搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于一维声栅共振场的大规模微粒并行排列 的实验研究

齐绍富 蔡飞燕 田振 黄先玉 周娟 王金萍 李文成 郑海荣 邓科

引用本文:
Citation:

基于一维声栅共振场的大规模微粒并行排列 的实验研究

齐绍富, 蔡飞燕, 田振, 黄先玉, 周娟, 王金萍, 李文成, 郑海荣, 邓科

Experimental investigation of multiple-particle pattern based on one-dimensional grating resonance field

Qi Shao-Fu, Cai Fei-Yan, Tian Zhen, Huang Xian-Yu, Zhou Juan, Wang Jin-Ping, Li Wen-Cheng, Zheng Hai-Rong, Deng Ke
PDF
HTML
导出引用
  • 声操控微粒技术可以非接触无损伤地控制声场中的物体运动, 其在精密制造、材料工程、体外诊断等领域具有广阔的应用前景. 传统声操控微粒技术一般采用自由声场, 如利用单个换能器或阵列换能器产生的聚焦声场、行波场或驻波场等. 然而, 一般单个换能器产生的声场仅能操控单个微粒; 而阵列换能器的驱动系统复杂, 导致操控器件成本高昂且难以微型化; 因此, 亟需研究新的声场形态实现多样性微粒操控. 本工作中, 采用单个换能器产生的平面波激发一维声栅的共振声场, 实验实现了大规模泡沫微球的周期排列操控. 其操控机制是由于声栅狭缝中法布里-珀罗谐振声场与声栅表面周期衍射场共振耦合, 在声栅表面形成周期分布的局域梯度声场, 导致微粒在平行于声栅表面受到声捕获力, 在垂直于声栅表面受到指向表面的声吸引力, 实现了微粒周期排列在声栅表面上. 该工作为利用超声在空气中大规模排列微粒提供了理论基础和技术支持.
    Manipulation of particles by ultrasonic waves is a primary technique in the fields of precision manufacturing, materials engineering, and in vitro diagnosis, since it can control the motion of objects in the sound field in a contactless and noninvasive manner. In general, the free sound field, such as the focused field and the plane wave generated by a single transducer can only manipulate a single particle. While the complex field generated by a transducer array should be actuated by a complex electric control system, which makes the manipulation device expensive and cumbersome. Thus, modulated acoustic field for particle manipulation is still needed. Here, we experimental realize a one-dimensional acoustic grating to tune sound fields for the parallel pattern of multiple particles. The physical mechanism is that due to the resonance coupling between the periodic diffraction wave on the surface of the acoustic grating and the Fabry-Perot resonant sound field in the acoustic grating slit, a periodical gradient sound field on the surface of the acoustic grating is induced. Then, particles in the periodical gradient sound field can be trapped in two stable positions in one period of the grating. These concepts and realizations of particle patterns in the acoustic grating pave the way for implementing the parallel manipulation of particles in acoustic manipulation technologies.
      通信作者: 蔡飞燕, fy.cai@siat.ac.cn ; 邓科, dengke@jsu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974372, 11964011, 12004409)和深圳基础研究项目(批准号: JCYJ20200109110006136)资助的课题
      Corresponding author: Cai Fei-Yan, fy.cai@siat.ac.cn ; Deng Ke, dengke@jsu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974372, 11964011, 12004409) and the Shenzhen Basic Research Program, China (Grant No. JCYJ20200109110006136).
    [1]

    Borgnis F E 1953 Rev. Mod. Phys. 25 653Google Scholar

    [2]

    Takahi H, Yasutaka H, Akio A, Hideki N, Masahiko K, Naoki I 1993 J. Acoust. Soc. Am. 93 154Google Scholar

    [3]

    Tatsuki F, Asier M, Bruce W, Thomas L H 2019 Appl. Phys. Lett. 115 064101Google Scholar

    [4]

    Hirayama R, Martinez P D, Masuda N, Subramanian S 2019 Nature 575 320Google Scholar

    [5]

    Smalley D E, Nygaard E, Squire K, Van W J, Rasmussen J, Gneiting S, Qaderi K, Goodsell J, Roger W, Lindsey M 2018 Nature 553 486Google Scholar

    [6]

    Wiklund M, Radel S, Hawkes J J 2013 Lab Chip 13 25Google Scholar

    [7]

    Gao Y, Harder R, Southworth S H, Guest J R, Huang X J, Yan Z J, Ocola L E, Yifat Y, Sule N, Ho P J 2019 Proc. Natl. Acad. Sci. U. S. A. 116 4018Google Scholar

