搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

645 MeV Xe35+离子辐照SiO2在线光发射的研究

徐秋梅 缑洁 张崇宏 杨治虎 王彦瑜 韩旭孝 李建洋

引用本文:
Citation:

645 MeV Xe35+离子辐照SiO2在线光发射的研究

徐秋梅, 缑洁, 张崇宏, 杨治虎, 王彦瑜, 韩旭孝, 李建洋

In situ study of light emission from SiO2 irradiated by 645 MeV Xe35+ ions

Xu Qiu-Mei, Gou Jie, Zhang Chong-Hong, Yang Zhi-Hu, Wang Yan-Yu, Han Xu-Xiao, Li Jian-Yang
PDF
HTML
导出引用
  • 离子辐照可以改变二氧化硅(SiO2)的晶体结构和光学性质. 采用 645 MeV Xe35+离子辐照SiO2单晶, 在辐照过程中, 利用光栅光谱仪测量在200—800 nm范围内的光发射. 在发射光谱中, 观测到中心位于461和631 nm的发射带. 这些发射带是弗伦克尔激子辐射退激产生的, 其强度与辐照离子能量和辐照离子剂量密切相关. 实验结果表明: 发射光强随离子在固体中的电子能损呈指数增加. 由于离子辐照对晶体造成损伤, 发射光谱强度随辐照剂量的增加而降低. 文中讨论了这些与晶体结构有关的发射带, 结合能量损失机制讨论了激子形成和退激过程. 快重离子辐照过程中发射光谱的原位测量对研究辐照改性具有重要意义, 有助于揭示离子辐照引起晶体损伤的物理机制.
    Silicon dioxide (SiO2) is an important component of nuclear reactor optical fiber and is also a candidate material for wast solidification. Owing to its special physical and chemical characteristics, it is used in many different technology fields like optics, electronics, energy orspace. Swift heavy ion irradiation can modify the crystal structure and optical property of optical material SiO2. Swift heavy ions deposit their energy mainly by inelastic interaction. Highly ionized lattice atoms may be formed along the trajectory, and a fraction of their electrical energy can be converted directly into the kinetic energy of the ions. The irradiation experiment is performed with Xeq+ ions at the irradiation terminal of the sector-focused cyclotron at heavy-ion research facility in Lanzhou (HIRFL). The on-line spectral measurement experiment is carried out during irradiation. In the darkroom, the UV-visible light emission from the target is focused into optical fiber by a collimating lens, and then is analyzed with the Sp-2558 spectrometer equipped with a 1200 g/mm optical grating blazed at 500 nm. In the present work, SiO2 single crystals are irradiated with 93–609 MeV Xeq+ ions with a dose in a range of 1×1011–3×1011 ions/cm2. During irradiation, the emission spectra, in a range of 200–800 nm, from SiO2 irradiated by 93, 245, 425 and 609 MeV Xeq+ ions, are obtained. Two emission bands centered at 461 and 631 nm are observed. These emission bands are produced by Frenkel exciton radiation de-excitation and their intensities are closely related to the irradiated ion energy and radiation dose. The results show that the light intensity increases with the electron energy loss index increasing. And owing to crystal damage caused by ion irradiation, the intensity of emission spectrum decreases with the augment of irradiation dose. Ion loses its energy throughout the ion track via Sn and Se interacting with target atoms and electrons respectively, and the energy lost by the ion is estimated by using SRIM code. The SRIM simulated ion ranges and recoil atom distribution, target ionization (energy loss to target electrons), damage production in SiO2 are presented. Based on the energy deposition process, the emission bands related to the crystal structure itself are discussed. It indicates that electron energy loss plays a leading role in the process of light emission. In-situ measurement of the optical emission is of great significance in studying the irradiation modification and can help to understand the process of crystal damage caused by ion irradiation.
      通信作者: 张崇宏, c.h.zhang@impcas.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 12104463, U1532262)资助的课题.
      Corresponding author: Zhang Chong-Hong, c.h.zhang@impcas.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104463, U1532262).
    [1]

    Yang P, An YL, Yang D Y, Li Y H, Chen J M 2020 Ceram. Int. 46 21367Google Scholar

    [2]

    Li Y H, Wen J, Wang Y Q, Wang Z G, Tang M, Valdez J A, Sickafus K E 2012 Nucl. Instrum. Methods Phys. Res. , Sect. B 287 130Google Scholar

