搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

V2O5-Al2O3助烧剂对低温烧结Li-Zn微波铁氧体性能的影响

王晓艺 王希 王俊 程德强 王悦

引用本文:
Citation:

V2O5-Al2O3助烧剂对低温烧结Li-Zn微波铁氧体性能的影响

王晓艺, 王希, 王俊, 程德强, 王悦

Effects of V2O5-Al2O3 sintering aid on properties of low temperature sintered Li-Zn microwave ferrites

Wang Xiao-Yi, Wang Xi, Wang Jun, Cheng De-Qiang, Wang Yue
PDF
HTML
导出引用
  • 随着现代无线通信技术的进步, 微波通信器件向小型化、一体化方向发展, 其中低温共烧陶瓷/铁氧体技术是关键所在. 针对适用于雷达移相器中的Li-Zn微波铁氧体, 本文通过加入V2O5-Al2O3(VA)助烧剂实现低温烧结(低于950 ℃), 并研究助烧剂添加量及烧结温度对于材料晶体结构、微观形貌以及磁性能(饱和磁感应强度、矫顽力、铁磁共振线宽等)的影响. VA助烧剂的参与可以在降低烧结温度的同时维持Li-Zn微波铁氧体的尖晶石晶体结构, 并能促进晶粒的生长, Li-Zn铁氧体的平均晶粒尺寸由最初的0.92 μm增至9.74 μm. 在Li-Zn铁氧体烧结过程中, VA助烧剂中的V2O5由于具有较低的熔点会先融化形成液相, 促进晶粒的生长; 同时具有较高熔点的Al2O3可以抑制晶粒的过大增长, 使晶粒均匀化. 未添加助烧剂与添加VA助烧剂(质量分数为0.18%)制备的铁氧体相比, 样品的饱和磁感应强度(Bs)由144 mT增至281 mT; 矩形比(Mr/Ms)由0.57升至0.78; 矫顽力(Hc)由705 A/m降低至208 A/m; 铁磁共振线宽(ΔH)由648 Oe减至247 Oe (1 Oe = 103/(4π) A/m). 总体来说, VA助烧剂可以有效提升Li-Zn微波铁氧体的多项性能, 对低温共烧陶瓷/铁氧体技术的发展具有积极意义.
    With the progress of modern wireless communication technology, microwave communication devices are developing toward miniaturization and integration, and low-temperature co-firing ceramic/ferrite technology is the key to meet the above demands. In this paper, V2O5-Al2O3 (VA) sintering aid is used to realize low-temperature sintering (below melting point of silver that is 950 ℃) of Li-Zn microwave ferrite, which is suitable for radar phase shifter. In this work, firstly, Li-Zn ferrite pre-firing material is prepared by mechanochemical ball-milling method, and then VA composite is selected as sintering aid to prepare Li0.42Zn0.27Ti0.11Mn0.1Fe2.1O4 ferrite at low temperatures. The effects of adding amount of VA sintering aid and sintering temperature on crystal structure, microstructure and magnetic properties (saturation induction, coercivity, linewidth of ferromagnetic resonance, etc.) of the materials are also studied. The VA sintering aid can reduce the sintering temperature and maintain the spinel crystal structure of Li-Zn microwave ferrite, the diffraction peaks of V2O5 and Al2O3 involved in the sintering process are observed from none of the samples sintered at different temperatures, because the additive amount of VA sintering aid is very low compared with that of Li-Zn ferrite, so no corresponding impurity peaks are detected. The introduction of VA sintering aid can promote the grain growth, with the average grain size increasing from 0.92 μm to 9.74 μm. In the sintering process of Li-Zn ferrite, V2O5 in VA sintering aid will melt first to form liquid phase due to its low melting point, which promotes the growth of grains. At the same time, Al2O3 with higher melting point can inhibit the grain growth and make the grain uniform. It is worth noting that when excessive VA sintering aid is added, the grain size of ferrite will decrease instead, because too much VA sintering aid will form a large number of liquid phases around the grains, thus splitting the grains and hindering the further growth of the Li-Zn grains. Under the condition of optimal VA sintering aid addition (0.18%, weight percentage), the saturation induction of the sample increases from 144 mT to 281 mT; the rectangular ratio increases from 0.57 to 0.78; the coercivity decreases from 705 A/m to 208 A/m; the linewidth of ferromagnetic resonance decreases from 648 Oe to 247 Oe. In summary, VA sintering aid can effectively improve the properties of Li-Zn microwave ferrite, which has a positive significance in developing low- temperature co-firing ceramic/ferrite technology.
      通信作者: 王悦, wycumt@cumt.edu.cn
    • 基金项目: 中央高校基本科研业务费专项资金(批准号: 2022QN1051)资助的课题.
      Corresponding author: Wang Yue, wycumt@cumt.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2022QN1051).
    [1]

