搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自由汇流旋涡多相耦合输运演变机理

李霖 陆斌 许炜鑫 顾则恒 杨远山 谭大鹏

引用本文:
Citation:

自由汇流旋涡多相耦合输运演变机理

李霖, 陆斌, 许炜鑫, 顾则恒, 杨远山, 谭大鹏

Mechanism of multiphase coupling transport evolution of free sink vortex

Li Lin, Lu Bin, Xu Wei-Xin, Gu Ze-Heng, Yang Yuan-Shan, Tan Da-Peng
PDF
HTML
导出引用
  • 含自由液面的汇流旋涡抽吸演变中存在多相耦合、物质传输、能量剧烈交换等物理过程, 其中所涉及的多相流体耦合输运机理是具有高度非线性特征的复杂动力学问题, 多相黏滞耦合输运动力学建模与数值求解具有较高难度. 针对上述问题, 提出一种含自由液面的汇流旋涡多相耦合输运建模与求解方法. 基于水平集-流体体积耦合(CLSVOF)计算方法, 结合连续表面张力模型和可实现(k-ε)湍流模型, 建立含自由液面的汇流旋涡多相耦合输运动力学模型; 利用一种有效的体积修正方案来计算高速旋转多相流, 保证流场质量守恒和无散度的速度场; 结合相间耦合求解策略对多相流体分布与多相界面进行精确追踪. 基于旋流场多特征物理变量, 得到多相耦合界面动态演变与跨尺度涡团输运规律, 揭示了多相耦合输运过程与压力脉动特性之间的相互作用机理. 研究结果表明: 多相耦合输运过程是流体介质过渡的关键状态, 旋涡微团受到不同时空扰动模式在界面处形成层层螺纹波形; 旋涡多相耦合输运过程随着水口尺度增大而增强, 且耦合能量激波引起非线性压力脉动现象. 研究结果可为旋涡输运机理、涡团跨尺度求解、流型追踪等方面的研究提供有益借鉴.
    In the evolution of confluence sink vortex with a free surface, there exists some physical processes , such as multiphase coupling, mass transfer, and intensive energy exchange. Here, the transport mechanism of multiphase coupling is a complex dynamic problem with highly nonlinear characteristics. The mechanical modeling and numerical solution of multiphase viscous coupled transport are facing a significant challenge. To address the above problem, a method of modeling and solving multiphase coupling transport of the free sink vortex is proposed. Based on the coupled level set and volume-of-fluid (CLSVOF) method, a multiphase coupling transport model of the free sink vortex is set up with a continuous surface tension model and a realizable (k-ε) turbulence model. By using an effective volumetric correction scheme, the high-speed rotating flow is calculated, and the mass conservation of flow field and the velocity field without divergence are ensured. Then, an interphase coupling solution approach accurately traces the multiphase fluid distribution and multiphase interface. The multiphase coupling interface and cross-scale vortex cluster transport laws are obtained according to the multi-characteristic physical variables. The interaction mechanism between the multiphase coupling transport process and the pressure pulsation characteristics is revealed. The results show that the multiphase coupling transport is the critical state of the fluid medium transition. The vortex microclusters are subjected to different spatiotemporal disturbance modes and form the layered threaded waveforms at the interface. With the increase of the nozzle sizes, the multiphase coupling process is strengthened, and the coupling energy shock causes nonlinear pressure pulsation. This study can offer valuable references to the researches of the vortex transport mechanism, cross-scale solution of vortex cluster, and flow pattern tracking.
      通信作者: 李霖, linli@zjut.edu.cn ; 谭大鹏, tandapeng@zjut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52175124)、浙江省博士后科研择优资助项目(批准号: ZJ2022068)、流体动力与机电系统国家重点实验室开放基金(批准号: GZKF-202125)和浙江省自然科学基金(批准号: LR21E050003)资助的课题.
      Corresponding author: Li Lin, linli@zjut.edu.cn ; Tan Da-Peng, tandapeng@zjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52175124), the Postdoctoral Scientific Research Preferred Funding Project of Zhejiang Province, China (Grant No. ZJ2022068), the Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems, China (Grant No. GZKF-202125), and the Natural Science Foundation of Zhejiang Province, China (Grant No. LR21E050003).
    [1]

