搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合失配模型预测金属/半导体界面热导

宗志成 潘东楷 邓世琛 万骁 杨哩娜 马登科 杨诺

引用本文:
Citation:

混合失配模型预测金属/半导体界面热导

宗志成, 潘东楷, 邓世琛, 万骁, 杨哩娜, 马登科, 杨诺

Mixed mismatch model predicted interfacial thermal conductance of metal/semiconductor interface

Zong Zhi-Cheng, Pan Dong-Kai, Deng Shi-Chen, Wan Xiao, Yang Li-Na, Ma Deng-Ke, Yang Nuo
PDF
HTML
导出引用
  • 声学失配模型和漫散射失配模型被广泛应用于界面热导的计算, 两种模型分别建立在极端光滑和粗糙界面的假设基础上. 由于实际界面结构与两种假设的区别较大, 造成两种模型预测结果与实际界面热导偏差较大. 近期提出的混合失配模型考虑了界面结构对声子镜面透射和漫散射透射比例的影响, 预测的准确度有所提高. 但该模型需要通过分子动力学模拟获取界面声子信息较为复杂. 为此, 本文通过引入测量的粗糙度数值简化混合失配模型, 并增加考虑界面结构对接触面积的影响, 实现对界面热导简单快捷、准确地预测. 基于该模型, 计算预测了金属(铝、铜、金)和半导体(硅、碳化硅、砷化镓、氮化镓)的界面热导. 并将铝/硅界面的结果与实验测量结果对比, 数据吻合较好. 该模型不仅有助于界面导热机理的理解, 而且利于与测量结果对比.
    The acoustic mismatch model and diffuse mismatch model are widely used to calculate interfacial thermal conductance. These two models are respectively based on the assumption of extremely smooth and rough interfaces. Owing to the great difference between the actual interface structure and the two hypotheses, the predictions of these two models deviate greatly from the actual interfacial thermal conductance. The recently proposed mixed mismatch model considers the effect of interface structure on the ratio of phonon specular transmission to diffuse scattering transmission, and the prediction accuracy is improved. However, this model requires molecular dynamics simulation to obtain phonon information at the interface. In this work, the mixed mismatch model is simplified by introducing the measured roughness value, and the influence of interface structure on the contact area is taken into account to achieve a simple, fast and accurate prediction of interface thermal conductance. Based on this model, the interfacial thermal conductances of metals (aluminum, copper, gold) and semiconductors (silicon, silicon carbide, gallium arsenide, gallium nitride) are calculated and predicted. The results of Al/Si interface are in good agreement with the experimental results. This model is helpful not only in understanding the mechanism of interface heat conduction, but also in comparing with the measurement results.
      通信作者: 杨诺, nuo@hust.edu.cn
    • 基金项目: 国家重点研发计划政府间联合项目(批准号: 2018YFE0127800 )资助的课题.
      Corresponding author: Yang Nuo, nuo@hust.edu.cn
    • Funds: Project supported by the National Key Research and Development Project of China (Grant No. 2018YFE0127800).
    [1]

    Wei N, Zhou C, Li Z, Ou B, Zhao K, Yu P, Li S, Zhao J 2022 Mater. Today Commun. 30 103147Google Scholar

    [2]

    Cui Y, Li M, Hu Y 2020 J. Mater. Chem. C 8 10568Google Scholar

    [3]

    Deng S, Xiao C, Yuan J, Ma D, Li J, Yang N, He H 2019 Appl. Phys. Lett. 115 101603Google Scholar

    [4]

    Cahill D G, Braun P V, Chen G, Clarke D R, Fan S, Goodson K E, Keblinski P, King W P, Mahan G D, Majumdar A, Maris H J, Phillpot S R, Pop E, Shi L 2014 Appl. Phys. Rev. 1 011305Google Scholar

    [5]

    Peng X, Jiang P, Ouyang Y, Lu S, Ren W, Chen J 2021 Nanotechnology 33 035707Google Scholar

    [6]

    Monachon C, Weber L, Dames C 2016 Annu. Rev. Mater. Res. 46 433Google Scholar

    [7]

    Scott E A, Gaskins J T, King S W, Hopkins P E 2018 APL Mater. 6 058302Google Scholar