    Liao Y L, Xu F, Zhang D N, Zhou T C, Wang Q, Wang X Y, Jia L J, Li J, Su H, Zhong Z Y, Zhang H W 2015 J. Am. Ceram. Soc. 98 2556Google Scholar

    [2]

    叶康平, 裴文瑾, 郗翔, 蒲殷, 伍瑞新 2020 物理学报 69 017801Google Scholar

    Ye K P, Pei W J, Xi X, Pu Y, Wu R X 2020 Acta Phys. Sin. 69 017801Google Scholar

    [3]

    冯涛, 党锐, 袁红兰, 罗建成 2020 磁性材料及器件 51 40Google Scholar

    Feng T, Dang R, Yuan H L, Luo J C 2020 J. Magn. Mater. Device 51 40Google Scholar

    [4]

    Li J, Lu B, Zhang Y, Wu J, Yang Y, Han X N, Wen D D, Liang Z, Zhang H W 2022 Chin. Phys. B 31 047502Google Scholar

    [5]

    Guo R D, Yu Z, Sun K, Wang W, Wu G H, Liu Y, Liu H, Jiang X N, Lan Z W 2020 J. Alloys Compd. 815 152504Google Scholar

    [6]

    Liao Y L, Wang Y Y, Chen Z W, Wang X Y, Li J, Guo R D, Liu C, Gan G W, Wang G, Li Y X, Zhang H W 2020 Ceram. Int. 46 487Google Scholar

    [7]

    Zhou T C, Zhang H W, Liu C, Jin L C, Xu F, Liao Y L, Jia N, Wang Y, Gan G W, Su H, Jia L J 2016 Ceram. Int. 42 16198Google Scholar

    [8]

    Wang X Y, Zhong Z Y, Chen Z W, Zhang H W, Li Y X, Liu C, Li J, Liao Y L 2020 Ceram. Int. 46 5719Google Scholar

    [9]

    赵强, 杨青慧, 张怀武 2014 磁性材料及器件 45 50

    Zhao Q, Yang Q H, Zhang H W 2014 J. Magn. Mater. Device 45 50

    [10]

    Guo R D, Yu Z, Yang Y, Jiang X N, Sun K, Wu C J, Xu Z Y, Lan Z W 2014 J. Alloys Compd. 589 1Google Scholar

    [11]

    Wang X Y, Li Y X, Chen Z W, Zhang H W, Su H, Wang G, Liao Y L, Zhong Z Y 2019 J. Alloys Compd. 797 566Google Scholar

    [12]

    Samir Ullah M, Firoz Uddin M, Momin A A, Hakim M A 2021 Mater. Res. Express 8 016102Google Scholar

    [13]

    邱华, 贾利军, 张素娜, 沈琦杭, 解飞, 张怀武 2019 磁性材料及器件 50 10Google Scholar

    Qiu H, Jia L J, Zhang S N, Shen Q H, Xie F, Zhang H W 2019 J. Magn. Mater. Device 50 10Google Scholar

    [14]

    Xu F, Shi X L, Liao Y L, Li J, Hu J 2020 Ceram. Int. 46 14669Google Scholar

    [15]

