搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光量子芯片中级联移相器的快速标定方法

邢泽宇 李志浩 冯田峰 周晓祺

引用本文:
Citation:

光量子芯片中级联移相器的快速标定方法

邢泽宇, 李志浩, 冯田峰, 周晓祺

High-speed calibration method for cascaded phase shifters in integrated quantum photonic chips

Xing Ze-Yu, Li Zhi-Hao, Feng Tian-Feng, Zhou Xiao-Qi
PDF
HTML
导出引用
  • 集成光学技术在光量子信息处理等新兴技术有着重要的应用. 相比于分立光学, 集成光学技术具有体积小、成本低、稳定性好以及易操控的优势. 然而, 随着集成光量子芯片线路的复杂程度和规模的增加, 对芯片上的移相器, 比如级联马赫-曾德尔干涉仪中的相移器的标定, 将会成为一个棘手的问题. 传统的级联马赫-曾德尔干涉仪的移相器标定时间是随着级联个数的增加而指数增加的, 目前所报道实现的最大级联个数仅为5个移相器. 本文针对上述问题, 提出了一种高效的标定方法. 使用该方法对级联马赫-曾德尔干涉仪移相器的标定时间只随移相器数量线性增长, 相比于传统方法实现了指数级的加速. 本文在计算机上模拟了20个级联马赫-曾德尔干涉仪移相器的标定, 结果显示保真度都大于99.8%, 从而验证了该标定方法的有效性. 本工作有望应用于光量子信息处理与光计算等方面.
    Integrated photonics has the advantages of miniaturization, low cost, stability and easy manipulation in comparison with bulk optics. However, as the scale and complexity of the chip increase, the calibration of cascaded phase shifters on-chip will be almost impossible. The time needed to calibrate the cascaded phase shifters with using conventional method increases exponentially with the number of cascades, and the maximum number of cascades achieved so far is only 5. In this paper, we propose a high-speed calibration method by which the calibration time increases only linearly with the number of cascades increasing, achieving an exponential acceleration. For N-cascaded phase shifters, the number of points scanned by each shifter is m, our method only needs to scan $ ({m}^{2}+m+1)N-1 $ points instead of $ {m}^{n} $ with using the proposed method. The main idea of this method is that we can calibrate phase shifters one by one via two-dimensional (2D) scanning. For example, for N-cascaded phase shifter, the calibration of phase shifter N can be realized by calibrating the 2D scanning phase shifter $ N-1 $ and the 2D scanning phase shifter N, and the calibration of phase shifter $ N-1 $ can be achieved by calibrating the 2D scanning phase shifter $ N-2 $ and the 2D scanning phase shifter $ N-1 $, and so on. The 2D scanning phase shifter $ N-1 $ and the 2D scanning phase shifter N scan the phase shifter N by m points and then the current of phase shifter $ N-1 $ is changed to scan the phase shifter N. Whenever changing the current of phase shifter $ N-1 $ once, we can plot a curve of current-transmission. The lowest point of the curve changes with the change of the current phase shifter $ N-1 $. When the lowest point of the curve takes a maximum value, that point is the 0 or π phase of phase shifter N. Similarly, when the lowest point of the curve takes a maximum value, that point is the $ -0.5{\rm{\pi }} $ or $ 0.5{\rm{\pi }} $ phase of phase shifter $ N-1 $. Then we can calibrate all phase shifters by using this method, but each phase shifter has two possibilities. Then we can set a specific current of all phase shifters to finish the calibration. The different parameters are verified to see their effect on fidelity. It is found that small experimental error has little effect on fidelity. When $ m > 20 $, the fidelity becomes approximately a constant. For every 1760 increase in N, the fidelity decreases by about 0.01%. The fidelity of 20-cascaded phase shifters is 99.8%. The splitting ratio of MMI may is not 50∶50 as designed because of chip processing errors. So, different splitting ratios are simulated and it is found that the splitting ratio affects the fidelity more seriously than other parameters. But our method works still well even when the splitting ratio is 45∶55, whose fidelity is 99.95% if we know the splitting ratio. The method will greatly expand the application scope of integrated quantum photonics.
      通信作者: 周晓祺, zhouxq8@mail.sysu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0305200, 2016YFA0301700)和广东省重点领域研发计划(批准号: 2018B030329001, 2018B030325001)资助的课题
      Corresponding author: Zhou Xiao-Qi, zhouxq8@mail.sysu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFA0305200, 2016YFA0301700) and the Key Areas Research and Development Program of Guangdong Province, China (Grant Nos. 2018B030329001, 2018B030325001)
    [1]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [2]