    [8]

    Ozcelik A, Rufo J, Guo F, Gu Y Y, Li P, Lata J, Huang T J 2018 Nat. Methods 15 1021Google Scholar

    [9]

    Li F, Cai F Y, Zhang L K, Liu Z Y, Li F, Meng L, Wu J R, Li J Y, Zhang X F, Zheng H R 2020 Phys. Rev. A 13 044077Google Scholar

    [10]

    Li F, Cai F Y, Liu Z Y, Meng L, Qian M, Wang C, Cheng Q, Qian M L, Liu X, Wu J R, Li J Y, Zheng H R 2014 Phys. Rev. A 1 051001Google Scholar

    [11]

    Melde K, Mark A G, Qiu T, Fischer P 2016 Nature 537 518Google Scholar

    [12]

    Memoli G, Caleap M, Asakawa M, Sahoo D R, Drinkwater B W, Subramanian S 2017 Nat. Commun. 8 14608Google Scholar

    [13]

    黄先玉, 蔡飞燕, 李文成, 郑海荣, 何兆剑, 邓科, 赵鹤平 2017 物理学报 66 044301Google Scholar

    Huang X Y, Cai F Y, Li W C, Zheng H R, He Z J, Deng K, Zhao H P 2017 Acta Phys. Sin. 66 044301Google Scholar

    [14]

    冯若, 姚锦钟, 关立勋 1999 超声手册 (南京: 南京大学出版社) 128

    Feng R, Yao J Z, Guan L X 1999 Ultrasonics Handbook (Nanjing: Nanjin University Press) 128 (in Chinese)

    [15]

    Sweden S https://cn.comsol.com/ [2022-9-1]

    [16]

    Lu M H, Liu X K, Feng L, Li J, Huang C P, Chen Y F, ZhuY Y, Zhu S, Ming N 2007 Phys. Rev. Lett. 99 174301Google Scholar

    [17]

    Zhu X F, Liang B, Kan W W, Peng Y G, Cheng J C 2016 Phys. Rev. A 5 054015Google Scholar

    [18]

    Gor'kov L P 1962 Sov. Phys. Dokl. 6 773

    [19]

    Bruus H 2012 Lab Chip 12 1014Google Scholar

    [20]

    Xu D, Cai F Y, Chen M, Li F, Wang C, Meng L, Xu D H, Wang W, Wu J R, Zheng H R 2019 Ultrasonics 93 18Google Scholar

    [21]

    He Z J, Jia H, Qiu C Y, Ye Y T, Hao R, Ke M Z, Liu Z Y 2011 Phys. Rev. B 83 132101Google Scholar

  • 图 1  声栅样品示意图与归一化透射谱, 以及一维声栅归一化声压分布图 (a) 声栅样品示意图; (b) 平面波透过声栅样品的透射谱; (c) 共振频率为39.6 kHz时声场分布图; (d) 非共振频率为38 kHz时声场分布图

    Fig. 1.  Schematic diagram of the grating sample with normalized transmission spectrum, and normalized sound pressure distribution of the 1D grating: (a) Schematic diagram of the grating sample; (b) transmission spectrum of the plane wave through the grating sample; (c) the pressure field at resonant frequency of 39.6 kHz; (d) the pressure field at off resonant frequency of 38 kHz.

    图 2  泡沫球位置变化在X方向上从–1.5d到1.5d, 在Z方向上从0.24d到1.2d, 半径约为$ r = 0.5\; {\text{mm}} $的泡沫球在一维声栅上所受归一化声辐射力空间分布图 (a) 黑色三角形箭头表示声辐射力所指方向, 颜色深浅表示声辐射力的大小, 灰色矩形表示一维声栅; (b) X方向上泡沫球位置变化从–0.5d到0.5d的归一化声辐射力Fx (蓝色实线)与Fz (红色实线)曲线图

    Fig. 2.  Spatial distribution of the normalized acoustic radiation force on a one-dimensional sound grid for a foam sphere with a radius of about r = 0.5 mm varying from –1.5d to 1.5d in the X-direction and from 0.24d to 1.2d in the Z-direction: (a) The black triangle arrow indicates the direction of the acoustic radiation force, the color shade indicates the size of the acoustic radiation force, and the gray rectangle indicates the one-dimensional acoustic grid; (b) plot of normalized acoustic radiation force Fx (blue solid line) versus Fz (red solid line) for the change in position of the foam sphere from –0.5d to 0.5d in the X-direction.

