搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非保守力作用下二维耦合布朗粒子的定向输运

刘艳艳 孙佳明 范黎明 高天附 郑志刚

引用本文:
Citation:

非保守力作用下二维耦合布朗粒子的定向输运

刘艳艳, 孙佳明, 范黎明, 高天附, 郑志刚

Directional transport of two-dimensional coupled Brownian particles subjected to nonconserved forces

Liu Yan-Yan, Sun Jia-Ming, Fan Li-Ming, Gao Tian-Fu, Zheng Zhi-Gang
PDF
HTML
导出引用
  • 本文主要研究二维耦合布朗粒子在非保守外力作用下的定向输运问题. 研究发现, 非保守外力有促进二维耦合棘轮定向输运的效果. 同时, 在保守力(弹簧弹力)和非保守外力的相互协作与竞争中耦合布朗粒子的反向输运能够获得增强. 特别地, 随着弹簧原长或弹性系数的改变, 二维耦合布朗粒子的定向运动都能够产生反向, 这意味着耦合作用能够诱导二维布朗棘轮流反转的产生. 实验上, 通过选取不同种类的外力(保守力及非保守力), 能够对二维耦合布朗粒子的分离技术提供新的方案.
    In recent years, biomolecular motors have received widespread attention. Biomolecular motors are biological macromolecules that convert chemical energy into mechanical energy. The biomolecular motor is only a few tens of nanometers in size. According to Brownian theory of motion, people have constructed different types of Brownian ratchet models, such as rocking ratchets and closed-loop control ratchets. In previous studies, the directional transportation of Brownian ratchet is affected by conservative forces. These conservative forces include constant force, elastic force or harmonic force. However, whether the ratchet system can produce directional motion under the action of non-conservative forces is still rarely studied. Owing to the complex environment in the organism, for the studies of two-dimensional systems, the transport behavior of molecular motor has not been fully explained. Therefore, it is more practical to study the transport of Brownian particles in a two-dimensional ratchet potential.The directional transport of two-dimensional Brownian particles subjected to conservative forces and non-conservative forces are studied in this work. It is found that the non-conservative external force has the effect of promoting the directional transport of coupling ratchets. With the change of the free length of the spring and spring coefficient, the average velocity of the coupled particles can be reversed. This means that the coupling effect can induce the inversion of two-dimensional Brownian ratchets. At the same time, the reverse transportation of coupled particles is enhanced under the interaction effect of conservative forces (spring elasticity) and non-conservative external forces. By choosing different kinds of external forces (conserved and non-conserved), in the experiment, it is possible to provide new method of separating two-dimensional coupled Brownian particles.
      通信作者: 高天附, tianfugao@synu.edu.cn ; 郑志刚, zgzheng@hqu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11875135, 11347003)、辽宁省高等学校基本科研项目(批准号: LJKMZ20221478)、沈阳师范大学高层次人才支持计划和沈阳师范大学研究生教育教学改革研究一般项目(批准号: YJSJG320210100) 资助的课题
      Corresponding author: Gao Tian-Fu, tianfugao@synu.edu.cn ; Zheng Zhi-Gang, zgzheng@hqu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875135, 11347003), Basic Scientific Research Project of Colleges in Liaoning Province, China (Grant No. LJKMZ20221478), the High-level Talent Support Program of Shenyang Normal University, China, and the Postgraduate Education Reform Project of Shenyang Normal University, China (Grant No. YJSJG320210100).
    [1]

    舒咬根, 欧阳钟灿 2007 自然杂志 5 249Google Scholar

    Shu Y G, Ouyang Z C 2007 Chin. J. Nat. 5 249Google Scholar

    [2]

    舒咬根, 欧阳钟灿 2007 物理 10 735Google Scholar

    Shu Y G, Ouyang Z C 2007 Physics 10 735Google Scholar

    [3]

    国家自然科学基金委员会, 中国科学院 2020 中国学科发展战略·软凝聚态物理学(下) (北京: 科学出版社) 第1037页

    National Natural Science Foundation of China, Chinese Academy of Sciences 2020 Chinese Subject Development Strategy · Soft Condensed Matter Physics (Part 2) (Beijing: Science Press) p1037 (in Chinese)

    [4]