    [8]

    Yang L, Wan X, Ma D, Jiang Y, Yang N 2021 Phys. Rev. B 103 155305Google Scholar

    [9]

    Liu B, Khvesyuk V I, Barinov A A, Wang M 2022 Int. J. Mech. Sci. 218 106993Google Scholar

    [10]

    Yang N, Luo T, Esfarjani K, Henry A, Tian Z, Shiomi J, Chalopin Y, Li B, Chen G 2015 J. Comput. Theor. Nanosci. 12 168Google Scholar

    [11]

    Rustam S, Schram M, Lu Z, Chaka A M, Rosenthal W S, Pfaendtner J 2022 ACS Appl. Mater. Interfaces 14 32590Google Scholar

    [12]

    Zhang P, Yuan P, Jiang X, Zhai S, Zeng J, Xian Y, Qin H, Yang D 2018 Small 14 1702769Google Scholar

    [13]

    Giri A, Hopkins P E 2020 Adv. Funct. Mater. 30 1903857Google Scholar

    [14]

    Ren W, Ouyang Y, Jiang P, Yu C, He J, Chen J 2021 Nano Lett. 21 2634Google Scholar

    [15]

    Duda J C, Hopkins P E 2012 Appl. Phys. Lett. 100 111602Google Scholar

    [16]

    Hopkins P E, Duda J C, Petz C W, Floro J A 2011 Phys. Rev. B 84 035438Google Scholar

    [17]

    Hopkins P E, Duda J C, Clark S P, Hains C P, Rotter T J, Phinney L M, Balakrishnan G 2011 Appl. Phys. Lett. 98 161913Google Scholar

    [18]

    Hopkins P E, Phinney L M, Serrano J R, Beechem T E 2010 Phys. Rev. B 82 085307Google Scholar

    [19]

    Lee E, Zhang T, Yoo T, Guo Z, Luo T 2016 ACS Appl. Mater. Interfaces 8 35505Google Scholar

    [20]

    Park W, Sood A, Park J, Asheghi M, Sinclair R, Goodson K E 2017 Nanoscale Microscale Thermophys. Eng. 21 134Google Scholar

    [21]

    Liang Y, Zhang B, Liu Z, Liu W 2021 Int. J. Heat Mass Transfer 174 121306Google Scholar

    [22]

    Xu Y, Kato R, Goto M 2010 J. Appl. Phys. 108 104317Google Scholar

    [23]

    Nylander A, Hansson J, Nilsson T, Ye L, Fu Y, Liu J 2021 ACS Appl. Mater. Interfaces 13 30992Google Scholar

    [24]

    Zhang Y, Ma D, Zang Y, Wang X, Yang N 2018 Front. Energy Res. 6 00048Google Scholar

    [25]

    Singh P, Seong M, Sinha S 2013 Appl. Phys. Lett. 102 181906Google Scholar

    [26]

    Hamaoui G, Horny N, Hua Z, Zhu T, Robillard J F, Fleming A, Ban H, Chirtoc M 2018 Sci. Rep. 8 11352Google Scholar

    [27]

    Giri A, Gaskins J T, Donovan B F, Szwejkowski C, Warzoha R J, Rodriguez M A, Ihlefeld J, Hopkins P E 2015 J. Appl. Phys. 117 105105Google Scholar

    [28]

    Chen J, Xu X, Zhou J, Li B 2022 Rev. Mod. Phys. 94 025002Google Scholar

    [29]

    Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605Google Scholar

    [30]

    Kazan M, Bruyant A, Royer P, Masri P 2010 Surf. Sci. Rep. 65 111Google Scholar

    [31]

    De Bellis L, Phelan P E, Prasher R S 2000 J. Thermophys. Heat Transfer 14 144Google Scholar

    [32]

    Ziman J M 1960 Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford: Oxford University Press)

    [33]

    Gale J D, Rohl A L 2003 Mol. Simul. 29 291Google Scholar

    [34]

    Mei J, Davenport J W 1992 Phys. Rev. B 46 21Google Scholar

    [35]

    Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983Google Scholar

    [36]

    Johnson R A 1989 Phys. Rev. B 39 12554Google Scholar

    [37]

