搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强激光与亚临界密度等离子体相互作用中的近前向散射驱动光子加速机制

岳东宁 董全力 陈民 赵耀 耿盼飞 远晓辉 盛政明 张杰

引用本文:
Citation:

强激光与亚临界密度等离子体相互作用中的近前向散射驱动光子加速机制

岳东宁, 董全力, 陈民, 赵耀, 耿盼飞, 远晓辉, 盛政明, 张杰

Mechanism of near-forward scattering driven photon acceleration in the interaction between an intense laser and under-dense plasmas

Yue Dong-Ning, Dong Quan-Li, Chen Min, Zhao Yao, Geng Pan-Fei, Yuan Xiao-Hui, Sheng Zheng-Ming, Zhang Jie
PDF
HTML
导出引用
  • 通过二维粒子模拟(particle-in-cell)方法研究了强激光与亚临界密度等离子体相互作用中的近前向光子加速机制. 该机制利用强激光在亚临界密度气体传输过程中的电离效应产生在纵向和横向上密度分布不均匀的电子等离子体. 在纵向上, 入射激光电离氦气产生一个陡峭的电子密度前沿分布. 在密度前沿处, 入射激光与电子等离子体波作用发生近前向散射. 散射光频率较激光频率增大, 在频谱中产生了第一个特征峰. 在横向上, 密度不均匀造成电子等离子体波具有不同的相速度并与入射激光相互作用, 使入射激光发生近前向散射, 在频谱中产生了第2个特征峰. 由于密度分布的不均匀性较电子等离子体波的密度扰动大得多, 因此基于微扰理论的散射模型和色散关系, 如受激拉曼散射, 无法解释频谱中两个特征峰的出现. 进一步研究发现: 在密度不均匀的情况下, 入射激光、电子等离子体波和散射光三者之间仍满足动量和能量守恒的三波耦合关系. 这能够解释两个特征峰对应的频率和强度增长过程. 该研究对于强激光在亚临界密度气体传输过程中的频谱演化具有重要参考意义.
    The mechanism of photon acceleration driven by the near-forward scattering (NFS) in the interaction between an intense laser and under-dense plasmas is studied by particle-in-cell (PIC) simulation. This mechanism utilizes tunneling ionization effect to stimulate electron plasma waves when the intense laser pulse propagates in under-dense plasmas. The electron plasma density is inhomogeneous both in longitudinal and transverse direction. In the longitudinal direction, a steep ionized electron density front is generated by incident laser ionizing the helium gas. Around the ionization front, the incident laser interacts with electron plasma waves, thus generating the first kind of NFS waves. Compared with the frequency of laser, the frequency of NFS wave increases. This is the first characteristic peak in the frequency spectrum. In the transverse direction, the electron plasma waves have different phase velocities, which makes the incident laser pulse undergo NFS process and upshift its frequency. This is the second characteristic peak in the frequency spectrum. Owing to the fact that the electron density inhomogeneity is much larger than the electron density perturbation of electron plasma wave, the scattering model and dispersion relationships, which are based on perturbation theory like stimulated Raman scattering, are no longer applicable to this case. Our further study shows that the incident laser, electron density plasma waves and NFS waves still satisfy the energy conservation and momentum conservation that is, they still satisfy the three-wave coupling relationship of momentum and energy conservation under the condition of heterogeneous density, thus explaining the appearance of two characteristic peaks in the frequency spectrum and their growth in the wave-vector space. This study has significant reference to the spectrum evolution when the intense laser pulse propagates in under-dense plasma.
      通信作者: 岳东宁, ydn@hit.edu.cn ; 董全力, qldong@aphy.iphy.ac.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 12204131)、中国科学院战略性科技先导专项(批准号: XDA25030300, XDA25010100)、山东省自然科学基金(批准号: ZR2019ZD44)和广东省基础与应用基础研究基金 (批准号: 2023A1515011695)资助的课题.
      Corresponding author: Yue Dong-Ning, ydn@hit.edu.cn ; Dong Quan-Li, qldong@aphy.iphy.ac.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 12204131), the Strategic Priority Research Program of the Chinese Academy of Sciences, China (Grant Nos. XDA25030300, XDA25010100), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019ZD44), and the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2023A1515011695).
    [1]