    Wu J, Zhou J, Ai B 2016 Physica A 462 864Google Scholar

    [5]

    耿轶钊, 晏世伟 2016 物理学进展 36 157Google Scholar

    Geng Y Z, Yan S W 2016 Prog. Phys. 36 157Google Scholar

    [6]

    卓益忠, 赵同军, 展永 2000 物理 12 712Google Scholar

    Zhuo Y Z, Zhao T J, Zhan Y 2000 Physics 12 712Google Scholar

    [7]

    舒咬根 2004 博士学位论文 (厦门: 厦门大学)

    Shu Y G 2004 Ph. D. Dissertation (Xiamen: Xiamen University) (in Chinese)

    [8]

    刘芳 2011 硕士学位论文 (秦皇岛: 燕山大学)

    Liu F 2011 M. S. Thesis (Qinhuangdao: Yanshan University) (in Chinese)

    [9]

    Van den Heuvel M G L, Dekker C 2007 Science 317 333Google Scholar

    [10]

    Bartussek R, Hänggi P, Kissner J G 1994 Eur. Phys. Lett. 28 459Google Scholar

    [11]

    Zhang H W, Wen S T, Zhang H T, Li Y X, Chen G R 2012 Chin. Phys. B 21 078701Google Scholar

    [12]

    Bao J D, Zhuo Y Z 1998 Phys. Lett. A 239 228Google Scholar

    [13]

    Doering C R 1995 Il Nuovo Cimento D 17 685Google Scholar

    [14]

    Bartussek R, Reimann P, Hänggi P 1996 Phys. Rev. Lett. 76 1166Google Scholar

    [15]

    Gao T F, Chen J C 2009 J. Phys. A: Math. Theor. 42 065002Google Scholar

    [16]

    吴魏霞, 郑志刚 2013 物理学报 62 135Google Scholar

    Wu W X, Zheng Z G 2013 Acta Phys. Sin. 62 135Google Scholar

    [17]

    吴魏霞, 宋艳丽, 韩英荣 2015 物理学报 64 17Google Scholar

    Wu W X, Song Y L, Han Y R 2015 Acta Phys. Sin. 64 17Google Scholar

    [18]

    谢天婷, 邓科, 罗懋康. 2016 物理学报 65 7Google Scholar

    Xie T T, Deng K, Luo M K 2016 Acta Phys. Sin. 65 7Google Scholar

    [19]

    刘红梅, 汪瑜 2014 物理通报 10 129Google Scholar

    [20]

    马文蔚 2008 物理学(上册) 第五版 (北京: 高等教育出版社) 第75页

    [21]

    Tomé T 2010 Phys. Rev. E 82 021120Google Scholar

    [22]

    Tomé T 2006 Braz. J. Phys. 36 1285Google Scholar

    [23]

    Ai B Q, Chen Q Y, He Y F, Li F G, Zhong W R 2013 Phys. Rev. E 88 062129Google Scholar

    [24]

    Li C P, Chen H B, Zheng Z G 2017 Front. Phys. 12 1Google Scholar

    [25]

    Romanczuk P, Müller F, Schimansky-Geier L 2010 Phys. Rev. E 81 061120Google Scholar

    [26]

    Wang H Y, Bao J D 2007 Physica A 374 33Google Scholar

    [27]

    Shubeita G T, Tran S L, Xu J, Vershinin M, Cermelli S, Cotton S L, Welte M A, Gross S P 2008 Cell 135 1098Google Scholar

    [28]

    Hill D B, Plaza M J, Bonin K, Holzwarth G 2004 Eur. Biophys. J 33 623Google Scholar

    [29]

    Mallik R, Petrov D, Lex S A, King S J, Gross S P 2005 Curr. Biol. 15 2075Google Scholar

    [30]

    Bao J D 2001 Phys. Rev. E 63 061112Google Scholar

    [31]

    Ai B 2017 Phys. Rev. E 96 012131Google Scholar

    [32]

    Luo Y H, Zeng C H, Ai B Q 2020 Phys. Rev. E 102 042114Google Scholar

    [33]

    He Y F, Ai B Q, Dai C X 2020 Phys. Rev. Lett. 124 075001Google Scholar

  • 图 1  二维棘轮外势$ V(x, y) $的结构示意图

    Fig. 1.  The schematic diagram of two-dimensional ratchet potential $ V(x, y) $.