    Stillinger F H, Weber T A 1985 Phys. Rev. B 31 5262Google Scholar

    [38]

    Tersoff J 1988 Phys. Rev. B 38 9902Google Scholar

    [39]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [40]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [41]

    Mulakaluri N, Persson B N J 2011 EPL 96 66003Google Scholar

    [42]

    Farber D L, Krisch M, Antonangeli D, Beraud A, Badro J, Occelli F, Orlikowski D 2006 Phys. Rev. Lett. 96 115502Google Scholar

    [43]

    Trampenau J, Petry W, Herzig C 1993 Phys. Rev. B 47 3132Google Scholar

    [44]

    Dal Corso A 2013 J. Phys. Condens. Matter 25 145401Google Scholar

    [45]

    Koh Y R, Shi J, Wang B, Hu R, Ahmad H, Kerdsongpanya S, Milosevic E, Doolittle W A, Gall D, Tian Z, Graham S, Hopkins P E 2020 Phys. Rev. B 102 205304Google Scholar

    [46]

    Debernardi A, Alouani M, Dreyssé H 2001 Phys. Rev. B 63 064305Google Scholar

    [47]

    Serrano J, Manjón F J, Romero A H, Ivanov A, Cardona M, Lauck R, Bosak A, Krisch M 2010 Phys. Rev. B 81 174304Google Scholar

    [48]

    Ghosh K, Singisetti U 2016 Appl. Phys. Lett. 109 072102Google Scholar

    [49]

    Fritsch J, Pavone P, Schroder U 1995 Phys. Rev. B 52 11326Google Scholar

    [50]

    Qi R, Shi R, Li Y, Sun Y, Wu M, Li N, Du J, Liu K, Chen C, Chen J, Wang F, Yu D, Wang E G, Gao P 2021 Nature 599 399Google Scholar

    [51]

    Cheng Z, Li R, Yan X, Jernigan G, Shi J, Liao M E, Hines N J, Gadre C A, Idrobo J C, Lee E, Hobart K D, Goorsky M S, Pan X, Luo T, Graham S 2021 Nat. Commun. 12 6901Google Scholar

  • 图 1  金属的声子色散关系和DOS (a) Al; (b) Cu; (c) Au

    Fig. 1.  Phonon dispersion relations and DOS of metals: (a) Al; (b) Cu; (c) Au.

    图 2  半导体的声子色散关系和DOS (a) Si; (b) SiC; (c) GaAs; (d) GaN

    Fig. 2.  Phonon dispersion relations and DOS of semiconductors: (a) Si; (b) SiC; (c) GaAs; (d) GaN.

    图 3  AMM, DMM和MMM (粗糙度: 0.28, 1.38, 2.16 nm)三种模型计算界面声子透射率频谱对比 (a) Al/Si界面; (b) Al/SiC界面; (c) Al/GaAs界面; (d) Al/GaN界面

    Fig. 3.  Comparison of phonon transmittance spectra calculated by AMM, DMM and MMM (roughness: 0.28, 1.38, 2.16 nm): (a) Al/Si interface; (b) Al/SiC interface; (c) Al/GaAs interface; (d) Al/GaN interface.

    图 4  界面接触系数S和粗糙度之间的关系, 其中ηmax为界面两侧材料的原子间经验势函数截止半径, 当界面粗糙度大于这个值时, 认为界面接触系数趋近于0, 对于Al/Si界面, 该值为4.7 nm

    Fig. 4.  Relationship between interface contact coefficient S and roughness, where ηmax is the cutoff radius of the interatomic empirical potential function of the materials on both sides of the interface. When the roughness of the interface is greater than this value, the interface contact coefficient is considered to approach 0, which is 4.7 nm for Al/Si interface.