    Xu F H, Ma X F, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [3]

    Wei K J, Li W, Tan H, Li Y, Min H, Zhang W J, Li H, You L X, Wang Z, Jiang X, Chen T Y, Liao S K, Peng C Z, Xu F H, Pan J W 2020 Phys. Rev. X 10 031030

    [4]

    Yin J, Li Y H, Liao S K, et al. 2020 Nature 582 501Google Scholar

    [5]

    Bennett C H, Brassard G 1984 Proceedings of the International Conference on Computers, Systems and Signal Processing Bangalore, India December 9−12, 1984 p175

    [6]

    Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien J L 2010 Nature 464 45Google Scholar

    [7]

    Zhong H S, Wang H, Deng Y H, et al. 2020 Science 370 1460

    [8]

    Bentivegna M, Spagnolo N, Vitelli C, et al. 2015 Sci. Adv. 1 e1400255Google Scholar

    [9]

    Ciampini M A, Orieux A, Paesani S, Sciarrino F, Corrielli G, Crespi A, Ramponi R, Osellame R, Mataloni P 2016 Light-Sci. Appl. 5 e16064Google Scholar

    [10]

    Shor P W 1994 Proceedings 35th annual symposium on foundations of computer science Santa Fe, USA November 20−22, 1994 p124

    [11]

    Grover L K 1997 Phys. Rev. Lett. 79 325Google Scholar

    [12]

    Aspuru-Guzik A, Walther P 2012 Nat. Phys. 8 285Google Scholar

    [13]

    Sparrow C, Martin-Lopez E, Maraviglia N, Neville A, Harrold C, Carolan J, Joglekar Y N, Hashimoto T, Matsuda N, O’Brien J L, Tew D P, Laing A 2018 Nature 557 660Google Scholar

    [14]

    Zhong Y P, Chang H S, Biefait A, Dumur E, Chou M H, Conner C R, Grebel J, Povey R G, Yan H X, Schuster D I, Cleland A N 2021 Nature 590 571Google Scholar

    [15]

    Song C, Xu K, Li H K, Zhang Y R, Zhang X, Liu W X, Guo Q J, Wang Z, Ren W H, Hao J, Feng H, Fan H, Zheng D N, Wang D W, Wang H, Zhu S Y 2019 Science 365 574Google Scholar

    [16]

    Bohnet J G, Sawyer B C, Britton J W, Wall M L, Rey A M, Feig M F, Bollinger J J 2016 Science 352 1297Google Scholar

    [17]

    Wang H, Qin J, Ding X, Chen M C, Chen S, You X, He Y M, Jiang X, You L, Wang Z, Schneider C, Renema J J, Höfling S, Lu C Y, Pan J W 2019 Phys. Rev. Lett. 123 250503Google Scholar

    [18]

    Liu W Z, Li M H, Ragy S, Zhao S R, Bai B, Liu Y, Brown P J, Zhang J, Colbeck R, Fan J Y, Zhang Q, Pan J W 2021 Nat. Phys 17 448Google Scholar

    [19]

    Li Z P, Huang X, Cao Y, Wang B, Li Y H, Jin W J, Yu C, Zhang J, Zhang Q, Peng C Z, Xu F H, Pan J W 2021 Photonics Res. 8 1532

    [20]

    Zhong H S, Li Y, Li W, et al. 2018 Phys. Rev. Lett. 121 250505Google Scholar

    [21]

    Wang X L, Luo Y H, Huang H L, Chen M C, Su Z E, Liu C, Chen C, Li W, Fang Y Q, Jiang X, Zhang J, Li L, Liu N L, Lu C Y, Pan J W 2018 Phys. Rev. Lett. 120 260502Google Scholar

    [22]

    Wang H, He Y, Li Y H, et al. 2017 Nat. Photonics 11 361Google Scholar

    [23]

    Politi A, Cryan M J, Rarity K G, Yu S Y, O’Brien J L 2008 Science 320 646Google Scholar

    [24]

    Shadbolt P J, Verde M R, Reruzzo A, Politi A, Liang A, Lobino M, Matthew J C F, Thompson M G, O’Brien J L 2012 Nat. Photonics 6 45Google Scholar

    [25]

    Qiang X G, Zhou X Q, Wang J W, Wilkes C M, Loke T, O’Gara S, Kling L, Marshall G D, Santagati, R, Ralph T C, Wang J B, O’Brien J L, Thompson M G, Mathews J C F 2018 Nat. Photonics 12 534Google Scholar