    Strickland D, Mourou G 1985 Opt. Commun. 55 447Google Scholar

    [2]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267Google Scholar

    [3]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [4]

    陈民, 刘峰, 李博原, 翁苏明, 陈黎明, 盛政明, 张杰 2020 强激光与粒子束 32 092001Google Scholar

    Chen M, Liu F, Li B Y, Weng S M, Chen L M, Sheng Z M, Zhang J 2020 High Power Laser Part. Beams 32 092001Google Scholar

    [5]

    Ke L T, Feng K, Wang W T, Qin Z Y, Yu C H, Wu Y, Chen Y, Qi R, Zhang Z J, Xu Y, Yang X J, Leng Y X, Liu J S, Li R X, Xu Z Z 2021 Phys. Rev. Lett. 126 214801Google Scholar

    [6]

    Wang W T, Feng K, Ke L T, Yu C H, Xu Y, Qi R, Chen Y, Qin Z Y, Zhang Z J, Fang M, Liu J Q, Jiang K N, Wang H, Wang C, Yang X J, Wu F X, Leng Y X, Liu J S, Li R X, Xu Z Z 2021 Nature 595 516Google Scholar

    [7]

    Macchi A, Borghesi M, Passoni M 2013 Rev. Mod. Phys. 85 751Google Scholar

    [8]

    吴学志, 寿寅任, 弓正, 赵研英, 朱昆, 杨根, 卢海洋, 林晨, 马文君, 陈佳洱, 颜学庆 2020 强激光与粒子束 32 092002Google Scholar

    Wu X Z, Shou Y R, Gong Z, Zhao Y Y, Zhu K, Yang G, Lu H Y, Lin C, Ma W J, Chen J E, Yan X Q 2020 High Power Laser Part. Beams 32 092002Google Scholar

    [9]

    Esirkepov T, Borghesi M, Bulanov S, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003Google Scholar

    [10]

    Chen M, Pukhov A, Yu T, Sheng Z M 2009 Phys. Rev. Lett. 103 024801Google Scholar

    [11]

    Pukhov A 2001 Phys. Rev. Lett. 86 3562Google Scholar

    [12]

    Wilks S, Langdon A, Cowan T, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A, Snavely R A 2001 Phys. Plasmas 8 542Google Scholar

    [13]

    Silva L O, Marti M, Davies J R, Fonseca R A, Ren C, Tsung F S, Mori W B 2004 Phys. Rev. Lett. 92 015002Google Scholar

    [14]

    Haberberger D, Tochitsky S, Fiuza F, Gong C, Fonseca R A, Silva L O, Mori W B, Joshi C 2012 Nat. Phys. 8 95Google Scholar

    [15]

    马文君, 刘志鹏, 王鹏杰, 赵家瑞, 颜学庆 2021 物理学报 70 084102Google Scholar

    Ma W J, Liu Z P, Wang P J, Zhao J R, Yan X Q 2021 Acta Phys. Sin. 70 084102Google Scholar

    [16]

    Bulanov S V, Dylov D V, Esirkepov T Z, Kamenets F F, Sokolov D V 2005 Plasma Phys. Rep. 31 369Google Scholar

    [17]

    Park J, Bulanov S S, Bin J, Ji Q, Steinke S, Vay J L, Geddes C G R, Schroeder C B, Leemans W P, Schenkel T, Esarey E 2019 Phys. Plasmas 26 103108Google Scholar

    [18]

    Liu B, Meyer-Ter-Vehn J, Bamberg K U, Ma W J, Liu J, He X T, Yan X Q, Ruhl H 2016 Phys. Rev. Accel. Beams 19 073401Google Scholar

    [19]

    Liu B, Meyer-Ter-Vehn J, Ruhl H 2018 Phys. Plasmas 25 103117Google Scholar

    [20]

    Savage Jr R L, Joshi C, Mori W B 1992 Phys. Rev. Lett. 68 946Google Scholar

    [21]