    图 2  非保守外力$ {F_x} $$ {F_y} $的结构示意图, 非保守力参量$ a = 0.4 $

    Fig. 2.  The schematic diagram of non-conservative forces $ {F_x} $ and $ {F_y} $, where non-conservative force parameter $ a = 0.4 $.

    图 3  不同弹簧原长$ L $下平均速度$ \left\langle {{V_x}} \right\rangle $随非保守力参数$ a $的变化曲线, 其中$ D = 0.1 $, $ k = 2 $

    Fig. 3.  The curves of the mean velocity $ \left\langle {{V_x}} \right\rangle $ varying with the non-conservative force parameter $ a $ under different original length of the spring L, where $ D = 0.1 $, $ k = 2 $.

    图 4  非保守力$ {F_x} $随参数$ a $的变化曲线

    Fig. 4.  The curve of the non-conservative force $ {F_x} $ varying with the parameter $ a $.

    图 5  不同噪声强度$ D $下平均速度$ \left\langle {{V_x}} \right\rangle $随弹簧原长$ L $的变化曲线, 其中$ a = 0.4 $, $ k = 2 $

    Fig. 5.  The curves of the mean velocity $ \left\langle {{V_x}} \right\rangle $ varying with the original length of the spring $ L $ under different noise intensity $ D $, where $ a = 0.4 $, $ k = 2 $.

    图 6  耦合粒子的位置随时间演化图像, 其中$ a = 0.4 $, $ k = 2 $, $ L = 3.5 $, $ D = 0.1 $

    Fig. 6.  Trajectories for the coupled particles as a function of time, where $ a = 0.4 $, $ k = 2 $, $ L = 3.5 $, $ D = 0.1 $.

    图 7  不同耦合强度下平均速度$ \left\langle {{V_x}} \right\rangle $随热噪声$ D $的变化曲线, 其中$ a = 0.4 $, $ L = 1 $

    Fig. 7.  The curves of the mean velocity $ \left\langle {{V_x}} \right\rangle $ varying with the noise $ D $ under different coupling strength, where $ a = 0.4 $, $ L = 1 $.

    图 8  不同非保守外力参量$ a $下平均速度$ \left\langle {{V_x}} \right\rangle $随弹性系数$ k $的变化曲线, 其中$ D = 0.1 $, $ L = 1 $

    Fig. 8.  The curves of the mean velocity $ \left\langle {{V_x}} \right\rangle $ varying with the spring coefficient $ k $ under different non-conservative force parameter $ a $, where $ D = 0.1 $, $ L = 1 $.

    图 9  耦合粒子的位置随时间演化图像, 其中$ a = 0.3 $, $ k = 0.3 $, $ L = 1 $, $ D = 0.1 $

    Fig. 9.  Trajectories for the coupled particles as a function of time, where $ a = 0.3 $, $ k = 0.3 $, $ L = 1 $, $ D = 0.1 $.

  • [1]

    舒咬根, 欧阳钟灿 2007 自然杂志 5 249Google Scholar

    Shu Y G, Ouyang Z C 2007 Chin. J. Nat. 5 249Google Scholar

    [2]

    舒咬根, 欧阳钟灿 2007 物理 10 735Google Scholar

    Shu Y G, Ouyang Z C 2007 Physics 10 735Google Scholar

    [3]

    国家自然科学基金委员会, 中国科学院 2020 中国学科发展战略·软凝聚态物理学(下) (北京: 科学出版社) 第1037页

    National Natural Science Foundation of China, Chinese Academy of Sciences 2020 Chinese Subject Development Strategy · Soft Condensed Matter Physics (Part 2) (Beijing: Science Press) p1037 (in Chinese)

    [4]

    Wu J, Zhou J, Ai B 2016 Physica A 462 864Google Scholar

    [5]

    耿轶钊, 晏世伟 2016 物理学进展 36 157Google Scholar

    Geng Y Z, Yan S W 2016 Prog. Phys. 36 157Google Scholar

    [6]

    卓益忠, 赵同军, 展永 2000 物理 12 712Google Scholar

    Zhuo Y Z, Zhao T J, Zhan Y 2000 Physics 12 712Google Scholar

    [7]