    图 5  AMM, DMM和MMM (粗糙度: 0.28, 1.38, 2.16 nm)预测界面热导随温度的变化 (a) Al/Si界面; (b) Al/SiC界面; (c) Al/GaAs界面; (d) Al/GaN界面; 实验值来源于Hopkins等[16]的测量

    Fig. 5.  Curves of interfacial thermal conductance predicted by AMM, DMM and MMM (roughness: 0.28, 0.53, 1.38 nm) models as a function of temperature: (a) Al/Si interface; (b) Al/SiC interface; (c) Al/GaAs interface; (d) Al/GaN interface. The experimental values were obtained from measurements made by Hopkins et al.[16]

    图 6  MMM模型预测300 K时的金属(Al, Cu, Au)和半导体(Si, SiC, GaAs, GaN)界面热导, 其中粗糙度取值为0.28, 1.38, 2.16 nm

    Fig. 6.  Interfacial thermal conductance of metal (Al, Cu, Au) and semiconductor (Si, SiC, GaAs, GaN) interfaces predicted by MMM model at 300 K, roughness values: 0.28 nm, 1.38 nm, 2.16 nm.

  • [1]

    Wei N, Zhou C, Li Z, Ou B, Zhao K, Yu P, Li S, Zhao J 2022 Mater. Today Commun. 30 103147Google Scholar

    [2]

    Cui Y, Li M, Hu Y 2020 J. Mater. Chem. C 8 10568Google Scholar

    [3]

    Deng S, Xiao C, Yuan J, Ma D, Li J, Yang N, He H 2019 Appl. Phys. Lett. 115 101603Google Scholar

    [4]

    Cahill D G, Braun P V, Chen G, Clarke D R, Fan S, Goodson K E, Keblinski P, King W P, Mahan G D, Majumdar A, Maris H J, Phillpot S R, Pop E, Shi L 2014 Appl. Phys. Rev. 1 011305Google Scholar

    [5]

    Peng X, Jiang P, Ouyang Y, Lu S, Ren W, Chen J 2021 Nanotechnology 33 035707Google Scholar

    [6]

    Monachon C, Weber L, Dames C 2016 Annu. Rev. Mater. Res. 46 433Google Scholar

    [7]

    Scott E A, Gaskins J T, King S W, Hopkins P E 2018 APL Mater. 6 058302Google Scholar

    [8]

    Yang L, Wan X, Ma D, Jiang Y, Yang N 2021 Phys. Rev. B 103 155305Google Scholar

    [9]

    Liu B, Khvesyuk V I, Barinov A A, Wang M 2022 Int. J. Mech. Sci. 218 106993Google Scholar

    [10]

    Yang N, Luo T, Esfarjani K, Henry A, Tian Z, Shiomi J, Chalopin Y, Li B, Chen G 2015 J. Comput. Theor. Nanosci. 12 168Google Scholar

    [11]

    Rustam S, Schram M, Lu Z, Chaka A M, Rosenthal W S, Pfaendtner J 2022 ACS Appl. Mater. Interfaces 14 32590Google Scholar

    [12]

    Zhang P, Yuan P, Jiang X, Zhai S, Zeng J, Xian Y, Qin H, Yang D 2018 Small 14 1702769Google Scholar

    [13]

    Giri A, Hopkins P E 2020 Adv. Funct. Mater. 30 1903857Google Scholar

    [14]

    Ren W, Ouyang Y, Jiang P, Yu C, He J, Chen J 2021 Nano Lett. 21 2634Google Scholar

    [15]

    Duda J C, Hopkins P E 2012 Appl. Phys. Lett. 100 111602Google Scholar

    [16]

    Hopkins P E, Duda J C, Petz C W, Floro J A 2011 Phys. Rev. B 84 035438Google Scholar

    [17]

    Hopkins P E, Duda J C, Clark S P, Hains C P, Rotter T J, Phinney L M, Balakrishnan G 2011 Appl. Phys. Lett. 98 161913Google Scholar

    [18]

    Hopkins P E, Phinney L M, Serrano J R, Beechem T E 2010 Phys. Rev. B 82 085307Google Scholar

    [19]

    Lee E, Zhang T, Yoo T, Guo Z, Luo T 2016 ACS Appl. Mater. Interfaces 8 35505Google Scholar

    [20]

    Park W, Sood A, Park J, Asheghi M, Sinclair R, Goodson K E 2017 Nanoscale Microscale Thermophys. Eng. 21 134Google Scholar

    [21]

    Liang Y, Zhang B, Liu Z, Liu W 2021 Int. J. Heat Mass Transfer 174 121306Google Scholar

    [22]