    Dias J M, Stenz C, Lopes N, Badiche X, Blasco F, Santos A D, Silva L O, Mysyrowicz A, Antonetti A, Mendonça J T 1997 Phys. Rev. Lett. 78 4773Google Scholar

    [22]

    Murphy C D, Trines R, Vieira J, Reitsma A J W, Bingham R, Collier J L, Divall E J, Foster P S, Hooker C J, Langley A J, Norreys P A, Fonseca R A, Fiuza F, Silva L O, Mendonça J T, Mori W B, Gallacher J G, Viskup R, Jaroszynski D A, Mangles S P D, Thomas A G R, Krushelnick K, Najmudin Z 2006 Phys. Plasmas 13 033108Google Scholar

    [23]

    Trines R M G M, Murphy C D, Lancaster K L, Chekhlov O, Norreys P A, Bingham R, Mendonça J T, Silva L O, Mangles S P D, Kamperidis C, Thomas A, Krushelnick K, Najmudin Z 2009 Plasma Phys. Control. Fusion 51 024008Google Scholar

    [24]

    Zhao Y, Zheng J, Chen M, Yu L L, Weng S M, Ren C, Liu C S, Sheng Z M 2014 Phys. Plasmas 21 112114Google Scholar

    [25]

    Fonseca R A, Silva L O, Tsung F S, Decyk V K, Lu W, Ren C, Mori W B, Deng S, Lee S, Katsouleas T, Adam J C 2002 Lect. Notes Comput. Sci. 2331 342

    [26]

    Ammosov M V, Delone N B, Krainov V P 1986 Proc. SPIE 664 138Google Scholar

    [27]

    余诗瀚, 李晓峰, 翁苏明, 赵耀, 马行行, 陈民, 盛政明 2021 强激光与粒子束 33 012006Google Scholar

    Yü S H, Li X F, Weng S M, Zhao Y, Ma H H, Chen M, Sheng Z M 2021 High Power Laser Part. Beams 33 012006Google Scholar

    [28]

    Montgomery D S 2016 Phys. Plasmas 23 055601Google Scholar

  • 图 1  (a) 强激光在亚临界密度气体中传输时利用近前向散射驱动光子加速的原理示意图; (b), (c)激光与电子等离子体波相互作用的三波耦合关系, 其中(b)第1类近前向散射, (c)第2类近前向散射

    Fig. 1.  (a) Schematics of photon acceleration driven by the near-forward scattering when intense laser pulse propagates in under-dense gas. The three-wave matching conditions for the laser pulse and electron plasma waves: (b) The first kind of NFS; (c) the second kind of NFS.

    图 2  初始激光等离子体条件设置, 即真空-氦气-真空分布. 插图为初始时刻激光电场强度分布

    Fig. 2.  Setup of initial laser-plasma conditions, namely, vacuum-helium-gas-vacuum distribution. The inset is the initial distribution of laser electric field.

    图 3  不同时刻, 激光电场Ez在(a), (c), (e), (g)空间(x, y)和(b), (d), (f), (h)波矢空间(kx, ky)中的分布((a)—(f)有电子等离子体, (g), (h)无电子等离子体; T0为激光周期) (a), (b) t = 62.5T0; (c), (d) t = 93.8T0; (e), (f), (g), (h) t = 125.0T0;

    Fig. 3.  Distributions of laser electric field Ez in (a), (c), (e), (g) spatial space (x, y) and (b), (d), (f), (h) wave vector space (kx, ky) at (a), (b) t = 62.5T0; (c), (d) t = 93.8T0; (e)–(h) t = 125.0T0. Panels (a)–(f) are with electron plasma (EP); panels (g), (h) are without (w/o) electron plasma (EP). T0 is the laser period.

    图 4  t = 93.8T0时刻, (a)激光电场Ez (绿线)和电子密度ne (红线); (b)纵向电场Ex (绿线)和电子等离子体波密度扰动δne = (ne – 0.05nc) (红线)在激光传输轴上的分布

    Fig. 4.  Distributions of (a) laser electric field Ez (green line) and electron density ne (red line); (b) longitudinal electric field Ex (green line) and electron density perturbation of electron plasma wave δne = (ne – 0.05nc) (red line) on laser axis at t = 93.8T0.