    舒咬根 2004 博士学位论文 (厦门: 厦门大学)

    Shu Y G 2004 Ph. D. Dissertation (Xiamen: Xiamen University) (in Chinese)

    [8]

    刘芳 2011 硕士学位论文 (秦皇岛: 燕山大学)

    Liu F 2011 M. S. Thesis (Qinhuangdao: Yanshan University) (in Chinese)

    [9]

    Van den Heuvel M G L, Dekker C 2007 Science 317 333Google Scholar

    [10]

    Bartussek R, Hänggi P, Kissner J G 1994 Eur. Phys. Lett. 28 459Google Scholar

    [11]

    Zhang H W, Wen S T, Zhang H T, Li Y X, Chen G R 2012 Chin. Phys. B 21 078701Google Scholar

    [12]

    Bao J D, Zhuo Y Z 1998 Phys. Lett. A 239 228Google Scholar

    [13]

    Doering C R 1995 Il Nuovo Cimento D 17 685Google Scholar

    [14]

    Bartussek R, Reimann P, Hänggi P 1996 Phys. Rev. Lett. 76 1166Google Scholar

    [15]

    Gao T F, Chen J C 2009 J. Phys. A: Math. Theor. 42 065002Google Scholar

    [16]

    吴魏霞, 郑志刚 2013 物理学报 62 135Google Scholar

    Wu W X, Zheng Z G 2013 Acta Phys. Sin. 62 135Google Scholar

    [17]

    吴魏霞, 宋艳丽, 韩英荣 2015 物理学报 64 17Google Scholar

    Wu W X, Song Y L, Han Y R 2015 Acta Phys. Sin. 64 17Google Scholar

    [18]

    谢天婷, 邓科, 罗懋康. 2016 物理学报 65 7Google Scholar

    Xie T T, Deng K, Luo M K 2016 Acta Phys. Sin. 65 7Google Scholar

    [19]

    刘红梅, 汪瑜 2014 物理通报 10 129Google Scholar

    [20]

    马文蔚 2008 物理学(上册) 第五版 (北京: 高等教育出版社) 第75页

    [21]

    Tomé T 2010 Phys. Rev. E 82 021120Google Scholar

    [22]

    Tomé T 2006 Braz. J. Phys. 36 1285Google Scholar

    [23]

    Ai B Q, Chen Q Y, He Y F, Li F G, Zhong W R 2013 Phys. Rev. E 88 062129Google Scholar

    [24]

    Li C P, Chen H B, Zheng Z G 2017 Front. Phys. 12 1Google Scholar

    [25]

    Romanczuk P, Müller F, Schimansky-Geier L 2010 Phys. Rev. E 81 061120Google Scholar

    [26]

    Wang H Y, Bao J D 2007 Physica A 374 33Google Scholar

    [27]

    Shubeita G T, Tran S L, Xu J, Vershinin M, Cermelli S, Cotton S L, Welte M A, Gross S P 2008 Cell 135 1098Google Scholar

    [28]

    Hill D B, Plaza M J, Bonin K, Holzwarth G 2004 Eur. Biophys. J 33 623Google Scholar

    [29]

    Mallik R, Petrov D, Lex S A, King S J, Gross S P 2005 Curr. Biol. 15 2075Google Scholar

    [30]

    Bao J D 2001 Phys. Rev. E 63 061112Google Scholar

    [31]

    Ai B 2017 Phys. Rev. E 96 012131Google Scholar

    [32]

    Luo Y H, Zeng C H, Ai B Q 2020 Phys. Rev. E 102 042114Google Scholar

    [33]