    Li L, Tan D P, Yin Z C, Wang T, Fan X H, Wang R H 2021 Renew. Energ. 175 887Google Scholar

    [2]

    Tan D P, Li L, Yin Z C, Li D F, Zhu Y L, Zheng S 2021 Int. J. Heat Mass Transfer. 150 119250Google Scholar

    [3]

    谭大鹏, 杨涛, 赵军 2016 物理学报 65 054701Google Scholar

    Tan D P, Tao Y, Zhao J 2016 Acta Phys. Sin. 65 054701Google Scholar

    [4]

    Li L, Tan D P, Wang T, Yin Z C, Fan X H, Wang R H 2021 Energy 216 119136Google Scholar

    [5]

    Aboelkassem Y, Georgicis V 2007 J. Fluids Eng. Trans. ASME 129 1073Google Scholar

    [6]

    Chen Y C, Huang S L, Li Z Y, Chang C C, Chu C C 2013 J. Fluid Mech. 733 134Google Scholar

    [7]

    Tan Y F, Ni Y S, Wu J F, Li L, Tan D P 2023 Int. J. Adv. Manuf. Technol. DOI: 10.1007/s00170-022-10761-8 (in Press)

    [8]

    Tahershamsi A, Rahimzadeh H, Monshizadeh M, Sarkardeh H 2018 Meccanica 53 3269Google Scholar

    [9]

    Tan D P, Ni Y S, Zhang L B 2017 J. Iron Steel Res. Int. 24 669Google Scholar

    [10]

    Morales R D, Dávila–Maldonado O, Calderón I 2013 ISIJ Int. 53 782Google Scholar

    [11]

    Yang M, Liu S, Xu W H 2020 ACS Omega 5 31332Google Scholar

    [12]

    Škerlavaj A, Škerget L, Ravnik J 2014 Eng. Appl. Comp. Fluid Mech. 8 193Google Scholar

    [13]

    Ahn S H, Xiao Y X, Wang Z W, Zhou X Z, Luo Y Y 2017 Renew. Energ. 101 617Google Scholar

    [14]

    Li L, Qi H, Yin Z C, Li D F, Zhu Z L, Tangwarodomnukun V, Tan D P 2020 Powder Technol. 360 462Google Scholar

    [15]

    Zheng G A, Gu Z H, Xu W X, Li Q H, Tan Y F, Wang C Y, Li L 2023 Proesses 11 42Google Scholar

    [16]

    Ling K, Zhang S, Wu P Z, Yang S Y, Tao W Q 2019 Int. J. Heat Mass Transf. 143 118565Google Scholar

    [17]

    Tan D P, Li L, Zhu Y L, Zheng S, Yin Z C, Li D F 2019 J. Zhejiang Univ.-SCI A 20 61Google Scholar

    [18]

    谭大鹏, 计时鸣, 李培玉 2010 中国科学-技术科学 53 2378Google Scholar

    Tan D P, Ji S M, Li P Y 2010 Sci. China-Technol. Sci. 53 2378Google Scholar

    [19]

    Duan G T, Chen B, Zhang X M, Wang Y C 2017 Comput. Method Appl. Eng. 320 133Google Scholar

    [20]

    Qian J Y, Zhao L, Li X J, Li Q Q, Jin Z J 2022 J. Zhejiang Univ.-SCI A. 23 783Google Scholar

    [21]

    Tan D P, Li L, Zhu Y L, Zheng S, Ruan H J, Jiang X Y 2018 IEEE Trans. Ind. Inform. 14 2881Google Scholar

    [22]