    图 5  t = 93.8T0时刻, (a)电子密度ne和(b)纵向电场Ex在空间(x, y)中的分布, (c) 纵向电场Ex在波矢空间(kx, ky)中的分布

    Fig. 5.  Distributions of (a) electron density ne and (b) longitudinal electric field Ex in spatial space (x, y), (c) distribution of longitudinal electric field Ex in wave vector space (kx, ky) at t = 93.8T0.

    图 6  t = 93.8T0时刻, (a)第1类散射波滤波之后的效果, (b)第1类散射波进行傅里叶逆变换后的结果, (c)第2类散射波滤波之后的效果, (d)第2类散射波进行傅里叶逆变换后的结果

    Fig. 6.  (a) Filter result of the first kind of NFS, (b) the result of the first kind of NFS after inverse fast Fourier transform, (c) the filter result of the second kind of NFS, (d) the result of the second kind of NFS after inverse fast Fourier transform at t = 93.8T0.

    图 7  (a) 图2A点处电场的频谱分布; (b) 两类近前向散射波的波矢强度$ {I}_{{\rm{s}}1} $$ {I}_{{\rm{s}}2} $随时间的演化; (c) $x=110\;{\text{μm}}$处得到的两类散射波的相对强度$ {I}_{{\rm{s}}1}/{I}_{0} $$ {I}_{{\rm{s}}2}/{I}_{0} $随散射角$ \theta $的演化, 其中, $ {I}_{0} $为激光频率$ {\omega }_{0} $对应的强度

    Fig. 7.  (a) Frequency spectrum at A point in Fig. 2; (b) the intensity of two kinds of NFS waves, $ {I}_{{\rm{s}}1} $ and $ {I}_{{\rm{s}}2} $, evolve with simulation time; (c) the relativistic intensity of two kinds of NFS waves, $ {I}_{{\rm{s}}1}/{I}_{0} $ and $ {I}_{{\rm{s}}2}/{I}_{0} $, change with the scattering angle $ \theta $ at $x=110\;{\text{μm}}$, where $ {I}_{0} $ is the intensity corresponding to the laser frequency $ {\omega }_{0} $.

  • [1]

    Strickland D, Mourou G 1985 Opt. Commun. 55 447Google Scholar

    [2]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267Google Scholar

    [3]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [4]

    陈民, 刘峰, 李博原, 翁苏明, 陈黎明, 盛政明, 张杰 2020 强激光与粒子束 32 092001Google Scholar

    Chen M, Liu F, Li B Y, Weng S M, Chen L M, Sheng Z M, Zhang J 2020 High Power Laser Part. Beams 32 092001Google Scholar

    [5]

    Ke L T, Feng K, Wang W T, Qin Z Y, Yu C H, Wu Y, Chen Y, Qi R, Zhang Z J, Xu Y, Yang X J, Leng Y X, Liu J S, Li R X, Xu Z Z 2021 Phys. Rev. Lett. 126 214801Google Scholar

    [6]

    Wang W T, Feng K, Ke L T, Yu C H, Xu Y, Qi R, Chen Y, Qin Z Y, Zhang Z J, Fang M, Liu J Q, Jiang K N, Wang H, Wang C, Yang X J, Wu F X, Leng Y X, Liu J S, Li R X, Xu Z Z 2021 Nature 595 516Google Scholar

    [7]

    Macchi A, Borghesi M, Passoni M 2013 Rev. Mod. Phys. 85 751Google Scholar

    [8]

    吴学志, 寿寅任, 弓正, 赵研英, 朱昆, 杨根, 卢海洋, 林晨, 马文君, 陈佳洱, 颜学庆 2020 强激光与粒子束 32 092002Google Scholar

    Wu X Z, Shou Y R, Gong Z, Zhao Y Y, Zhu K, Yang G, Lu H Y, Lin C, Ma W J, Chen J E, Yan X Q 2020 High Power Laser Part. Beams 32 092002Google Scholar