    He Y F, Ai B Q, Dai C X 2020 Phys. Rev. Lett. 124 075001Google Scholar

  • [1] 张旭, 曹佳慧, 艾保全, 高天附, 郑志刚. 摩擦不对称耦合布朗马达的定向输运. 物理学报, 2020, 69(10): 100503. doi: 10.7498/aps.69.20191961
    [2] 刘晨昊, 刘天宇, 黄仁忠, 高天附, 舒咬根. 粗糙势中耦合布朗粒子的定向输运性能. 物理学报, 2019, 68(24): 240501. doi: 10.7498/aps.68.20191203
    [3] 延明月, 张旭, 刘晨昊, 黄仁忠, 高天附, 郑志刚. 反馈脉冲棘轮的能量转化效率研究. 物理学报, 2018, 67(19): 190501. doi: 10.7498/aps.67.20181066
    [4] 夏懿, 库晓珂, 沈苏华. 布朗运动和湍流扩散作用下槽流中纤维悬浮流动特性的研究. 物理学报, 2016, 65(19): 194702. doi: 10.7498/aps.65.194702
    [5] 吴魏霞, 郑志刚. 二维势场中弹性耦合粒子的定向输运研究. 物理学报, 2013, 62(19): 190511. doi: 10.7498/aps.62.190511
    [6] 王莉芳, 高天附, 黄仁忠, 郑玉祥. 外力作用下反馈耦合布朗棘轮的定向输运. 物理学报, 2013, 62(7): 070502. doi: 10.7498/aps.62.070502
    [7] 濮存来, 裴文江, 王少平. 一种基于布朗粒子的混合搜索模型. 物理学报, 2010, 59(1): 103-110. doi: 10.7498/aps.59.103
    [8] 常增光, 刘建成, 闫珂柱. 稳态V型和Λ型无粒子数反转激光增益的比较研究. 物理学报, 2008, 57(8): 4927-4932. doi: 10.7498/aps.57.4927
    [9] 李 微, 赵同军, 郭鸿涌, 纪 青, 展 永. 布朗马达的非均匀高斯跃迁模型. 物理学报, 2004, 53(11): 3684-3689. doi: 10.7498/aps.53.3684
    [10] 邓茂林, 洪明潮, 朱位秋, 汪元美. 活性布朗粒子运动的稳态解. 物理学报, 2004, 53(7): 2029-2034. doi: 10.7498/aps.53.2029
    [11] 张 毅, 梅凤翔. 非保守力与非完整约束对Lagrange系统Noether对称性的影响. 物理学报, 2004, 53(3): 661-668. doi: 10.7498/aps.53.661
    [12] 张 毅. 非保守力和非完整约束对Hamilton系统Lie对称性的影响. 物理学报, 2003, 52(6): 1326-1331. doi: 10.7498/aps.52.1326
    [13] 方建会, 薛庆忠, 赵嵩卿. 非保守力学系统Nielsen方程的形式不变性. 物理学报, 2002, 51(10): 2183-2185. doi: 10.7498/aps.51.2183
    [14] 张汉壮, 高锦岳. 光场的空间横向效应对无粒子数反转光放大增益的影响. 物理学报, 1997, 46(12): 2330-2343. doi: 10.7498/aps.46.2330
    [15] 吴烽, 汪秉宏, 杨月桂, 姚斌. 电流变液中悬浮粒子的布朗运动与其聚集之间关系. 物理学报, 1996, 45(3): 403-408. doi: 10.7498/aps.45.403
    [16] 谭维翰, 林尊琪, 余文炎, 顾敏, 陈文华, 郑玉霞, 王关志, 崔季秀, 程瑞华, 邓锡铭. 激光加热微管靶在软X射线波段观察很高的粒子数反转. 物理学报, 1988, 37(6): 989-995. doi: 10.7498/aps.37.989
    [17] 林尊琪, 陈文华, 余文炎, 谭维翰, 郑玉霞, 王关志, 顾敏, 章辉煌, 程瑞华, 崔季秀, 邓锡铭. MgⅪ 1s3p-1s4p能级间平均高温及高密度条件下的粒子数反转. 物理学报, 1988, 37(8): 1236-1243. doi: 10.7498/aps.37.1236
    [18] 高智. 利用射流混合获得分子气体的振动粒子数反转. 物理学报, 1975, 24(6): 407-418. doi: 10.7498/aps.24.407
    [19] 胡宁. 一排等距平行直杆后及方格后激流平均速度及温度之分布. 物理学报, 1944, 5(1): 30-48. doi: 10.7498/aps.5.30
    [20] 胡宁. 圆柱体后及轴对称体后激流平均速度及温度之分布. 物理学报, 1944, 5(1): 1-29. doi: 10.7498/aps.5.1
计量
  • 文章访问数:  4278
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-05
  • 修回日期:  2022-11-17
  • 上网日期:  2022-12-09
  • 刊出日期:  2023-02-20

/

返回文章
返回