    Wang J X, Gao S B, Tang Z J, Tan D P 2021 J. Intell.Manuf. DOI: 10.1007/s10845-021-01854-4 (in Press)

    [23]

    Tan D P, Zhang L B 2014 Sens. Actuator. B 202 1257Google Scholar

    [24]

    Pan Y, Ji S M, Tan D P, Cao H Q 2020 Int. J. Manuf. Technol. 109 2587Google Scholar

    [25]

    Li L, Yang Y S, Xu W X, Lu B, Gu Z H, Yang J G, Tan D P 2021 Appl. Sci. 12 8538Google Scholar

    [26]

    Yin Z C, Ni Y S, Li L, Wang T, Wu J F, Li Z, Tan D P 2022 J. Zhejiang Univ.-SCI A DOI: 10.1631/jzus.A2200014 (in Press)

    [27]

    Li L, Xu W X, Tan Y F, Yang Y S, Yang J G, Tan D P 2023 Mech. Syst. Signal Process 189 110058Google Scholar

    [28]

    Gen J Q, Ji S M, Tan D P 2018 J. Adv. Manuf. Technol. 95 1069Google Scholar

    [29]

    Ruan Y M, Yao Y, Shen S Y, Wang B, Wang B, Zhang J Y, Huang J K 2020 Steel Res. Int. 91 1900616Google Scholar

    [30]

    Zheng S H Yu Y K, Qiu M Z, Wang L M, Tan D P 2021 Appl. Math. Model. 91 934Google Scholar

    [31]

    Ge M, Ji S M, Tan D P 2021 J. Adv. Manuf. Technol. 114 3419Google Scholar

    [32]

    Wang Y Y, Zhang Y L, Tan D P 2021 Chinese J. Mech. Eng. 34 30Google Scholar

    [33]

    Ahmadi M H B, Yang Z Y 2020 Energy 207 118167Google Scholar

    [34]

    Kaiser J M J, Adami S, Akhatov I S, Adams N A 2020 Int. J. Heat Mass Transf. 155 119800Google Scholar

    [35]

    Meng Q F, Wu C Q, Su Y, Li J, Pang J B 2019 J. Clean. Prod. 210 1150Google Scholar

    [36]

    Deshpande S S, Trujillo M F, Wu X, Chahine G 2012 Int. J. Heat Fluid Flow 34 1Google Scholar

    [37]

    Yin Z C, Wan Y H, Fang H, Li L, Wang T, Wang Z, Tan DP 2022 Appl. Intel. DOI: 10.1007/s10489-022-04226-4 (in Press)

    [38]

    Wang T, Li L, Yin Z C, Xie Z W, Wu J F, Zhang Y C, Tan D P 2022 P. I. Mech. Eng. C J. Mec. 236 11196Google Scholar

    [39]

    Li L, Lu J F, Fang H, Yin Z C, Wang T, Wang R H, Fan X H, Zhao L J, Tan D P, Wan Y H 2020 IEEE Access 8 27649Google Scholar

    [40]

    Park I S, Sohn C H 2011 Int. Commun. Heat Mass Transf. 38 1044Google Scholar

  • 图 1  含自由界面的多相流体示意图

    Fig. 1.  Schematic diagram of multiphase fluid with a free interface.

    图 2  界面附近的水平集函数等值线

    Fig. 2.  Level set function contours near the interface.

    图 3  CLSVOF相间耦合求解流程图

    Fig. 3.  Flow chart of interphase coupling solution with CLSVOF.

    图 4  物理对象模型

    Fig. 4.  Physical objective model.

    图 5  流体力学模型与边界条件 (a) 流体域模型; (b) 区域A的局部视角; (c) 区域B的局部视角; (d) 容器顶部视角. 1-入口壁面; 2-固定壁面; 3-出口壁面

    Fig. 5.  Fluid dynamic mechanic model and boundary conditions: (a) Fluid-domain model; (b) local view of region A; (c) local view of region B; (d) top view of the container. 1-inlet wall; 2-fixed wall; 3-out wall.

