering reconstruction with K as 0.01, 0.1, 1, 10, 100, and 1000 for puppet model with arms up respectively; (h) the reconstruction result of puppet model with arms up using the NLOS imaging algorithm based on Wiener filtering of mid-frequency domain, and the estimated K is 1.5939.

    图 16  传统维纳滤波的重建结果与基于中频域的维纳滤波的重建结果对比 (a)−(f) C形纸板的隐藏场景分别取K为0.01, 0.1, 1, 10, 100, 1000进行维纳滤波复原的结果; (h) C形纸板隐藏场景基于中频域的维纳滤波重建的结果, 估出K值为0.8096

    Fig. 16.  Comparison between the reconstruction results of traditional Wiener filtering and the reconstruction results based on Wiener filtering in the mid-frequency domain: (a)−(f) The results of Wiener filtering reconstruction with K as 0.01, 0.1, 1, 10, 100, and 1000 for C-shaped cardboard respectively; (h) the reconstruction result of C- shaped cardboard using the NLOS imaging algorithm based on Wiener filtering of mid-frequency domain, and the estimated K is 0.8096.

    图 19  重建图像综合质量评价, 其中蓝色线为设置不同K得到的重建图像的综合质量评价值, 红色圆圈为基于中频域的维纳滤波重建图像的综合质量评价值 (a) T形纸板; (b)人偶模型手臂向下; (c)房屋形纸板; (d) C形纸板; (e)人偶模型手臂向上

    Fig. 19.  Comprehensive quality evaluation of reconstructed images, the blue line is the comprehensive quality evaluation value of the reconstructed image obtained by setting different K, and the red circle is the comprehensive quality evaluation value of the reconstructed image based on the Wiener filter in the intermediate frequency domain: (a) The Eval of T-shaped cardboard, (b) the Eval of puppet model with arms down, (c) the Eval of house-shaped cardboard, (d) the Eval of C-shaped cardboard, (e) the Eval of puppet model with arms up.

  • [1]

    Laurenzis M, Velten A 2014 J. Electron. Imaging 23 063003Google Scholar

    [2]

    Chan S, Warburton R E, Gariepy G, Leach J, Faccio D 2017 Opt. Express 25 10109Google Scholar

    [3]

    Bouman K L, Ye V, Yedidia A B, Durand F, Wornell G W, Torralba A, Freeman W T 2017 Proceedings of the IEEE International Conference on Computer Vision Venice, Italy, October 22–29, 2017 pp2270–2278

    [4]

    Musarra G, Lyons A, Conca E, Altmann Y, Villa F, Zappa F, Padgett M J, Faccio D 2019 Phys. Rev. Appl. 12 011002Google Scholar

    [5]

    Liu X C, Guillén I, La Manna M, Nam J H, Reza S A, Huu Le T, Jarabo A, Gutierrez D, Velten A 2019 Nature 572 620Google Scholar

    [6]

    Xin S, Nousias S, Kutulakos K N, et al. 2019 Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Long Beach, CA, USA, June 15–20, 2019 pp6800–6809

    [7]

    Wang B, Zheng M Y, Han J J, Huang X, Xie X P, Xu F H, Zhang Q, Pan J W 2021 Phys. Rev. Lett. 127 053602Google Scholar

    [8]

    Kirmani A, Hutchison T, Davis J, Raskar R 2009 2009 IEEE 12 th International Conference on Computer Vision Kyoto, Japan, September 29–Octorber 2, 2009 pp159–166

    [9]

    Velten A, Willwacher T, Gupta O, Veeraraghavan A, Bawendi M G, Raskar R 2012 Nat. Commun. 3 1

    [10]

    Klein J, Laurenzis M, Hullin M 2016 Electro-Optical Remote Sensing X Edinburgh, UK, September 26–29, 2016 p998802

    [11]

    O’Toole M, Lindell D B, Wetzstein G 2018 Nature 555 338Google Scholar

    [12]

    任禹, 罗一涵, 徐少雄, 马浩统, 谭毅 2021 光电工程 48 200124

    Ren Y, Luo Y H, Xu S X, Ma H T, Tan Y 2021 Opto-Electron. Eng. 48 200124 (in Chinese)

    [13]

    Jin C F, Xie J H, Zhang S Q, Zhang Z, Zhao Y 2018 Opt. Express 26 20089Google Scholar

    [14]

    Arellano V, Gutierrez D, Jarabo A 2017 Opt. Express 25 11574Google Scholar

    [15]

    Wu C, Liu J J, Huang X, Li Z P, Yu C, Ye J T, Zhang J, Zhang Q, Dou X K, Goyal V K 2021 P. Natl. Acad. Sci. 118 e2024468118Google Scholar

    [16]

    Satat G, Tancik M, Gupta O, Heshmat B, Raskar R 2017 Opt. Express 25 17466Google Scholar

    [17]

    Caramazza P, Boccolini A, Buschek D, Hullin M, Higham C F, Henderson R, Murray-Smith R, Faccio D 2018 Sci. Rep-uk. 8 1

    [18]

    Musarra G, Caramazza P, Turpin A, Lyons A, Higham C F, Murray-Smith R, Faccio D 2019 Advanced Photon Counting Techniques XIII Baltimore, Maryland, United States, May 13, 2019 p1097803

    [19]

    Isogawa M, Yuan Y, O'Toole M, Kitani K M 2020 Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Seattle, WA, USA, June 13–19, 2020 pp7013–7022

    [20]

    Gariepy G, Tonolini F, Henderson R, Leach J, Faccio D 2016 Nat. Photonics 10 23Google Scholar