    [9]

    Esirkepov T, Borghesi M, Bulanov S, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003Google Scholar

    [10]

    Chen M, Pukhov A, Yu T, Sheng Z M 2009 Phys. Rev. Lett. 103 024801Google Scholar

    [11]

    Pukhov A 2001 Phys. Rev. Lett. 86 3562Google Scholar

    [12]

    Wilks S, Langdon A, Cowan T, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A, Snavely R A 2001 Phys. Plasmas 8 542Google Scholar

    [13]

    Silva L O, Marti M, Davies J R, Fonseca R A, Ren C, Tsung F S, Mori W B 2004 Phys. Rev. Lett. 92 015002Google Scholar

    [14]

    Haberberger D, Tochitsky S, Fiuza F, Gong C, Fonseca R A, Silva L O, Mori W B, Joshi C 2012 Nat. Phys. 8 95Google Scholar

    [15]

    马文君, 刘志鹏, 王鹏杰, 赵家瑞, 颜学庆 2021 物理学报 70 084102Google Scholar

    Ma W J, Liu Z P, Wang P J, Zhao J R, Yan X Q 2021 Acta Phys. Sin. 70 084102Google Scholar

    [16]

    Bulanov S V, Dylov D V, Esirkepov T Z, Kamenets F F, Sokolov D V 2005 Plasma Phys. Rep. 31 369Google Scholar

    [17]

    Park J, Bulanov S S, Bin J, Ji Q, Steinke S, Vay J L, Geddes C G R, Schroeder C B, Leemans W P, Schenkel T, Esarey E 2019 Phys. Plasmas 26 103108Google Scholar

    [18]

    Liu B, Meyer-Ter-Vehn J, Bamberg K U, Ma W J, Liu J, He X T, Yan X Q, Ruhl H 2016 Phys. Rev. Accel. Beams 19 073401Google Scholar

    [19]

    Liu B, Meyer-Ter-Vehn J, Ruhl H 2018 Phys. Plasmas 25 103117Google Scholar

    [20]

    Savage Jr R L, Joshi C, Mori W B 1992 Phys. Rev. Lett. 68 946Google Scholar

    [21]

    Dias J M, Stenz C, Lopes N, Badiche X, Blasco F, Santos A D, Silva L O, Mysyrowicz A, Antonetti A, Mendonça J T 1997 Phys. Rev. Lett. 78 4773Google Scholar

    [22]

    Murphy C D, Trines R, Vieira J, Reitsma A J W, Bingham R, Collier J L, Divall E J, Foster P S, Hooker C J, Langley A J, Norreys P A, Fonseca R A, Fiuza F, Silva L O, Mendonça J T, Mori W B, Gallacher J G, Viskup R, Jaroszynski D A, Mangles S P D, Thomas A G R, Krushelnick K, Najmudin Z 2006 Phys. Plasmas 13 033108Google Scholar

    [23]

    Trines R M G M, Murphy C D, Lancaster K L, Chekhlov O, Norreys P A, Bingham R, Mendonça J T, Silva L O, Mangles S P D, Kamperidis C, Thomas A, Krushelnick K, Najmudin Z 2009 Plasma Phys. Control. Fusion 51 024008Google Scholar

    [24]

    Zhao Y, Zheng J, Chen M, Yu L L, Weng S M, Ren C, Liu C S, Sheng Z M 2014 Phys. Plasmas 21 112114Google Scholar

    [25]

    Fonseca R A, Silva L O, Tsung F S, Decyk V K, Lu W, Ren C, Mori W B, Deng S, Lee S, Katsouleas T, Adam J C 2002 Lect. Notes Comput. Sci. 2331 342

    [26]

    Ammosov M V, Delone N B, Krainov V P 1986 Proc. SPIE 664 138Google Scholar

    [27]