    [26]

    Wang J W, Paesani S, Ding Y H, et al. 2018 Science 360 285Google Scholar

    [27]

    Seok T J, Kwon K, Henriksson J, Luo J H, Wu M C 2019 Optical Fiber Communication Conference San Diego, USA March 3−7, 2019 pTh1E.5

    [28]

    Wang J W, Sciarrino F, Laing A, Thompson M G 2020 Nat. Photonics 14 273Google Scholar

    [29]

    Paesani S, Ding Y H, Santagati R, Chakhmakhchyan L, Vigliar C, Rottwitt K, Oxenløwe L K, Wang J W, Thompson M G, Laing A 2019 Nat. Phys. 15 925Google Scholar

    [30]

    Llewellyn D, Ding Y H, Faruque I I, et al. 2020 Nat. Phys. 16 148Google Scholar

    [31]

    Carolan J, Harrold C, Sparrow C, et al. 2015 Science 349 711Google Scholar

    [32]

    Reck M, Zeilinger A, Bernstein H J, Bertani P 1994 Phys. Rev. Lett. 73 58Google Scholar

    [33]

    Kang G, Kim S H, You J B, Lee D S, Yoon H, Ha Y G, Kim J H, Yoo D E, Lee D W, Youn C H, Yu K, Park H H 2019 IEEE Photonics Technol. Lett. 31 1685Google Scholar

    [34]

    Sun J, Timurdogan E, Yaacobi A, Hosseini E S, Watts M R 2013 Nature 493 195Google Scholar

    [35]

    Hulme J C, Doylend J K, Heck M J R, Peters J D, Davenport M L, Bovington J T, Coldren L A, Bowers J E 2014 Smart Photonic and Optoelectronic Integrated Circuits XVI San Francisco, USA February 1, 2014 p898907

    [36]

    Kwong D, Hosseini A, Covey J, Zhang Y, Xu X C, Subbaraman H, Chen R T 2014 Opt. Lett. 39 941Google Scholar

    [37]

    He M B, Xu M Y, Ren Y X, et al. 2019 Nat. Photonics 13 359Google Scholar

    [38]

    Deng Q Z, Liu L, Li X B, Zhou Z P 2014 Opt. Lett. 39 5590Google Scholar

  • 图 1  (a) 使用Reck Scheme构造任意$ 6\times 6 $幺正变换[31]; (b) 实现任意两量子比特操作[25]

    Fig. 1.  (a) Realization of $ 6\times 6 $ unitary using Reck Scheme[31]; (b) implementing arbitrary two-qubit processing[25].

    图 2  级联N个移相器的$ 2\times 2 $光波导线路图

    Fig. 2.  $ 2\times 2 $ optical waveguide circuit of N-cascaded phase shifter.

    图 3  由单个移相器构成的2 × 2光波导线路图

    Fig. 3.  $ 2\times 2 $ optical waveguide circuit constructed by a single phase shifter.

    图 4  简化移相器标定方法示意图 (a)级联扫描移相器N–1和移相器N; (b)级联扫描移相器N–2和移相器N–1

    Fig. 4.  Schematic diagram of the simplified phase shifter calibration method: (a) Two-dimensional (2D) scan of phase shifter N–1 and N; (b) 2D scan of phase shifter N-2 and N–1.

    图 5  级联N个移相器的$ 2\times 2 $光芯片分束比与移相器$ N-1 $的相位和移相器N的相位的关系图. 每改变移相器$ N-1 $的相位一次, 都完整扫描一遍$T\text{-}{\theta }_{N}$曲线, 并标记曲线的最低点为黑色. 两个红色点代表$ {T}_{\mathrm{m}\mathrm{i}\mathrm{n}} $取最小值的情况, 白色点代表$ {T}_{\mathrm{m}\mathrm{i}\mathrm{n}} $取最大值的情况, 此时白色点对应的$ {\theta }_{N}=0 $或π

    Fig. 5.  Splitting ratio $ 2\times 2 $ optical waveguide circuit versus phase shifter $ N-1 $ and phase shifter N. For every change of $ {\theta }_{N-1}, $ we scan a full $T\text{-}{\theta }_{N}$ curve and mark its lowest point black. The two red point represents the minimum of $ {T}_{\mathrm{m}\mathrm{i}\mathrm{n}} $ while the white point represents the maximum of $ {T}_{\mathrm{m}\mathrm{i}\mathrm{n}} $. The white point corresponding to $ {\theta }_{N}=0 $ or π.