    [21]

    Hullin M B 2014 Optoelectronic Imaging and Multimedia Technology III Beijing, China, October 29, 2014 pp197–204

    [22]

    Luo Y H, Fu C Y 2011 Opt Eng 50 047004Google Scholar

    [23]

    许丽娜, 肖奇, 何鲁晓 2019 武汉大学学报(信息科学版) 44 546

    Xu L N, Xiao Q, He L X 2019 Geomat. Inf. Sci. Wuhan Univ. 44 546

  • [1] 胡金虎, 林丹樱, 张炜, 张晨爽, 屈军乐, 于斌. 结合虚拟单像素成像解卷积的双边照明光片荧光显微技术. 物理学报, 2022, 71(2): 028701. doi: 10.7498/aps.71.20211358
    [2] 崔岸婧, 李道京, 吴疆, 周凯, 高敬涵. 频域稀疏采样和激光成像方法. 物理学报, 2022, 71(5): 058705. doi: 10.7498/aps.71.20211408
    [3] 商景诚, 吴涛, 何兴道, 杨传音. 气体自发瑞利-布里渊散射的理论分析及压强反演. 物理学报, 2018, 67(3): 037801. doi: 10.7498/aps.67.20171672
    [4] 王雪花, 陈丹妮, 于斌, 牛憨笨. 基于累积量标准差的超分辨光学涨落成像解卷积优化. 物理学报, 2016, 65(19): 198701. doi: 10.7498/aps.65.198701
    [5] 金发成, 王兵兵. 频域图像下的强场非序列电离过程. 物理学报, 2016, 65(22): 224205. doi: 10.7498/aps.65.224205
    [6] 张方樱, 胡维, 陈新兵, 陈虹, 唐雄民. 基于状态关联性的Boost变换器混沌与反混沌控制. 物理学报, 2015, 64(4): 048401. doi: 10.7498/aps.64.048401
    [7] 李杰, 朱京平, 齐春, 郑传林, 高博, 张云尧, 侯洵. 静态傅里叶变换超光谱全偏振成像技术. 物理学报, 2013, 62(4): 044206. doi: 10.7498/aps.62.044206
    [8] 王华英, 张志会, 廖薇, 宋修法, 郭中甲, 刘飞飞. 无透镜傅里叶变换显微数字全息成像系统的焦深. 物理学报, 2012, 61(4): 044208. doi: 10.7498/aps.61.044208
    [9] 张艳辉, 李彦龙, 谷月, 晁月盛. 中频磁脉冲处理Fe52Co34Hf7B6Cu1非晶合金的正电子湮没研究. 物理学报, 2012, 61(16): 167502. doi: 10.7498/aps.61.167502
    [10] 支绍韬, 章海军, 张冬仙. 基于大数值孔径环形光锥照明的超分辨光学显微成像方法研究. 物理学报, 2012, 61(2): 024207. doi: 10.7498/aps.61.024207
    [11] 吴岱, 刘文鑫, 唐传祥, 黎明. 用于频域方法测量超短电子束纵向分布的Kramers-Krnig变换研究. 物理学报, 2011, 60(8): 082901. doi: 10.7498/aps.60.082901
    [12] 苏兆锋, 杨海亮, 邱爱慈, 孙剑锋, 丛培天, 王亮平, 雷天时, 韩娟娟. 高能脉冲X射线能谱测量. 物理学报, 2010, 59(11): 7729-7735. doi: 10.7498/aps.59.7729
    [13] 董军, 彭翰生, 魏晓峰, 胡东霞, 周维, 赵军普, 张颖, 程文雍, 刘兰琴. 基于傅里叶变换模式的啁啾脉冲频域—时域相移转换的研究. 物理学报, 2009, 58(1): 315-320. doi: 10.7498/aps.58.315
    [14] 王发强, 张浩, 马西奎, 李秀明. 平均电流控制型Boost功率因数校正变换器中的中频振荡现象分析. 物理学报, 2009, 58(10): 6838-6844. doi: 10.7498/aps.58.6838
    [15] 罗 林, 王 黎, 程卫东, 沈忙作. 天文图像多帧盲反卷积收敛性的增强方法. 物理学报, 2006, 55(12): 6708-6714. doi: 10.7498/aps.55.6708
    [16] 董全力, 燕 飞, 张 杰, 金 展, 杨 辉, 郝作强, 陈正林, 李玉同, 魏志义, 盛政明. 大气中激光等离子体通道寿命的延长及测量分析. 物理学报, 2005, 54(7): 3247-3250. doi: 10.7498/aps.54.3247
    [17] 刘思敏, 张国权, 张光寅, 许京军, 刘军民, 门丽秋. 共享光栅对各向异性散射光锥的增强. 物理学报, 1995, 44(7): 1035-1041. doi: 10.7498/aps.44.1035
    [18] 陈岩松, 郑师海, 马学斌. 光学傅氏变换离焦近似及对解卷积的应用. 物理学报, 1989, 38(10): 1723-1726. doi: 10.7498/aps.38.1723
    [19] 王世坤, 郭汉英, 吴可. 反散射变换和正规Riemann-Hilbert问题. 物理学报, 1983, 32(12): 1589-1594. doi: 10.7498/aps.32.1589
    [20] 尚尔昌. 非均匀层中的反波导传播. 物理学报, 1961, 17(4): 180-190. doi: 10.7498/aps.17.180
计量
  • 文章访问数:  3328
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-08
  • 修回日期:  2022-09-30
  • 上网日期:  2023-01-09
  • 刊出日期:  2023-01-05

/

返回文章
返回