-
量子信息与人工智能是近年来的两个前沿研究领域, 取得了诸多改变传统科学的进展, 实现这两个领域的交叉融合成为科学家关注的热点问题. 尽管学者们在这方面已进行了许多探索, 借助它们模拟开放多体量子系统的稳态和动力学性质, 但是量子混合态的神经网络的精确表示问题仍待研究. 本文致力于量子混合态的神经网络表示问题. 借助两种神经网络架构, 构建了具有一般输入可观测量的神经网络量子混合拟态(NNQMVS) 与神经网络量子混合态(NNQMS), 分别探讨了它们的性质, 得到了张量积运算、局部酉运算下NNQMVS与NNQMS的相关结论. 为了量化给定混合态分别由规范化的NNQMVS与NNQMS逼近的能力, 分别定义了它由规范化NNQMVS 与NNQMS逼近的最佳逼近度, 给出了一般混合态能被规范化的NNQMVS与NNQMS表示的充要条件, 并探究了能用这两种神经网络架构表示的混合态的类型, 给出了相应的神经网络表示.Quantum information and artificial intelligence are the two most cutting-edge research fields in recent years, which have made a lot of progress in changing the traditional science. It has become a hot topic of research to realize the cross fusion of the two fields. Scholars have made many explorations in this field. For example, they have simulated the steady state and the dynamics of open quantum many-body systems. However, little attention has been paid to the problem of accurate representation of neural networks. In this paper, we focus on neural network representations of quantum mixed states. We first propose neural network quantum mixed virtual states (NNQMVS) and neural network quantum mixed states (NNQMS) with general input observables by using two neural network architectures, respectively. Then we explore their properties and obtain the related conclusions of NNQMVS and NNQMS under tensor product operation and local unitary operation.To quantify the approximation degree of normalized NNQMVS and NNQMS for a given mixed state, we define the best approximation degree by using normalized NNQMVS and NNQMS, and obtain the necessary and sufficient conditions for the representability of a general mixed state by using normalized NNQMVS and NNQMS. Moreover, we explore the types of mixed states that can be represented by these two neural network architectures and show their accurate neural network representations.
-
Keywords:
- neural network /
- quantum mixed state /
- local unitary operation /
- tensor product
[1] LeCun Y, Bengio Y, Hinton G 2015 Nature 521 436Google Scholar
[2] Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S 2017 Nature 549 195Google Scholar
[3] Ciliberto C, Herbster M, Ialongo A D, Pontil M, Rocchetto A, Severini S, Wossnig L 2018 Proc. R. Soc. A 474 20170551Google Scholar
[4] Schollwöck U 2011 Ann. Phys. 326 96Google Scholar
[5] Verstraete F, Murg V, Cirac J I 2008 Adv. Phys. 57 143Google Scholar
[6] Schuch N, Wolf M M, Verstraete F, Cirac J I 2008 Phys. Rev. Lett. 100 040501Google Scholar
[7] Ceperley D, Alder B 1986 Science 231 555Google Scholar
[8] Loh E Y, Gubernatis J E, Scalettar R T, White S R, Scalapino D J, Sugar R L 1990 Phys. Rev. B 41 9301
[9] Schuch N, Wolf M M, Verstraete F, Cirac J I 2007 Phys. Rev. Lett. 98 140506Google Scholar
[10] Verstraete F, Wolf M M, Perez-Garcia D, Cirac J I 2006 Phys. Rev. Lett. 96 220601Google Scholar
[11] Carleo G, Troyer M 2017 Science 355 602Google Scholar