    Xu Y, Kato R, Goto M 2010 J. Appl. Phys. 108 104317Google Scholar

    [23]

    Nylander A, Hansson J, Nilsson T, Ye L, Fu Y, Liu J 2021 ACS Appl. Mater. Interfaces 13 30992Google Scholar

    [24]

    Zhang Y, Ma D, Zang Y, Wang X, Yang N 2018 Front. Energy Res. 6 00048Google Scholar

    [25]

    Singh P, Seong M, Sinha S 2013 Appl. Phys. Lett. 102 181906Google Scholar

    [26]

    Hamaoui G, Horny N, Hua Z, Zhu T, Robillard J F, Fleming A, Ban H, Chirtoc M 2018 Sci. Rep. 8 11352Google Scholar

    [27]

    Giri A, Gaskins J T, Donovan B F, Szwejkowski C, Warzoha R J, Rodriguez M A, Ihlefeld J, Hopkins P E 2015 J. Appl. Phys. 117 105105Google Scholar

    [28]

    Chen J, Xu X, Zhou J, Li B 2022 Rev. Mod. Phys. 94 025002Google Scholar

    [29]

    Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605Google Scholar

    [30]

    Kazan M, Bruyant A, Royer P, Masri P 2010 Surf. Sci. Rep. 65 111Google Scholar

    [31]

    De Bellis L, Phelan P E, Prasher R S 2000 J. Thermophys. Heat Transfer 14 144Google Scholar

    [32]

    Ziman J M 1960 Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford: Oxford University Press)

    [33]

    Gale J D, Rohl A L 2003 Mol. Simul. 29 291Google Scholar

    [34]

    Mei J, Davenport J W 1992 Phys. Rev. B 46 21Google Scholar

    [35]

    Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983Google Scholar

    [36]

    Johnson R A 1989 Phys. Rev. B 39 12554Google Scholar

    [37]

    Stillinger F H, Weber T A 1985 Phys. Rev. B 31 5262Google Scholar

    [38]

    Tersoff J 1988 Phys. Rev. B 38 9902Google Scholar

    [39]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [40]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [41]

    Mulakaluri N, Persson B N J 2011 EPL 96 66003Google Scholar

    [42]

    Farber D L, Krisch M, Antonangeli D, Beraud A, Badro J, Occelli F, Orlikowski D 2006 Phys. Rev. Lett. 96 115502Google Scholar

    [43]

    Trampenau J, Petry W, Herzig C 1993 Phys. Rev. B 47 3132Google Scholar

    [44]

    Dal Corso A 2013 J. Phys. Condens. Matter 25 145401Google Scholar

    [45]

    Koh Y R, Shi J, Wang B, Hu R, Ahmad H, Kerdsongpanya S, Milosevic E, Doolittle W A, Gall D, Tian Z, Graham S, Hopkins P E 2020 Phys. Rev. B 102 205304Google Scholar

    [46]

    Debernardi A, Alouani M, Dreyssé H 2001 Phys. Rev. B 63 064305Google Scholar

    [47]

    Serrano J, Manjón F J, Romero A H, Ivanov A, Cardona M, Lauck R, Bosak A, Krisch M 2010 Phys. Rev. B 81 174304Google Scholar

    [48]

    Ghosh K, Singisetti U 2016 Appl. Phys. Lett. 109 072102Google Scholar

    [49]

    Fritsch J, Pavone P, Schroder U 1995 Phys. Rev. B 52 11326Google Scholar

    [50]

    Qi R, Shi R, Li Y, Sun Y, Wu M, Li N, Du J, Liu K, Chen C, Chen J, Wang F, Yu D, Wang E G, Gao P 2021 Nature 599 399Google Scholar

    [51]

    Cheng Z, Li R, Yan X, Jernigan G, Shi J, Liao M E, Hines N J, Gadre C A, Idrobo J C, Lee E, Hobart K D, Goorsky M S, Pan X, Luo T, Graham S 2021 Nat. Commun. 12 6901Google Scholar