    Xie F, Liu H, Zhou S, Chen Y, Xu F, Bai M Y, Liu W G 2021 J. Alloys Compd. 862 158650Google Scholar

    [16]

    Xie F, Liu H, Zhao J J, Wen S, Bai M Y, Chen Y, Zhu Y C, Li Y, Liu W G 2021 J. Alloys Compd. 851 156806Google Scholar

    [17]

    Zhang D N, Wang X Y, Xu F, Li J, Zhou T C, Jia L J, Zhang H W, Liao Y L 2016 J. Alloys Compd. 654 140Google Scholar

    [18]

    Zhou T C, Zhang H W, Jia L J, Liao Y L, Zhong Z Y, Bai F M, Su H, Li J, Jin L C, Liu C 2015 J. Alloys Compd. 620 421Google Scholar

    [19]

    张志东 2015 物理学报 64 067503Google Scholar

    Zhang Z D 2015 Acta Phys. Sin. 64 067503Google Scholar

  • 图 1  Li-Zn铁氧体晶胞结构示意图

    Fig. 1.  Schematic diagram of Li-Zn ferrite cell structure.

    图 2  (a)不同样品的XRD图谱与尖晶石相标准图谱; (b) (311)与(440)峰的峰强比例值

    Fig. 2.  (a) XRD patterns of different samples and standard patterns of spinel phase; (b) peak intensity ratios of (311) and (440) planes.

    图 3  不同VA助烧剂添加量(质量分数)下(烧结温度为950 ℃) Li-Zn铁氧体样品截面的SEM图像 (a) 0; (b) 0.06%; (c) 0.18%; (d) 0.24%

    Fig. 3.  SEM images of cross-section of Li-Zn ferrite samples with different amounts of VA sintering aids at a sintering temperature of 950 ℃: (a) 0; (b) 0.06%; (c) 0.18%; (d) 0.24%

    图 4  不同VA助烧剂添加量(质量分数)下(烧结温度为950 ℃)样品的粒径尺寸分布 (a) 0; (b) 0.18 %

    Fig. 4.  Particle size distribution of samples with different amounts of VA sintering aids at a sintering temperature of 950 ℃: (a) 0; (b) 0.18%.

    图 5  VA助烧剂参与下的Li-Zn铁氧体的生长模型

    Fig. 5.  Growth model of Li-Zn ferrite with VA sintering aid.

    图 6  不同VA助烧剂添加量及不同温度下获得样品的各项性质 (a) 密度值; (b)饱和磁感应强度值; (c) 矩形比的值

    Fig. 6.  Properties of the samples obtained under different amounts of VA sintering aids and different temperatures: (a) Density; (b) saturation induction; (c) rectangular ratio.

    图 7  不同VA助烧剂添加量下样品的各项性质 (a) 矫顽力值; (b) 铁磁共振线宽值

    Fig. 7.  Properties of the samples obtained under different amounts of VA sintering aids: (a) Coercivity; (b) ferromagnetic resonance line width.

  • [1]

    Liao Y L, Xu F, Zhang D N, Zhou T C, Wang Q, Wang X Y, Jia L J, Li J, Su H, Zhong Z Y, Zhang H W 2015 J. Am. Ceram. Soc. 98 2556Google Scholar

    [2]

    叶康平, 裴文瑾, 郗翔, 蒲殷, 伍瑞新 2020 物理学报 69 017801Google Scholar

    Ye K P, Pei W J, Xi X, Pu Y, Wu R X 2020 Acta Phys. Sin. 69 017801Google Scholar

    [3]

    冯涛, 党锐, 袁红兰, 罗建成 2020 磁性材料及器件 51 40Google Scholar

    Feng T, Dang R, Yuan H L, Luo J C 2020 J. Magn. Mater. Device 51 40Google Scholar

    [4]

    Li J, Lu B, Zhang Y, Wu J, Yang Y, Han X N, Wen D D, Liang Z, Zhang H W 2022 Chin. Phys. B 31 047502Google Scholar