    图 6  二维驻波算例验证 (a) 驻波; (b) 表面高度的衰减.

    Fig. 6.  Validation of the two-dimensional standing wave: (a) Standing wave; (b) decay of the surface elevation.

    图 7  旋涡动力学模型验证 (a) 网格无关性; (b) CLSVOF与VOF模型的液位高度验证

    Fig. 7.  Validation of the vortex dynamic model: (a) Mesh independence; (b) liquid level height validation of the CLSVOF and VOF models.

    图 8  含自由液面的汇流旋涡体积分数云图 (a) t = 1.00 s; (b) t = 3.50 s; (c) t = 6.00 s; (d) t = 21.50 s; (e) t = 23.00 s; (f) t = 25.00 s

    Fig. 8.  Volume fraction cloud chart of the sink vortex with a free-liquid surface (ω0 = 1.0π rad/s): (a) t = 1.00 s; (b) t = 3.50 s; (c) t = 6.00 s; (d) t = 21.50 s; (e) t = 23.00 s; (f) t = 25.00 s.

    图 9  旋涡流场的油相三维形貌图 (a) 凸点形成; (b) 油相抽吸; (c) 多相耦合输运; (d) 油相体积分数

    Fig. 9.  Three-dimensional morphology of oil-phase in the vortex flow field: (a) Salient point formation; (b) oil-phase suction; (c) multiphase coupling transport; (d) volume fraction of the oil phase.

    图 10  旋涡多相耦合输运流线图 (a) t = 1.00 s; (b) t = 3.50 s; (c) t = 6.00 s; (d) t = 21.50 s; (e) t = 23.00 s; (f) t = 25.00 s

    Fig. 10.  Transport streamline chart of the vortex multiphase coupling: (a) t = 1.00 s; (b) t = 3.50 s; (c) t = 6.00 s; (d) t = 21.50 s; (e) t = 23.00 s; (f) t = 25.00 s.

    图 11  不同水口尺度条件下的旋涡多相耦合输运流线图  (a) 0.73D*; (b) 0.87D*; (c) 1.00D*; (d) 1.13D*

    Fig. 11.  Transport streamline chart of the vortex multiphase coupling under different nozzle diameter: (a) 0.73D*; (b) 0.87D*; (c) 1.00D*; (d) 1.13D*.

    图 12  不同水口直径的液位高度.

    Fig. 12.  Liquid-level height of different nozzle diameter.

    图 13  旋涡流场的关键流动特性 (a) 切向速度分布; (b) 湍动能分布; (c) 涡量; (d) 动压.

    Fig. 13.  Key flow characteristics of the vortex flow field: (a) Tangential velocity distribution; (b) turbulent energy distribution; (c) vorticity; (d) dynamic pressure.

    图 14  排流过程的总压变化曲线 (a) 总压曲线; (b) 总压云图

    Fig. 14.  Total pressure variation curves at the whole drain process: (a) Total pressure curve; (b) cloud diagram of the total pressure.

    表 1  流体动力学模型的边界条件.

    Table 1.  Boundary conditions of the fluid dynamic model.

    属性
    入口零法向梯度压力入口
    出口无回流平均压力出口
    壁面无滑移壁面(流体在壁面处的
    速度或相对速度为零)
    重力/N9.81
    重力方向z轴负方向
    水相高度/m0.2
    气相高度/m0.3
    油相高度/m0.05
    下载: 导出CSV

    表 2  流体介质的物理参数.

    Table 2.  Physical parameters of fluid mediums.