    图 6  级联移相器的标定顺序

    Fig. 6.  Calibration sequence of cascaded phase shifters.

    图 7  确定$ {a}_{i} $的标定顺序, 其中颜色为黑色与绿色的移相器相位设为0, 其他颜色的移相器相位设为0.4π, 有下划线步骤可以确定下划线部分的$ {a}_{i}=1 $为奇数或偶数个, 箭头为标定方向, 蓝色移相器和绿色移相器为对应步骤可以完成标定的移相器 (a) 移相器数量为奇数的标定顺序; (b) 移相器数量为偶数的标定顺序

    Fig. 7.  Calibration sequence to determine $ {a}_{i} $, where the phase shifters with color black and green are set to phase 0 and the others are set to $ 0.4{\text{π}} $. Steps with underline can determine whether the red underline part of $ {a}_{i}=1 $ is an odd or even number of shifts. The arrow is the calibration direction. Phase shifters in blue color or red color are the phase shifters that can be calibrated in the corresponding steps. (a) Calibration sequence with an odd number of phase shifters; (b) calibration sequence with an even number of phase shifters.

    图 8  (a)级联20个移相器的2 × 2光波导线路; (b)每个移相器加载0或3 V的电压, 输出态的保真度分布; (c)每个移相器随机加载0到9 V间某个电压, 输出态的保真度分布

    Fig. 8.  (a) $ 2\times 2 $ optical waveguide circuit of 20-cascaded phase shifter; (b) the distribution of statistical fidelity of output state applying voltage of 0 or 3 V for each phase shifter; (c) the distribution of statistical fidelity of output state applying voltage randomly between 0 and 9 V for each phase shifter.

    图 9  (a)不同实验测量误差对保真度的影响; (b)不同取点数量对保真度的影响; (c)不同数量移相器对保真度的影响; (d)不同的MMI分光比η值对保真度的影响

    Fig. 9.  (a) Effect of different experimental measure errors on fidelity; (b) effect of different number of points on fidelity; (c) effect of different numbers of phase shifters on fidelity; (d) effect of different values of the MMI spectral ratio η on fidelity.

  • [1]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [2]

    Xu F H, Ma X F, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [3]

    Wei K J, Li W, Tan H, Li Y, Min H, Zhang W J, Li H, You L X, Wang Z, Jiang X, Chen T Y, Liao S K, Peng C Z, Xu F H, Pan J W 2020 Phys. Rev. X 10 031030

    [4]

    Yin J, Li Y H, Liao S K, et al. 2020 Nature 582 501Google Scholar

    [5]

    Bennett C H, Brassard G 1984 Proceedings of the International Conference on Computers, Systems and Signal Processing Bangalore, India December 9−12, 1984 p175

    [6]

    Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien J L 2010 Nature 464 45Google Scholar

    [7]

    Zhong H S, Wang H, Deng Y H, et al. 2020 Science 370 1460

    [8]

    Bentivegna M, Spagnolo N, Vitelli C, et al. 2015 Sci. Adv. 1 e1400255Google Scholar

    [9]

    Ciampini M A, Orieux A, Paesani S, Sciarrino F, Corrielli G, Crespi A, Ramponi R, Osellame R, Mataloni P 2016 Light-Sci. Appl. 5 e16064Google Scholar

    [10]

    Shor P W 1994 Proceedings 35th annual symposium on foundations of computer science Santa Fe, USA November 20−22, 1994 p124

    [11]

    Grover L K 1997 Phys. Rev. Lett. 79 325Google Scholar

    [12]

    Aspuru-Guzik A, Walther P 2012 Nat. Phys. 8 285Google Scholar

    [13]

    Sparrow C, Martin-Lopez E, Maraviglia N, Neville A, Harrold C, Carolan J, Joglekar Y N, Hashimoto T, Matsuda N, O’Brien J L, Tew D P, Laing A 2018 Nature 557 660Google Scholar

    [14]

    Zhong Y P, Chang H S, Biefait A, Dumur E, Chou M H, Conner C R, Grebel J, Povey R G, Yan H X, Schuster D I, Cleland A N 2021 Nature 590 571Google Scholar

    [15]

    Song C, Xu K, Li H K, Zhang Y R, Zhang X, Liu W X, Guo Q J, Wang Z, Ren W H, Hao J, Feng H, Fan H, Zheng D N, Wang D W, Wang H, Zhu S Y 2019 Science 365 574Google Scholar

    [16]