    [5]

    Guo R D, Yu Z, Sun K, Wang W, Wu G H, Liu Y, Liu H, Jiang X N, Lan Z W 2020 J. Alloys Compd. 815 152504Google Scholar

    [6]

    Liao Y L, Wang Y Y, Chen Z W, Wang X Y, Li J, Guo R D, Liu C, Gan G W, Wang G, Li Y X, Zhang H W 2020 Ceram. Int. 46 487Google Scholar

    [7]

    Zhou T C, Zhang H W, Liu C, Jin L C, Xu F, Liao Y L, Jia N, Wang Y, Gan G W, Su H, Jia L J 2016 Ceram. Int. 42 16198Google Scholar

    [8]

    Wang X Y, Zhong Z Y, Chen Z W, Zhang H W, Li Y X, Liu C, Li J, Liao Y L 2020 Ceram. Int. 46 5719Google Scholar

    [9]

    赵强, 杨青慧, 张怀武 2014 磁性材料及器件 45 50

    Zhao Q, Yang Q H, Zhang H W 2014 J. Magn. Mater. Device 45 50

    [10]

    Guo R D, Yu Z, Yang Y, Jiang X N, Sun K, Wu C J, Xu Z Y, Lan Z W 2014 J. Alloys Compd. 589 1Google Scholar

    [11]

    Wang X Y, Li Y X, Chen Z W, Zhang H W, Su H, Wang G, Liao Y L, Zhong Z Y 2019 J. Alloys Compd. 797 566Google Scholar

    [12]

    Samir Ullah M, Firoz Uddin M, Momin A A, Hakim M A 2021 Mater. Res. Express 8 016102Google Scholar

    [13]

    邱华, 贾利军, 张素娜, 沈琦杭, 解飞, 张怀武 2019 磁性材料及器件 50 10Google Scholar

    Qiu H, Jia L J, Zhang S N, Shen Q H, Xie F, Zhang H W 2019 J. Magn. Mater. Device 50 10Google Scholar

    [14]

    Xu F, Shi X L, Liao Y L, Li J, Hu J 2020 Ceram. Int. 46 14669Google Scholar

    [15]

    Xie F, Liu H, Zhou S, Chen Y, Xu F, Bai M Y, Liu W G 2021 J. Alloys Compd. 862 158650Google Scholar

    [16]

    Xie F, Liu H, Zhao J J, Wen S, Bai M Y, Chen Y, Zhu Y C, Li Y, Liu W G 2021 J. Alloys Compd. 851 156806Google Scholar

    [17]

    Zhang D N, Wang X Y, Xu F, Li J, Zhou T C, Jia L J, Zhang H W, Liao Y L 2016 J. Alloys Compd. 654 140Google Scholar

    [18]

    Zhou T C, Zhang H W, Jia L J, Liao Y L, Zhong Z Y, Bai F M, Su H, Li J, Jin L C, Liu C 2015 J. Alloys Compd. 620 421Google Scholar

    [19]