    [3]

    Devine R A B 1994 Nucl. Instrum. Methods Phys. Res. , Sect. B 91 378Google Scholar

    [4]

    Zhu Z, Jung P, Langenscheidt E 1997 J. Non-Cryst. Solids 217 173Google Scholar

    [5]

    Zhu Z Y, Jung P 1994 Nucl. Instrum. Methods Phys. Res. , Sect. B 91 269Google Scholar

    [6]

    Saito K, Ikushima A J 2002 J. Appl. Phys. 91 4886Google Scholar

    [7]

    Wang R P, Tai N, Saitio K, Ikushima A J 2005 J. Appl. Phys. 98 023701Google Scholar

    [8]

    Xue S W, Zu X T, Su H Q, Zheng W G, Xia X, Hong D, Yang C R 2007 Chin. Phys. 16 1119Google Scholar

    [9]

    Imai H, Arai K, Imagawa H, Hosono H, Abe Y 1988 Phys. Rev. B 38 12772Google Scholar

    [10]

    Nishikawa H, Nakamura R, Tohmon R, Ohki Y, Sakurai Y, Nagasawa K, Hama Y 1990 Phys. Rev. B 41 7828Google Scholar

    [11]

    Ziegler J F 2004 Nucl. Instrum. Methods Phys. Res., Sect. B 219 1027

    [12]

    Bettger K (姜东兴, 刘洪涛 译) 1982 重离子物理实验方法 (北京: 原子能出版社) 第149页

    Bettger K (translated by Jiang Dongxing, Liu Hongtao) 1982 Experimental Methods in Heavy Ion Physics (Beijing: Atomic Energy Press) p149 (in Chinese)

    [13]

    Stevens-Kalceff M A 2011 J. Phys. D: Appl. Phys. 44 255402Google Scholar

    [14]

    Kaddouri A, Ashraf I, El Fqih M A, Targaoui H, El Boujlaïdi A, Berrada K 2009 Appl. Surf. Sci. 256 116Google Scholar

    [15]

    Song Y, Zhang C H, Yang Y T, Gou J, Zhang L Q, He D Y 2013 Opt. Mater. 35 1057Google Scholar

    [16]

    Patra P, Shah S, Toulemonde M, Sulania I, Singh F 2022 Radiat. Eff. Defects Solids 177 513Google Scholar

    [17]

    Meftah A, Brisard F, Costantini J M, Dooryhee E, Hage-Ali M, Hervieu M, Stoquert J P, Studer F, Toulemonde M 1994 Phys. Rev. B 49 12457Google Scholar

    [18]

    Kluth P, Schnohr C S, Pakarinen O H, Djurabekova F, Sprouster D J, Giulian R, Ridgway M C, Byrne A P, Trautmann C, Cookson D J, Nordlund K, Toulemonde M 2008 Phys. Rev. Lett. 101 175503Google Scholar

    [19]

    Toulemonde M, Weber W J, Li G S, Shutthanandan V, Kluth P, Yang T F, Wang Y G, Zhang Y W 2011 Phys. Rev. B 83 054106Google Scholar

    [20]

    Schwartz K, Trautmann C, El-Said A S, Neumann R, Toulemonde M, Knolle W 2004 Phys. Rev. B 70 184104Google Scholar

    [21]

    Liu C B, Wang Z G 2011 Chin. J. Lumin. 32 608Google Scholar

    [22]

    Udelson B J, Creedon J E, French J C 1957 J. Appl. Phys. 28 717Google Scholar

    [23]

    Liao L S, Bao X M, Zheng X Q, Li N S, Min N B 1996 Chin. J. Semicond. 17 789

  • 图 1  中能辐照终端束线系统示意图

    Fig. 1.  Schematic diagram of intermediate energy irradiation terminal beam system.

    图 2  快重离子辐照固体引起光发射测量装置示意图

    Fig. 2.  A schematic diagram of the experimental setup for the measurement of optical emission from the solid induced by swift heavy ions.

    图 3  245 MeV Xeq+离子辐照SiO2发射光谱

    Fig. 3.  The optical emission spectrum from SiO2 irradiated by 245 MeV Xeq+ ions.

    图 4  93—609 MeV Xeq+离子辐照SiO2发射谱461 nm处的光强度随离子动能的变化

    Fig. 4.  The intensity of emission bands of centered at 461 nm from SiO2 irradiated by 93–609 MeV Xeq+ ions as a function of kinetic energy.