    介质密度/
    (kg·m–3)
    运动黏度/
    (m2·s–1)
    动力黏度/
    (Pa·s)
    表面张力/
    (N·m–1)
    接触角/(°)温度/
    998.21.01×10–61.01×10–31.8×10–2 (油水)13520
    7301.01×10–62.4×10–32.6×10–2 (油气)13520
    空气1.2251.48×10–51.79×10–57.3×10–2 (水气)13520
    下载: 导出CSV
  • [1]

    Li L, Tan D P, Yin Z C, Wang T, Fan X H, Wang R H 2021 Renew. Energ. 175 887Google Scholar

    [2]

    Tan D P, Li L, Yin Z C, Li D F, Zhu Y L, Zheng S 2021 Int. J. Heat Mass Transfer. 150 119250Google Scholar

    [3]

    谭大鹏, 杨涛, 赵军 2016 物理学报 65 054701Google Scholar

    Tan D P, Tao Y, Zhao J 2016 Acta Phys. Sin. 65 054701Google Scholar

    [4]

    Li L, Tan D P, Wang T, Yin Z C, Fan X H, Wang R H 2021 Energy 216 119136Google Scholar

    [5]

    Aboelkassem Y, Georgicis V 2007 J. Fluids Eng. Trans. ASME 129 1073Google Scholar

    [6]

    Chen Y C, Huang S L, Li Z Y, Chang C C, Chu C C 2013 J. Fluid Mech. 733 134Google Scholar

    [7]

    Tan Y F, Ni Y S, Wu J F, Li L, Tan D P 2023 Int. J. Adv. Manuf. Technol. DOI: 10.1007/s00170-022-10761-8 (in Press)

    [8]

    Tahershamsi A, Rahimzadeh H, Monshizadeh M, Sarkardeh H 2018 Meccanica 53 3269Google Scholar

    [9]

    Tan D P, Ni Y S, Zhang L B 2017 J. Iron Steel Res. Int. 24 669Google Scholar

    [10]

    Morales R D, Dávila–Maldonado O, Calderón I 2013 ISIJ Int. 53 782Google Scholar

    [11]

    Yang M, Liu S, Xu W H 2020 ACS Omega 5 31332Google Scholar

    [12]

    Škerlavaj A, Škerget L, Ravnik J 2014 Eng. Appl. Comp. Fluid Mech. 8 193Google Scholar

    [13]

    Ahn S H, Xiao Y X, Wang Z W, Zhou X Z, Luo Y Y 2017 Renew. Energ. 101 617Google Scholar

    [14]

    Li L, Qi H, Yin Z C, Li D F, Zhu Z L, Tangwarodomnukun V, Tan D P 2020 Powder Technol. 360 462Google Scholar

    [15]

    Zheng G A, Gu Z H, Xu W X, Li Q H, Tan Y F, Wang C Y, Li L 2023 Proesses 11 42Google Scholar

    [16]

    Ling K, Zhang S, Wu P Z, Yang S Y, Tao W Q 2019 Int. J. Heat Mass Transf. 143 118565Google Scholar

    [17]

    Tan D P, Li L, Zhu Y L, Zheng S, Yin Z C, Li D F 2019 J. Zhejiang Univ.-SCI A 20 61Google Scholar

    [18]

    谭大鹏, 计时鸣, 李培玉 2010 中国科学-技术科学 53 2378Google Scholar

    Tan D P, Ji S M, Li P Y 2010 Sci. China-Technol. Sci. 53 2378Google Scholar

    [19]

    Duan G T, Chen B, Zhang X M, Wang Y C 2017 Comput. Method Appl. Eng. 320 133Google Scholar

    [20]

    Qian J Y, Zhao L, Li X J, Li Q Q, Jin Z J 2022 J. Zhejiang Univ.-SCI A. 23 783Google Scholar

    [21]

    Tan D P, Li L, Zhu Y L, Zheng S, Ruan H J, Jiang X Y 2018 IEEE Trans. Ind. Inform. 14 2881Google Scholar

    [22]

    Wang J X, Gao S B, Tang Z J, Tan D P 2021 J. Intell.Manuf. DOI: 10.1007/s10845-021-01854-4 (in Press)

    [23]

    Tan D P, Zhang L B 2014 Sens. Actuator. B 202 1257Google Scholar

    [24]