    张志东 2015 物理学报 64 067503Google Scholar

    Zhang Z D 2015 Acta Phys. Sin. 64 067503Google Scholar

  • [1] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器. 物理学报, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [2] 滕鲁, 喻忠军, 朱大立. 基于低温共烧陶瓷的毫米波-太赫兹基片集成波导过渡结构. 物理学报, 2022, 71(11): 118401. doi: 10.7498/aps.71.20220072
    [3] 邢泽宇, 李志浩, 冯田峰, 周晓祺. 光量子芯片中级联移相器的快速标定方法. 物理学报, 2021, 70(18): 184207. doi: 10.7498/aps.70.20210401
    [4] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [5] 史茂雷, 刘磊, 田芳慧, 王鹏飞, 李嘉俊, 马蕾. 无锂助熔剂B2O3对Li1.3Al0.3Ti1.7(PO4)3固体电解质离子电导率的影响. 物理学报, 2017, 66(20): 208201. doi: 10.7498/aps.66.208201
    [6] 陈东阁, 唐新桂, 贾振华, 伍君博, 熊惠芳. Al2O3-Y2O3-ZrO2三相复合陶瓷的介电谱研究. 物理学报, 2011, 60(12): 127701. doi: 10.7498/aps.60.127701
    [7] 张斌, 张浩佳, 杨秋红, 陆神洲. α-Al2O3透明陶瓷的发光及热释光特性. 物理学报, 2010, 59(2): 1333-1337. doi: 10.7498/aps.59.1333
    [8] 冯鹤, 谢拥军, 王元源, 傅焕展, 雷斐然. 基于低温共烧陶瓷工艺的一种新型层叠式多层结构的波概念迭代方法研究. 物理学报, 2009, 58(7): 4590-4597. doi: 10.7498/aps.58.4590
    [9] 史秀梅, 王 强, 牛小娟, 李晨曦, 王凤平, 陆坤权. Li2O-2B2O3熔体的物性研究. 物理学报, 2006, 55(1): 76-79. doi: 10.7498/aps.55.76
    [10] 杨秋红, 曾智江, 徐 军, 苏良碧. Mg,Ti共掺Al2O3透明多晶陶瓷光谱性能研究. 物理学报, 2006, 55(6): 2726-2729. doi: 10.7498/aps.55.2726
    [11] 曾智江, 杨秋红, 徐 军. Cr3+:Al2O3透明多晶陶瓷光谱特性分析. 物理学报, 2005, 54(11): 5445-5449. doi: 10.7498/aps.54.5445
    [12] 苏昉, 苏骏, 金嗣炤. 非晶态锂离子导体B2O3-0.7Li2O-0.7LiCl-xAl2O3-0.1V2O5的电学性质和电子自旋共振研究. 物理学报, 1992, 41(3): 448-458. doi: 10.7498/aps.41.448
    [13] 苏昉, 许伟, 苏骏. 非晶锂离子导体P2O5-0.7Li2O-0.4LiCl-0.1Al2O3的离子导电性与结构研究. 物理学报, 1991, 40(4): 596-603. doi: 10.7498/aps.40.596
    [14] 李子元, 姜冬岩, 金庆华, 丁大同. 关于Li2O·P2O5·CdO玻璃的核磁共振研究. 物理学报, 1989, 38(2): 326-332. doi: 10.7498/aps.38.326
    [15] 南策文, 陈新政. Ti-Al2O3金属陶瓷的渗流模型. 物理学报, 1987, 36(4): 511-513. doi: 10.7498/aps.36.511
    [16] 崔万秋, 阮立坚. Li2O-P205O-V2O5系统非晶材料电学性质与磁共振研究. 物理学报, 1987, 36(3): 322-331. doi: 10.7498/aps.36.322
    [17] 崔万秋, 尹健. P2O5—Li2O—LiCl-Al2O3系统非晶态离子导体与金属电极间界面阻抗的色散关系. 物理学报, 1987, 36(9): 1187-1193. doi: 10.7498/aps.36.1187
    [18] 陈立泉, 赵宗源, 王超英, 李子荣. 分散第二相γ-Al2O3对β-Li2SO4离子导电性的影响. 物理学报, 1985, 34(8): 1027-1033. doi: 10.7498/aps.34.1027
    [19] 黄彭年, 黄熙怀. Li2O-(LiCl)2-B2O3-Al2O3系统玻璃的声学性质. 物理学报, 1984, 33(9): 1213-1218. doi: 10.7498/aps.33.1213
    [20] 黄彭年, 金宜芬, 黄熙怀. Li2O-(LiCl)2-B2O3-Al2O3系统玻璃的Raman光谱研究. 物理学报, 1984, 33(4): 523-529. doi: 10.7498/aps.33.523
计量
  • 文章访问数:  3651
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-01
  • 修回日期:  2022-11-02
  • 上网日期:  2022-11-22
  • 刊出日期:  2023-02-05

/

返回文章
返回