  • [1] 桑丽霞, 李志康. Au-TiO2光电极界面声子热输运特性的分子动力学模拟. 物理学报, 2024, 73(10): 103105. doi: 10.7498/aps.73.20240026
    [2] 刘东静, 周福, 胡志亮, 黄家强. 石墨烯/GaN异质结构界面热输运性质的分子动力学研究. 物理学报, 2024, 73(13): 137901. doi: 10.7498/aps.73.20240021
    [3] 刘子怡, 褚福强, 魏俊俊, 冯妍卉. 金刚石/碳纳米管异质界面热导及声子热输运特性. 物理学报, 2024, 73(13): 138102. doi: 10.7498/aps.73.20240323
    [4] 刘东静, 胡志亮, 周福, 王鹏博, 王振东, 李涛. 基于分子动力学的氮化镓/石墨烯/金刚石界面热导研究. 物理学报, 2024, 73(15): 150202. doi: 10.7498/aps.73.20240515
    [5] 赵建宁, 魏东, 吕国正, 王子成, 刘冬欢. 一维异质结构的瞬态热整流效应. 物理学报, 2023, 72(4): 044401. doi: 10.7498/aps.72.20222085
    [6] 邱钰珺, 李亨宣, 李亚涛, 黄春朴, 李卫华, 张旭涛, 刘英光. 基于纳米点嵌入的界面导热性能优化. 物理学报, 2023, 72(11): 113102. doi: 10.7498/aps.72.20230314
    [7] 王权杰, 邓宇戈, 王仁宗, 刘向军. 界面工程调控GaN基异质结界面热传导性能研究. 物理学报, 2023, 72(22): 226301. doi: 10.7498/aps.72.20230791
    [8] 付柏山, 廖奕, 周俊. 稀释制冷机及其中的热交换问题. 物理学报, 2021, 70(23): 230202. doi: 10.7498/aps.70.20211760
    [9] 刘东静, 王韶铭, 杨平. 石墨烯/碳化硅异质界面热学特性的分子动力学模拟. 物理学报, 2021, 70(18): 187302. doi: 10.7498/aps.70.20210613
    [10] 赵建宁, 刘冬欢, 魏东, 尚新春. 考虑界面接触热阻的一维复合结构的热整流机理. 物理学报, 2020, 69(5): 056501. doi: 10.7498/aps.69.20191409
    [11] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展. 物理学报, 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [12] 梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿. 非对称纳米通道内界面热阻的分子动力学研究. 物理学报, 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [13] 张龙艳, 徐进良, 雷俊鹏. 尺寸效应对微通道内固液界面温度边界的影响. 物理学报, 2019, 68(2): 020201. doi: 10.7498/aps.68.20181876
    [14] 李满, 戴志高, 应见见, 肖湘衡, 岳亚楠. 基于稳态电热拉曼技术的碳纳米管纤维导热系数测量及传热研究. 物理学报, 2015, 64(12): 126501. doi: 10.7498/aps.64.126501
    [15] 鞠生宏, 梁新刚. 带孔硅纳米薄膜热整流及声子散射特性研究. 物理学报, 2013, 62(2): 026101. doi: 10.7498/aps.62.026101
    [16] 葛宋, 陈民. 接触角与液固界面热阻关系的分子动力学模拟. 物理学报, 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
    [17] 马维刚, 王海东, 张兴, 王玮. 飞秒脉冲激光加热金属薄膜的理论和实验研究. 物理学报, 2011, 60(6): 064401. doi: 10.7498/aps.60.064401
    [18] 李训栓, 彭应全, 杨青森, 刑宏伟, 路飞平. 有机半导体异质界面电荷传输解析模型研究. 物理学报, 2007, 56(9): 5441-5445. doi: 10.7498/aps.56.5441
    [19] 李书平, 王仁智. 金属-半导体超晶格中界面电荷的生成机理. 物理学报, 2004, 53(9): 2925-2930. doi: 10.7498/aps.53.2925
    [20] 庞根弟, 熊诗杰, 蔡建华. 界面失配和超晶格结构. 物理学报, 1986, 35(3): 408-412. doi: 10.7498/aps.35.408
计量
  • 文章访问数:  6112
  • PDF下载量:  274
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-16
  • 修回日期:  2022-11-22
  • 上网日期:  2022-12-02
  • 刊出日期:  2023-02-05

/

返回文章
返回