[12] 程嵩, 陈靖, 王磊 2017 物理 46 416Google Scholar
Cheng S, Chen J, Wang L 2017 Physics 46 416Google Scholar
[13] 蔡子 2017 物理 46 590Google Scholar
Cai Z 2017 Physics 46 590Google Scholar
[14] Ma Y C, Yung M H 2018 Npj Quantum Inform. 4 34Google Scholar
[15] Gao J, Qiao L F, Jiao Z Q, Ma Y C, Hu C Q, Ren R J, Yang A L, Tang H, Yung M H, Jin X M 2018 Phys. Rev. Lett. 120 240501Google Scholar
[16] Qiu P H, Chen X G, Shi Y W 2019 IEEE Access 7 94310Google Scholar
[17] Deng D L, Li X P, Sarma S D 2017 Phys. Rev. B 96 195145Google Scholar
[18] Deng D L, Li X P, Sarma S D 2017 Phys. Rev. X 7 021021
[19] Deng D L 2018 Phys. Rev. Lett. 120 240402Google Scholar
[20] Gao X, Duan L M 2017 Nat. Commun. 8 662Google Scholar
[21] Lu S, Gao X, Duan L M 2019 Phys. Rev. B 99 155136
[22] Gao X, Zhang Z Y, Duan L M 2018 Sci. Adv. 4 eaat9004Google Scholar
[23] Carleo G, Nomura Y, Imada M 2018 Nat. Commun. 9 5322Google Scholar
[24] Glasser I, Pancotti N, August M, Rodriguez I D, Cirac J I 2018 Phys. Rev. X 8 011006
[25] Jia Z A, Yi B, Zhai R, Wu Y C, Guo G C, Guo G P 2019 Adv. Quantum. Technol. 2 1800077Google Scholar
[26] Hu L, Wu S H, Cai W Z, Ma Y W, Mu X J, Xu Y, Wang H Y, Song Y P, Deng D L, Zou C L, Sun L Y 2019 Sci. Adv. 5 2761Google Scholar
[27] Yang Y, Cao H X, Zhang Z J 2020 Sci. China-Phys. Mech. Astron. 63 210312Google Scholar
[28] Sarma S D, Deng D L, Duan L M 2019 Phys. Today 72 48
[29] Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Maranto L V, Zdeborová L 2019 Rev. Mod. Phys. 91 045002Google Scholar
[30] Lu S R, Duan L M, Deng D L 2020 Phys. Rev. Res. 2 033212Google Scholar
[31] 杨光, 刘琦, 聂敏, 刘原华, 张美玲 2022 物理学报 71 100301Google Scholar
Yang G, Liu Q, Nie M, Liu Y H, Zhang M L 2022 Acta Phys. Sin. 71 100301Google Scholar
[32] 陈以鹏, 刘靖阳, 朱佳莉, 方伟, 王琴 2022 物理学报 71 220301Google Scholar
Chen Y P, Liu J Y, Zhu J L, Fang W, Wang Q 2022 Acta Phys. Sin. 71 220301Google Scholar
[33] Li W K, Lu S, Deng D L 2021 Sci. China-Phys. Mech. Astron. 64 100312Google Scholar
[34] Li W K, Deng D L 2022 Sci. China-Phys. Mech. Astron. 65 220301Google Scholar
[35] Torlai G, Melko R G 2018 Phys. Rev. Lett. 120 240503Google Scholar
[36] Hartmann M J, Carleo G 2019 Phys. Rev. Lett. 122 250502Google Scholar
[37] Vicentini F, Biella A, Regnault N, Ciuti C 2019 Phys. Rev. Lett. 122 250503Google Scholar
[38] Nagy A, Savona V 2019 Phys. Rev. Lett. 122 250501
[39] Yoshioka N, Hamazaki R 2019 Phys. Rev. B 99 214306Google Scholar
-
-
[1] LeCun Y, Bengio Y, Hinton G 2015 Nature 521 436Google Scholar
[2] Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S 2017 Nature 549 195Google Scholar
[3] Ciliberto C, Herbster M, Ialongo A D, Pontil M, Rocchetto A, Severini S, Wossnig L 2018 Proc. R. Soc. A 474 20170551Google Scholar
[4] Schollwöck U 2011 Ann. Phys. 326 96Google Scholar
[5] Verstraete F, Murg V, Cirac J I 2008 Adv. Phys. 57 143Google Scholar
[6] Schuch N, Wolf M M, Verstraete F, Cirac J I 2008 Phys. Rev. Lett. 100 040501Google Scholar