    图 5  利用SRIM 程序计算93, 245, 425和609 MeV Xeq+离子在SiO2中的电子能损(Se)随辐照深度的变化

    Fig. 5.  Variation of electronic energy losses (Se) with the SiO2 depth for 93, 245, 425 and 609 MeV Xeq+ ion irradiation using SRIM code.

    图 6  利用SRIM 程序计算93, 245, 425和609 MeV Xeq+ 离子在SiO2中的核能损(Sn)随辐照深度的变化

    Fig. 6.  Variation of nuclear electronic energy losses (Sn) with the SiO2 depth for 93, 245, 425 and 609 MeV Xeq+ ion irradiation using SRIM code.

    图 7  SRIM模拟93 (a), 245 (b), 425 (c)和 609 (d) MeV Xeq+ 离子在SiO2中的离子射程和反冲原子分布

    Fig. 7.  SRIM simulated plot of ion ranges and recoil atom distribution of SiO2 target by 93(a), 245(b), 425(c) and 609 (d) MeV Xeq+ ion

    图 10  SRIM模拟93 (a), 245 (b), 425 (c) 和 609 (d) MeV Xeq+ 离子在SiO2中的移位损伤以及Si和O原子空位

    Fig. 10.  SRIM simulated plot of displacement damage of SiO2 target and vacancies of Si and O atoms with target depth by 93 (a), 245 (b), 425 (c) and 609 (d) MeV Xeq+ ion.

    图 8  SRIM模拟93 (a), 245 (b), 425 (c)和609 (d) MeV Xeq+ 离子在SiO2中的电离

    Fig. 8.  SRIM simulated plot of target ionization (energy loss to target electrons) of SiO2 target by 93 (a), 245 (b), 425 (c) and 609(d) MeV Xeq+ ion.

    图 9  SRIM模拟93 (a), 245 (b), 425 (c)和 609 (d) MeV Xeq+ 离子在SiO2中的移位损伤

    Fig. 9.  SRIM simulated plot of displacement damage of SiO2 target by 93 (a), 245 (b), 425 (c) and 609 (d) MeV Xeq+ ion.

    图 11  93—609 MeV Xeq+离子辐照SiO2发射谱461 nm处的光强度随电子能损的变化

    Fig. 11.  The intensity of emission bands of centered at 461 nm from SiO2 irradiated by 93–609 MeV Xeq+ ions as a function of electronic energy loss.

    图 12  609 MeV Xeq+离子辐照SiO2发射谱

    Fig. 12.  The optical emission spectra from SiO2 irradiate by 609 MeV Xeq+ ions.

    表 1  不同能量Xeq+离子辐照SiO2植入深度、电子能损和核能损

    Table 1.  the penetrating depth and, its electronic energy loss and nuclear energy loss of Xeq+ ion in SiO2.

    Ion energy
    /MeV
    Projected
    range/μm
    Electronic energy
    loss/(×104 keV·μm–1)
    Nuclear energy loss
    /(×10 keV·μm–1)
    60960.691.2581.518
    42546.141.2602.063
    24531.591.1833.283
    9317.540.92257.271
    下载: 导出CSV
  • [1]

    Yang P, An YL, Yang D Y, Li Y H, Chen J M 2020 Ceram. Int. 46 21367Google Scholar

    [2]

    Li Y H, Wen J, Wang Y Q, Wang Z G, Tang M, Valdez J A, Sickafus K E 2012 Nucl. Instrum. Methods Phys. Res. , Sect. B 287 130Google Scholar

    [3]

    Devine R A B 1994 Nucl. Instrum. Methods Phys. Res. , Sect. B 91 378Google Scholar

    [4]

    Zhu Z, Jung P, Langenscheidt E 1997 J. Non-Cryst. Solids 217 173Google Scholar

    [5]

    Zhu Z Y, Jung P 1994 Nucl. Instrum. Methods Phys. Res. , Sect. B 91 269Google Scholar

    [6]

    Saito K, Ikushima A J 2002 J. Appl. Phys. 91 4886Google Scholar

    [7]

    Wang R P, Tai N, Saitio K, Ikushima A J 2005 J. Appl. Phys. 98 023701Google Scholar

    [8]