    Bohnet J G, Sawyer B C, Britton J W, Wall M L, Rey A M, Feig M F, Bollinger J J 2016 Science 352 1297Google Scholar

    [17]

    Wang H, Qin J, Ding X, Chen M C, Chen S, You X, He Y M, Jiang X, You L, Wang Z, Schneider C, Renema J J, Höfling S, Lu C Y, Pan J W 2019 Phys. Rev. Lett. 123 250503Google Scholar

    [18]

    Liu W Z, Li M H, Ragy S, Zhao S R, Bai B, Liu Y, Brown P J, Zhang J, Colbeck R, Fan J Y, Zhang Q, Pan J W 2021 Nat. Phys 17 448Google Scholar

    [19]

    Li Z P, Huang X, Cao Y, Wang B, Li Y H, Jin W J, Yu C, Zhang J, Zhang Q, Peng C Z, Xu F H, Pan J W 2021 Photonics Res. 8 1532

    [20]

    Zhong H S, Li Y, Li W, et al. 2018 Phys. Rev. Lett. 121 250505Google Scholar

    [21]

    Wang X L, Luo Y H, Huang H L, Chen M C, Su Z E, Liu C, Chen C, Li W, Fang Y Q, Jiang X, Zhang J, Li L, Liu N L, Lu C Y, Pan J W 2018 Phys. Rev. Lett. 120 260502Google Scholar

    [22]

    Wang H, He Y, Li Y H, et al. 2017 Nat. Photonics 11 361Google Scholar

    [23]

    Politi A, Cryan M J, Rarity K G, Yu S Y, O’Brien J L 2008 Science 320 646Google Scholar

    [24]

    Shadbolt P J, Verde M R, Reruzzo A, Politi A, Liang A, Lobino M, Matthew J C F, Thompson M G, O’Brien J L 2012 Nat. Photonics 6 45Google Scholar

    [25]

    Qiang X G, Zhou X Q, Wang J W, Wilkes C M, Loke T, O’Gara S, Kling L, Marshall G D, Santagati, R, Ralph T C, Wang J B, O’Brien J L, Thompson M G, Mathews J C F 2018 Nat. Photonics 12 534Google Scholar

    [26]

    Wang J W, Paesani S, Ding Y H, et al. 2018 Science 360 285Google Scholar

    [27]

    Seok T J, Kwon K, Henriksson J, Luo J H, Wu M C 2019 Optical Fiber Communication Conference San Diego, USA March 3−7, 2019 pTh1E.5

    [28]

    Wang J W, Sciarrino F, Laing A, Thompson M G 2020 Nat. Photonics 14 273Google Scholar

    [29]

    Paesani S, Ding Y H, Santagati R, Chakhmakhchyan L, Vigliar C, Rottwitt K, Oxenløwe L K, Wang J W, Thompson M G, Laing A 2019 Nat. Phys. 15 925Google Scholar

    [30]

    Llewellyn D, Ding Y H, Faruque I I, et al. 2020 Nat. Phys. 16 148Google Scholar

    [31]

    Carolan J, Harrold C, Sparrow C, et al. 2015 Science 349 711Google Scholar

    [32]

    Reck M, Zeilinger A, Bernstein H J, Bertani P 1994 Phys. Rev. Lett. 73 58Google Scholar

    [33]

    Kang G, Kim S H, You J B, Lee D S, Yoon H, Ha Y G, Kim J H, Yoo D E, Lee D W, Youn C H, Yu K, Park H H 2019 IEEE Photonics Technol. Lett. 31 1685Google Scholar

    [34]

    Sun J, Timurdogan E, Yaacobi A, Hosseini E S, Watts M R 2013 Nature 493 195Google Scholar

    [35]

    Hulme J C, Doylend J K, Heck M J R, Peters J D, Davenport M L, Bovington J T, Coldren L A, Bowers J E 2014 Smart Photonic and Optoelectronic Integrated Circuits XVI San Francisco, USA February 1, 2014 p898907

    [36]

    Kwong D, Hosseini A, Covey J, Zhang Y, Xu X C, Subbaraman H, Chen R T 2014 Opt. Lett. 39 941Google Scholar

    [37]

    He M B, Xu M Y, Ren Y X, et al. 2019 Nat. Photonics 13 359Google Scholar

    [38]