    图 3  声辐射力操控实验平台示意图

    Fig. 3.  Schematic diagram of acoustic radiation force manipulation experimental platform.

    图 4  泡沫球操控实验效果图 (a) 超声开启前泡沫球分布图; (b) 超声开启后泡沫球排列图

    Fig. 4.  Experimental effect of foam ball manipulation: (a) Distribution of foam balls before ultrasonic opening; (b) arrangement of foam balls after ultrasonic opening.

    表 1  材料声学参数

    Table 1.  Material acoustic parameters.

    密度/(kg·m–3)纵波波速/(m·s–1)横波波速/(m·s–1)
    空气1.29340
    泡沫球100820550
    776060103320
    下载: 导出CSV
  • [1]

    Borgnis F E 1953 Rev. Mod. Phys. 25 653Google Scholar

    [2]

    Takahi H, Yasutaka H, Akio A, Hideki N, Masahiko K, Naoki I 1993 J. Acoust. Soc. Am. 93 154Google Scholar

    [3]

    Tatsuki F, Asier M, Bruce W, Thomas L H 2019 Appl. Phys. Lett. 115 064101Google Scholar

    [4]

    Hirayama R, Martinez P D, Masuda N, Subramanian S 2019 Nature 575 320Google Scholar

    [5]

    Smalley D E, Nygaard E, Squire K, Van W J, Rasmussen J, Gneiting S, Qaderi K, Goodsell J, Roger W, Lindsey M 2018 Nature 553 486Google Scholar

    [6]

    Wiklund M, Radel S, Hawkes J J 2013 Lab Chip 13 25Google Scholar

    [7]

    Gao Y, Harder R, Southworth S H, Guest J R, Huang X J, Yan Z J, Ocola L E, Yifat Y, Sule N, Ho P J 2019 Proc. Natl. Acad. Sci. U. S. A. 116 4018Google Scholar

    [8]

    Ozcelik A, Rufo J, Guo F, Gu Y Y, Li P, Lata J, Huang T J 2018 Nat. Methods 15 1021Google Scholar

    [9]

    Li F, Cai F Y, Zhang L K, Liu Z Y, Li F, Meng L, Wu J R, Li J Y, Zhang X F, Zheng H R 2020 Phys. Rev. A 13 044077Google Scholar

    [10]

    Li F, Cai F Y, Liu Z Y, Meng L, Qian M, Wang C, Cheng Q, Qian M L, Liu X, Wu J R, Li J Y, Zheng H R 2014 Phys. Rev. A 1 051001Google Scholar

    [11]

    Melde K, Mark A G, Qiu T, Fischer P 2016 Nature 537 518Google Scholar

    [12]

    Memoli G, Caleap M, Asakawa M, Sahoo D R, Drinkwater B W, Subramanian S 2017 Nat. Commun. 8 14608Google Scholar

    [13]

    黄先玉, 蔡飞燕, 李文成, 郑海荣, 何兆剑, 邓科, 赵鹤平 2017 物理学报 66 044301Google Scholar

    Huang X Y, Cai F Y, Li W C, Zheng H R, He Z J, Deng K, Zhao H P 2017 Acta Phys. Sin. 66 044301Google Scholar

    [14]

    冯若, 姚锦钟, 关立勋 1999 超声手册 (南京: 南京大学出版社) 128

    Feng R, Yao J Z, Guan L X 1999 Ultrasonics Handbook (Nanjing: Nanjin University Press) 128 (in Chinese)

    [15]

    Sweden S https://cn.comsol.com/ [2022-9-1]

    [16]

    Lu M H, Liu X K, Feng L, Li J, Huang C P, Chen Y F, ZhuY Y, Zhu S, Ming N 2007 Phys. Rev. Lett. 99 174301Google Scholar

    [17]

    Zhu X F, Liang B, Kan W W, Peng Y G, Cheng J C 2016 Phys. Rev. A 5 054015Google Scholar

    [18]

    Gor'kov L P 1962 Sov. Phys. Dokl. 6 773

    [19]

    Bruus H 2012 Lab Chip 12 1014Google Scholar

    [20]

    Xu D, Cai F Y, Chen M, Li F, Wang C, Meng L, Xu D H, Wang W, Wu J R, Zheng H R 2019 Ultrasonics 93 18Google Scholar

    [21]

    He Z J, Jia H, Qiu C Y, Ye Y T, Hao R, Ke M Z, Liu Z Y 2011 Phys. Rev. B 83 132101Google Scholar