    Pan Y, Ji S M, Tan D P, Cao H Q 2020 Int. J. Manuf. Technol. 109 2587Google Scholar

    [25]

    Li L, Yang Y S, Xu W X, Lu B, Gu Z H, Yang J G, Tan D P 2021 Appl. Sci. 12 8538Google Scholar

    [26]

    Yin Z C, Ni Y S, Li L, Wang T, Wu J F, Li Z, Tan D P 2022 J. Zhejiang Univ.-SCI A DOI: 10.1631/jzus.A2200014 (in Press)

    [27]

    Li L, Xu W X, Tan Y F, Yang Y S, Yang J G, Tan D P 2023 Mech. Syst. Signal Process 189 110058Google Scholar

    [28]

    Gen J Q, Ji S M, Tan D P 2018 J. Adv. Manuf. Technol. 95 1069Google Scholar

    [29]

    Ruan Y M, Yao Y, Shen S Y, Wang B, Wang B, Zhang J Y, Huang J K 2020 Steel Res. Int. 91 1900616Google Scholar

    [30]

    Zheng S H Yu Y K, Qiu M Z, Wang L M, Tan D P 2021 Appl. Math. Model. 91 934Google Scholar

    [31]

    Ge M, Ji S M, Tan D P 2021 J. Adv. Manuf. Technol. 114 3419Google Scholar

    [32]

    Wang Y Y, Zhang Y L, Tan D P 2021 Chinese J. Mech. Eng. 34 30Google Scholar

    [33]

    Ahmadi M H B, Yang Z Y 2020 Energy 207 118167Google Scholar

    [34]

    Kaiser J M J, Adami S, Akhatov I S, Adams N A 2020 Int. J. Heat Mass Transf. 155 119800Google Scholar

    [35]

    Meng Q F, Wu C Q, Su Y, Li J, Pang J B 2019 J. Clean. Prod. 210 1150Google Scholar

    [36]

    Deshpande S S, Trujillo M F, Wu X, Chahine G 2012 Int. J. Heat Fluid Flow 34 1Google Scholar

    [37]

    Yin Z C, Wan Y H, Fang H, Li L, Wang T, Wang Z, Tan DP 2022 Appl. Intel. DOI: 10.1007/s10489-022-04226-4 (in Press)

    [38]

    Wang T, Li L, Yin Z C, Xie Z W, Wu J F, Zhang Y C, Tan D P 2022 P. I. Mech. Eng. C J. Mec. 236 11196Google Scholar

    [39]

    Li L, Lu J F, Fang H, Yin Z C, Wang T, Wang R H, Fan X H, Zhao L J, Tan D P, Wan Y H 2020 IEEE Access 8 27649Google Scholar

    [40]