    Xue S W, Zu X T, Su H Q, Zheng W G, Xia X, Hong D, Yang C R 2007 Chin. Phys. 16 1119Google Scholar

    [9]

    Imai H, Arai K, Imagawa H, Hosono H, Abe Y 1988 Phys. Rev. B 38 12772Google Scholar

    [10]

    Nishikawa H, Nakamura R, Tohmon R, Ohki Y, Sakurai Y, Nagasawa K, Hama Y 1990 Phys. Rev. B 41 7828Google Scholar

    [11]

    Ziegler J F 2004 Nucl. Instrum. Methods Phys. Res., Sect. B 219 1027

    [12]

    Bettger K (姜东兴, 刘洪涛 译) 1982 重离子物理实验方法 (北京: 原子能出版社) 第149页

    Bettger K (translated by Jiang Dongxing, Liu Hongtao) 1982 Experimental Methods in Heavy Ion Physics (Beijing: Atomic Energy Press) p149 (in Chinese)

    [13]

    Stevens-Kalceff M A 2011 J. Phys. D: Appl. Phys. 44 255402Google Scholar

    [14]

    Kaddouri A, Ashraf I, El Fqih M A, Targaoui H, El Boujlaïdi A, Berrada K 2009 Appl. Surf. Sci. 256 116Google Scholar

    [15]

    Song Y, Zhang C H, Yang Y T, Gou J, Zhang L Q, He D Y 2013 Opt. Mater. 35 1057Google Scholar

    [16]

    Patra P, Shah S, Toulemonde M, Sulania I, Singh F 2022 Radiat. Eff. Defects Solids 177 513Google Scholar

    [17]

    Meftah A, Brisard F, Costantini J M, Dooryhee E, Hage-Ali M, Hervieu M, Stoquert J P, Studer F, Toulemonde M 1994 Phys. Rev. B 49 12457Google Scholar

    [18]

    Kluth P, Schnohr C S, Pakarinen O H, Djurabekova F, Sprouster D J, Giulian R, Ridgway M C, Byrne A P, Trautmann C, Cookson D J, Nordlund K, Toulemonde M 2008 Phys. Rev. Lett. 101 175503Google Scholar

    [19]

    Toulemonde M, Weber W J, Li G S, Shutthanandan V, Kluth P, Yang T F, Wang Y G, Zhang Y W 2011 Phys. Rev. B 83 054106Google Scholar

    [20]

    Schwartz K, Trautmann C, El-Said A S, Neumann R, Toulemonde M, Knolle W 2004 Phys. Rev. B 70 184104Google Scholar

    [21]

    Liu C B, Wang Z G 2011 Chin. J. Lumin. 32 608Google Scholar

    [22]

    Udelson B J, Creedon J E, French J C 1957 J. Appl. Phys. 28 717Google Scholar

    [23]