  • [1] 王俊, 蔡飞燕, 张汝钧, 李永川, 周伟, 李飞, 邓科, 郑海荣. 基于压电声子晶体板波声场的微粒操控. 物理学报, 2024, 73(7): 074302. doi: 10.7498/aps.73.20231886
    [2] 陈聪, 张若钦, 李锋, 李志远. 基于亚波长管道增强的漩涡声场悬浮操控微粒和液滴的实验研究. 物理学报, 2023, 72(12): 124302. doi: 10.7498/aps.72.20230383
    [3] 王燕萍, 蔡飞燕, 李飞, 张汝钧, 李永川, 王金萍, 张欣, 郑海荣. 基于二维声子晶体板共振声场的微粒操控. 物理学报, 2023, 72(14): 144207. doi: 10.7498/aps.72.20230099
    [4] 潘瑞琪, 李凡, 杜芷玮, 胡静, 莫润阳, 王成会. 平面波声场中内置偏心液滴的弹性球壳声辐射力. 物理学报, 2023, 72(5): 054302. doi: 10.7498/aps.72.20222155
    [5] 刘浪, 王一平. 基于可调频光力晶格中声子-光子拓扑性质的模拟和探测. 物理学报, 2022, 71(22): 224202. doi: 10.7498/aps.71.20221286
    [6] 臧雨宸, 苏畅, 吴鹏飞, 林伟军. 零阶Bessel驻波场中任意粒子声辐射力和力矩的Born近似. 物理学报, 2022, 71(10): 104302. doi: 10.7498/aps.71.20212251
    [7] 臧雨宸, 林伟军, 苏畅, 吴鹏飞. Gauss声束对离轴椭圆柱的声辐射力矩. 物理学报, 2021, 70(8): 084301. doi: 10.7498/aps.70.20201635
    [8] 朱纪霖, 高东宝, 曾新吾. 基于相位变换声镊的单个微粒平面移动操控. 物理学报, 2021, 70(21): 214302. doi: 10.7498/aps.70.20210981
    [9] 黄先玉, 蔡飞燕, 李文成, 郑海荣, 何兆剑, 邓科, 赵鹤平. 空气中一维声栅对微粒的声操控. 物理学报, 2017, 66(4): 044301. doi: 10.7498/aps.66.044301
    [10] 张宇, 唐志列, 吴泳波, 束刚. 基于声透镜的三维光声成像技术. 物理学报, 2015, 64(24): 240701. doi: 10.7498/aps.64.240701
    [11] 毕欣, 黄林, 杜劲松, 齐伟智, 高扬, 荣健, 蒋华北. 脉冲微波辐射场空间分布的热声成像研究. 物理学报, 2015, 64(1): 014301. doi: 10.7498/aps.64.014301
    [12] 聂永发, 朱海潮. 利用源强密度声辐射模态重建声场. 物理学报, 2014, 63(10): 104303. doi: 10.7498/aps.63.104303
    [13] 陈湛旭, 唐志列, 万 巍, 何永恒. 基于声透镜成像系统的光声层析成像. 物理学报, 2006, 55(8): 4365-4370. doi: 10.7498/aps.55.4365
    [14] 张碧星, 汪承灏, Anders Bostr?m. 压电条SH声辐射场研究. 物理学报, 2005, 54(5): 2111-2117. doi: 10.7498/aps.54.2111
    [15] 卢新培, 潘垣, 张寒虹. 水中脉冲放电的电特性与声辐射特性研究. 物理学报, 2002, 51(7): 1549-1553. doi: 10.7498/aps.51.1549
    [16] 王佐卿. 声表面波在线性调频声栅上作Bragg衍射后的聚焦声场. 物理学报, 1988, 37(3): 388-395. doi: 10.7498/aps.37.388
    [17] 王佐卿, 汪承浩, 周素华. 声表面波在声栅上的反常Bragg衍射. 物理学报, 1988, 37(3): 379-387. doi: 10.7498/aps.37.379
    [18] 王佐卿, 周素华, 汪承浩. 声表面波在声栅上的Bragg衍射. 物理学报, 1983, 32(2): 156-167. doi: 10.7498/aps.32.156
    [19] 钱祖文. 计算线源声参量阵辐射场的新方法. 物理学报, 1981, 30(11): 1479-1487. doi: 10.7498/aps.30.1479
    [20] 钱祖文. 关于声散射声. 物理学报, 1976, 25(6): 472-480. doi: 10.7498/aps.25.472
计量
  • 文章访问数:  3342
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-14
  • 修回日期:  2022-10-16
  • 上网日期:  2022-11-05
  • 刊出日期:  2023-01-20

/

返回文章
返回