    Park I S, Sohn C H 2011 Int. Commun. Heat Mass Transf. 38 1044Google Scholar

  • [1] 陈召, 马昕新, 李童, 王艺霖. 耦合谐振系统中基于Fano共振的光学压力传感器. 物理学报, 2024, 73(8): 084205. doi: 10.7498/aps.73.20232025
    [2] 孙宗利, 康艳霜, 张君霞. 非均匀流体的体积黏度: Maxwell弛豫模型. 物理学报, 2024, 73(6): 066601. doi: 10.7498/aps.73.20231459
    [3] 罗旭, 朱海燕, 丁雅萍. 基于力磁耦合效应的铁磁材料修正磁化模型. 物理学报, 2019, 68(18): 187501. doi: 10.7498/aps.68.20190765
    [4] 孙智征, 荀威, 张加永, 刘传洋, 仲嘉霖, 吴银忠. 钛酸钡的光学性质及其体积效应. 物理学报, 2019, 68(8): 087801. doi: 10.7498/aps.68.20182087
    [5] 谭大鹏, 杨涛, 赵军, 计时鸣. 自由汇流旋涡Ekman抽吸演化机理. 物理学报, 2016, 65(5): 054701. doi: 10.7498/aps.65.054701
    [6] 周建美, 张烨, 汪宏年, 杨守文, 殷长春. 耦合势有限体积法高效模拟各向异性地层中海洋可控源的三维电磁响应. 物理学报, 2014, 63(15): 159101. doi: 10.7498/aps.63.159101
    [7] 蒋丹, 李松晶, 杨平. 无阀微泵腔内气泡对周期驱动压力的影响. 物理学报, 2013, 62(22): 224703. doi: 10.7498/aps.62.224703
    [8] 胡勇, 闫红红, 林 涛, 李金富, 周尧和. 退火态Zr55Al10Ni5Cu30块体非晶合金在轧制过程中的自由体积演化. 物理学报, 2012, 61(8): 087102. doi: 10.7498/aps.61.087102
    [9] 杨娟, 赖晓明, 彭刚, 卞保民, 陆建. 悬浮颗粒计数信号等效体积的分形测度. 物理学报, 2009, 58(5): 3008-3013. doi: 10.7498/aps.58.3008
    [10] 王海霞, 殷 雯. 周期耦合量子阱中的输运问题. 物理学报, 2008, 57(5): 2669-2673. doi: 10.7498/aps.57.2669
    [11] 蒋 丹, 李松晶, 包 钢. 采用遗传算法对压力脉动过程中气泡模型参数的辨识. 物理学报, 2008, 57(8): 5072-5080. doi: 10.7498/aps.57.5072
    [12] 蒋中英, 郁伟中, 黄彦君, 夏元复, 马淑新. SMMA/SMA共聚物共混物的自由体积的热动态特性与相分离行为的PALS研究. 物理学报, 2006, 55(6): 3136-3140. doi: 10.7498/aps.55.3136
    [13] 蒋中英, 郁伟中, 赵永富, 蒋锡群, 夏元复. 60Co的γ辐照对SB的自由体积和微结构的影响的PALS和FT-IR的研究. 物理学报, 2006, 55(7): 3743-3747. doi: 10.7498/aps.55.3743
    [14] 李 工, 孙懿楠, 高云鹏, 张新宇, 罗丛举, 刘日平. 高压Ni77P23非晶合金自由体积变化的同步辐射研究. 物理学报, 2006, 55(10): 5394-5397. doi: 10.7498/aps.55.5394
    [15] 蒋中英, 郁伟中, 夏元复. 三嵌段共聚物SEBS中自由体积行为的温度及e+辐照时间依赖性的研究. 物理学报, 2005, 54(7): 3434-3438. doi: 10.7498/aps.54.3434
    [16] 宗兆翔, 杜 磊, 庄奕琪, 何 亮, 吴 勇. 超大规模集成电路互连电迁移自由体积电阻模型. 物理学报, 2005, 54(12): 5872-5878. doi: 10.7498/aps.54.5872
    [17] 郑君, 叶志成, 唐伟国, 刘大禾. 体积全息图中的光子禁带. 物理学报, 2001, 50(11): 2144-2148. doi: 10.7498/aps.50.2144
    [18] 林东, 王少阶. 用正电子湮没研究高聚物聚甲基丙烯酸甲脂的结构转变与自由体积特性. 物理学报, 1992, 41(4): 668-674. doi: 10.7498/aps.41.668
    [19] 尹传元, 蒋澄华, 王化勤. 聚氨酯离聚体微畴体积的研究. 物理学报, 1988, 37(9): 1522-1526. doi: 10.7498/aps.37.1522
    [20] 赵有祥, 刘世超, 俞立志. 流体静压力对InSb输运性质的影响. 物理学报, 1966, 22(1): 83-93. doi: 10.7498/aps.22.83
计量
  • 文章访问数:  4363
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-17
  • 修回日期:  2022-11-07
  • 上网日期:  2022-11-16
  • 刊出日期:  2023-02-05

/

返回文章
返回