    Deng Q Z, Liu L, Li X B, Zhou Z P 2014 Opt. Lett. 39 5590Google Scholar

  • [1] 王迪, 韩涛, 钱黄河, 刘智毅, 丁志华. 基于特征谱线与约束拟合相位的绝对波数标定方法. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120220314
    [2] 邢雪燕, 李霞霞, 陈宇辉, 张向东. 基于光子晶体微腔的回波光量子存储. 物理学报, 2022, 71(11): 114201. doi: 10.7498/aps.71.20220083
    [3] 周湃, 李霞霞, 邢雪燕, 陈宇辉, 张向东. 基于掺铒晶体的光量子存储和调控. 物理学报, 2022, 71(6): 064203. doi: 10.7498/aps.71.20211803
    [4] 周文豪, 王耀, 翁文康, 金贤敏. 集成光量子计算的研究进展. 物理学报, 2022, 71(24): 240302. doi: 10.7498/aps.71.20221782
    [5] 周湃, 李霞霞, 邢雪燕, 陈宇辉, 张向东. 基于掺铒晶体的光量子存储和调控. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211803
    [6] 雷波, 何兆阳, 张瑞. 基于迁移学习的水下目标定位方法仿真研究. 物理学报, 2021, 70(22): 224302. doi: 10.7498/aps.70.20210277
    [7] 王凤阳, 胡仁志, 谢品华, 王怡慧, 陈浩, 张国贤, 刘文清. 基于同步光解的OH自由基标定方法. 物理学报, 2020, 69(9): 090701. doi: 10.7498/aps.69.20200153
    [8] 张茜, 李萌, 龚旗煌, 李焱. 飞秒激光直写光量子逻辑门. 物理学报, 2019, 68(10): 104205. doi: 10.7498/aps.68.20190024
    [9] 周超, 张磊, 李劲松. 基于单个量子级联激光器的大气多组分测量方法. 物理学报, 2017, 66(9): 094203. doi: 10.7498/aps.66.094203
    [10] 刘志民, 赵谡玲, 徐征, 高松, 杨一帆. 红光量子点掺杂PVK体系的发光特性研究. 物理学报, 2014, 63(9): 097302. doi: 10.7498/aps.63.097302
    [11] 张永升, 邱阳, 张朝祥, 李华, 张树林, 王永良, 徐小峰, 丁红胜, 孔祥燕. 多通道心磁系统标定方法研究. 物理学报, 2014, 63(22): 228501. doi: 10.7498/aps.63.228501
    [12] 刘丽想, 董丽娟, 刘艳红, 杨成全, 石云龙. 含特异材料的光量子阱频率特性研究. 物理学报, 2012, 61(13): 134210. doi: 10.7498/aps.61.134210
    [13] 陈伯伦, 杨正华, 曹柱荣, 董建军, 侯立飞, 崔延莉, 江少恩, 易荣清, 李三伟, 刘慎业, 杨家敏. 同步辐射标定平面镜反射率不确定度分析方法研究. 物理学报, 2010, 59(10): 7078-7085. doi: 10.7498/aps.59.7078
    [14] 张继涛, 李岩, 罗志勇. 一种可溯源的光谱椭偏仪标定方法. 物理学报, 2010, 59(1): 186-191. doi: 10.7498/aps.59.186
    [15] 汤媛媛, 刘文清, 阚瑞峰, 张玉钧, 刘建国, 许振宇, 束小文, 张帅, 何莹, 耿辉, 崔益本. 基于室温脉冲量子级联激光器的NO气体检测中的光谱处理方法研究. 物理学报, 2010, 59(4): 2364-2368. doi: 10.7498/aps.59.2364
    [16] 冯明明, 秦小林, 周春源, 熊 利, 丁良恩. 偏振光量子随机源. 物理学报, 2003, 52(1): 72-76. doi: 10.7498/aps.52.72
    [17] 常君弢, 吴令安. 单光子探测器量子效率的绝对自身标定方法. 物理学报, 2003, 52(5): 1132-1136. doi: 10.7498/aps.52.1132
    [18] 廖静, 梁创, 魏亚军, 吴令安, 潘少华, 姚德成. 基于光量子的真随机源. 物理学报, 2001, 50(3): 467-472. doi: 10.7498/aps.50.467
    [19] 陆学善, 罗绶珉. 标定正交晶系粉末照相指数的计算方法及计算程序. 物理学报, 1981, 30(11): 1488-1497. doi: 10.7498/aps.30.1488
    [20] 王之江. 红宝石光量子放大器. 物理学报, 1964, 20(1): 63-71. doi: 10.7498/aps.20.63
计量
  • 文章访问数:  4275
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-02
  • 修回日期:  2021-04-15
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-20

/

返回文章
返回