    Liao L S, Bao X M, Zheng X Q, Li N S, Min N B 1996 Chin. J. Semicond. 17 789

  • [1] 尹昊, 宋通, 彭雄刚, 张鹏, 于润升, 陈喆, 曹兴忠, 王宝义. 聚乙烯亚胺改性介孔二氧化硅SBA-15微观结构的小角X射线散射及正电子湮没谱学研究. 物理学报, 2023, 72(11): 114101. doi: 10.7498/aps.72.20230265
    [2] 刘祥群, 刘宇, 凌艺铭, 雷久侯, 曹金祥, 李瑾, 钟育民, 谌明, 李艳华. 等离子体风洞中释放二氧化碳降低电子密度. 物理学报, 2022, 71(14): 145202. doi: 10.7498/aps.71.20212353
    [3] 崔涛, 王康妮, 高凯歌, 钱林勇. 带有多孔二氧化硅间隔层的导模共振光栅实现染料激光器发射增强. 物理学报, 2021, 70(1): 014201. doi: 10.7498/aps.70.20201017
    [4] 陆海林, 段芳莉. 硅基材料界面石墨烯片层运动行为及其摩擦特性. 物理学报, 2021, 70(14): 143101. doi: 10.7498/aps.70.20210088
    [5] 虞洋, 赵永涛, 王瑜玉, 王兴, 程锐, 周贤明, 李永峰, 刘世东, 雷瑜, 孙渊博, 曾利霞. 近玻尔速度Ne2+离子穿过碳膜引起的电子发射. 物理学报, 2013, 62(15): 157901. doi: 10.7498/aps.62.157901
    [6] 镓填充二氧化硅纳米管的电子束诱导的反常膨胀(已撤稿). 物理学报, 2012, 61(18): 186102. doi: 10.7498/aps.61.186102
    [7] 张磊, 叶辉, 皇甫幼睿, 刘旭. 氧化硅缓冲层对于退火形成锗量子点的作用研究. 物理学报, 2011, 60(7): 076103. doi: 10.7498/aps.60.076103
    [8] 张岩, 陈雪风, 齐凯天, 李兵, 杨传路, 盛勇. (SiO2)n-(n≤7)团簇的密度泛函研究. 物理学报, 2010, 59(7): 4598-4601. doi: 10.7498/aps.59.4598
    [9] 徐国亮, 吕文静, 刘玉芳, 朱遵略, 张现周, 孙金锋. 外电场作用下二氧化硅分子的光激发特性研究. 物理学报, 2009, 58(5): 3058-3063. doi: 10.7498/aps.58.3058
    [10] 张迎晨, 朱海燕, 吴红艳, 邱夷平. 氦等离子体处理对纳米二氧化硅溶胶涂覆T300碳纤维拉伸性能的影响. 物理学报, 2009, 58(13): 298-S305. doi: 10.7498/aps.58.298
    [11] 张迎晨, 朱海燕, 黄婧南, 邹静, 吴红艳, 邱夷平. 氧等离子体处理对纳米二氧化硅溶胶涂覆高强、高模聚乙烯纤维拉伸性能的影响. 物理学报, 2009, 58(13): 292-S297. doi: 10.7498/aps.58.292
    [12] 肖中银, 王廷云, 罗文芸, 王子华. 高能粒子辐照二氧化硅玻璃E′色心形成机理研究. 物理学报, 2008, 57(4): 2273-2277. doi: 10.7498/aps.57.2273
    [13] 丁宏林, 刘 奎, 王 祥, 方忠慧, 黄 健, 余林蔚, 李 伟, 黄信凡, 陈坤基. 控制氧化层对双势垒纳米硅浮栅存储结构性能的影响. 物理学报, 2008, 57(7): 4482-4486. doi: 10.7498/aps.57.4482
    [14] 赵永涛, 肖国青, 徐忠锋, Abdul Qayyum, 王瑜玉, 张小安, 李福利, 詹文龙. 高电荷态离子40Arq+与Si表面作用中的电子发射产额. 物理学报, 2007, 56(10): 5734-5738. doi: 10.7498/aps.56.5734
    [15] 王长顺, 潘 煦, Urisu Tsuneo. 同步辐射光激励的二氧化硅薄膜刻蚀研究. 物理学报, 2006, 55(11): 6163-6167. doi: 10.7498/aps.55.6163
    [16] 孙友梅, 刘 杰, 张崇宏, 王志光, 金运范, 段敬来, 宋 银. 快重离子辐照聚酰亚胺潜径迹的电子能损效应. 物理学报, 2005, 54(11): 5269-5273. doi: 10.7498/aps.54.5269
    [17] 盛永刚, 徐 耀, 李志宏, 吴 东, 孙予罕, 吴中华. 气体吸附法测定二氧化硅干凝胶的分形维数. 物理学报, 2005, 54(1): 221-227. doi: 10.7498/aps.54.221
    [18] 仪桂云, 董 鹏, 王晓冬, 刘丽霞, 陈胜利. 三维有序大孔聚苯乙烯的制备及表征. 物理学报, 2004, 53(10): 3311-3315. doi: 10.7498/aps.53.3311
    [19] 汤晓燕, 张义门, 张鹤鸣, 张玉明, 戴显英, 胡辉勇. 碳化硅基上3UCVD淀积二氧化硅及其C-V性能测试. 物理学报, 2004, 53(9): 3225-3228. doi: 10.7498/aps.53.3225
    [20] 娄志东, 徐 征, 徐春祥, 于 磊, 滕 枫, 徐叙. 电致发光加速层二氧化硅的电子高场迁移率. 物理学报, 1998, 47(1): 139-145. doi: 10.7498/aps.47.139
计量
  • 文章访问数:  4131
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-13
  • 修回日期:  2022-11-14
  • 上网日期:  2022-12-09
  • 刊出日期:  2023-02-20

/

返回文章
返回