[7] Ceperley D, Alder B 1986 Science 231 555Google Scholar
[8] Loh E Y, Gubernatis J E, Scalettar R T, White S R, Scalapino D J, Sugar R L 1990 Phys. Rev. B 41 9301
[9] Schuch N, Wolf M M, Verstraete F, Cirac J I 2007 Phys. Rev. Lett. 98 140506Google Scholar
[10] Verstraete F, Wolf M M, Perez-Garcia D, Cirac J I 2006 Phys. Rev. Lett. 96 220601Google Scholar
[11] Carleo G, Troyer M 2017 Science 355 602Google Scholar
[12] 程嵩, 陈靖, 王磊 2017 物理 46 416Google Scholar
Cheng S, Chen J, Wang L 2017 Physics 46 416Google Scholar
[13] 蔡子 2017 物理 46 590Google Scholar
Cai Z 2017 Physics 46 590Google Scholar
[14] Ma Y C, Yung M H 2018 Npj Quantum Inform. 4 34Google Scholar
[15] Gao J, Qiao L F, Jiao Z Q, Ma Y C, Hu C Q, Ren R J, Yang A L, Tang H, Yung M H, Jin X M 2018 Phys. Rev. Lett. 120 240501Google Scholar
[16] Qiu P H, Chen X G, Shi Y W 2019 IEEE Access 7 94310Google Scholar
[17] Deng D L, Li X P, Sarma S D 2017 Phys. Rev. B 96 195145Google Scholar
[18] Deng D L, Li X P, Sarma S D 2017 Phys. Rev. X 7 021021
[19] Deng D L 2018 Phys. Rev. Lett. 120 240402Google Scholar
[20] Gao X, Duan L M 2017 Nat. Commun. 8 662Google Scholar
[21] Lu S, Gao X, Duan L M 2019 Phys. Rev. B 99 155136
[22] Gao X, Zhang Z Y, Duan L M 2018 Sci. Adv. 4 eaat9004Google Scholar
[23] Carleo G, Nomura Y, Imada M 2018 Nat. Commun. 9 5322Google Scholar
[24] Glasser I, Pancotti N, August M, Rodriguez I D, Cirac J I 2018 Phys. Rev. X 8 011006
[25] Jia Z A, Yi B, Zhai R, Wu Y C, Guo G C, Guo G P 2019 Adv. Quantum. Technol. 2 1800077Google Scholar
[26] Hu L, Wu S H, Cai W Z, Ma Y W, Mu X J, Xu Y, Wang H Y, Song Y P, Deng D L, Zou C L, Sun L Y 2019 Sci. Adv. 5 2761Google Scholar
[27] Yang Y, Cao H X, Zhang Z J 2020 Sci. China-Phys. Mech. Astron. 63 210312Google Scholar
[28] Sarma S D, Deng D L, Duan L M 2019 Phys. Today 72 48
[29] Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Maranto L V, Zdeborová L 2019 Rev. Mod. Phys. 91 045002Google Scholar
[30] Lu S R, Duan L M, Deng D L 2020 Phys. Rev. Res. 2 033212Google Scholar
[31] 杨光, 刘琦, 聂敏, 刘原华, 张美玲 2022 物理学报 71 100301Google Scholar
Yang G, Liu Q, Nie M, Liu Y H, Zhang M L 2022 Acta Phys. Sin. 71 100301Google Scholar
[32] 陈以鹏, 刘靖阳, 朱佳莉, 方伟, 王琴 2022 物理学报 71 220301Google Scholar
Chen Y P, Liu J Y, Zhu J L, Fang W, Wang Q 2022 Acta Phys. Sin. 71 220301Google Scholar
[33] Li W K, Lu S, Deng D L 2021 Sci. China-Phys. Mech. Astron. 64 100312Google Scholar
[34] Li W K, Deng D L 2022 Sci. China-Phys. Mech. Astron. 65 220301Google Scholar
[35] Torlai G, Melko R G 2018 Phys. Rev. Lett. 120 240503Google Scholar
[36] Hartmann M J, Carleo G 2019 Phys. Rev. Lett. 122 250502Google Scholar
[37] Vicentini F, Biella A, Regnault N, Ciuti C 2019 Phys. Rev. Lett. 122 250503Google Scholar
[38] Nagy A, Savona V 2019 Phys. Rev. Lett. 122 250501
[39] Yoshioka N, Hamazaki R 2019 Phys. Rev. B 99 214306Google Scholar
计量
- 文章访问数: 3225
- PDF下载量: 99
- 被引次数: 0