    余诗瀚, 李晓峰, 翁苏明, 赵耀, 马行行, 陈民, 盛政明 2021 强激光与粒子束 33 012006Google Scholar

    Yü S H, Li X F, Weng S M, Zhao Y, Ma H H, Chen M, Sheng Z M 2021 High Power Laser Part. Beams 33 012006Google Scholar

    [28]

    Montgomery D S 2016 Phys. Plasmas 23 055601Google Scholar

  • [1] 龙欣宇, 王佩佩, 安红海, 熊俊, 谢志勇, 方智恒, 孙今人, 王琛. 宽带激光辐照平面薄膜靶的近前向散射. 物理学报, 2024, 73(12): 125202. doi: 10.7498/aps.73.20231613
    [2] 孙伟, 吕冲, 雷柱, 王钊, 仲佳勇. 磁场对激光驱动的喷流演化影响的二维数值研究. 物理学报, 2023, 72(9): 097501. doi: 10.7498/aps.72.20230197
    [3] 岳东宁, 董全力, 陈民, 赵耀, 耿盼飞, 远晓辉, 盛政明, 张杰. 强激光与近临界密度等离子体相互作用中的无碰撞静电冲击波产生. 物理学报, 2023, 72(11): 115202. doi: 10.7498/aps.72.20230271
    [4] 王云良, 颜学庆. 强激光与固体密度等离子体作用产生孤立阿秒脉冲的研究进展. 物理学报, 2023, 72(5): 054207. doi: 10.7498/aps.72.20222262
    [5] 赵鑫, 杨晓虎, 张国博, 马燕云, 刘彦鹏, 郁明阳. 高功率激光辐照平面靶后辐射冷却效应对等离子体成丝的影响. 物理学报, 2022, 71(23): 235202. doi: 10.7498/aps.71.20220870
    [6] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展. 物理学报, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [7] 姜炜曼, 李玉同, 张喆, 朱保君, 张翌航, 袁大伟, 魏会冈, 梁贵云, 韩波, 刘畅, 原晓霞, 华能, 朱宝强, 朱健强, 方志恒, 王琛, 黄秀光, 张杰. 纳秒激光等离子体相互作用过程中激光强度对微波辐射影响的研究. 物理学报, 2019, 68(12): 125201. doi: 10.7498/aps.68.20190501
    [8] 辛建婷, 赵永强, 储根柏, 席涛, 税敏, 范伟, 何卫华, 谷渝秋. 强激光加载下锡材料微喷颗粒与气体混合回收实验研究及颗粒度分析. 物理学报, 2017, 66(18): 186201. doi: 10.7498/aps.66.186201
    [9] 李彦霏, 李玉同, 朱保君, 袁大伟, 李芳, 张喆, 仲佳勇, 魏会冈, 裴晓星, 刘畅, 原晓霞, 赵家瑞, 韩波, 廖国前, 鲁欣, 华能, 朱宝强, 朱健强, 方智恒, 安红海, 黄秀光, 赵刚, 张杰. 强激光产生的强磁场及其对弓激波的影响. 物理学报, 2017, 66(9): 095202. doi: 10.7498/aps.66.095202
    [10] 原晓霞, 仲佳勇. 双等离子体团相互作用的磁流体力学模拟. 物理学报, 2017, 66(7): 075202. doi: 10.7498/aps.66.075202
    [11] 裴晓星, 仲佳勇, 张凯, 郑无敌, 梁贵云, 王菲鹿, 李玉同, 赵刚. 实验室天体物理的验证特例:W43A磁喷流. 物理学报, 2014, 63(14): 145201. doi: 10.7498/aps.63.145201
    [12] 辛建婷, 谷渝秋, 李平, 罗炫, 蒋柏斌, 谭放, 韩丹, 巫殷忠, 赵宗清, 粟敬钦, 张保汉. 强激光加载下金属材料微喷回收诊断. 物理学报, 2012, 61(23): 236201. doi: 10.7498/aps.61.236201
    [13] 郭福明, 宋阳, 陈基根, 曾思良, 杨玉军. 含时量子蒙特卡罗方法研究两电子原子在强激光作用下电子的动力学行为. 物理学报, 2012, 61(16): 163203. doi: 10.7498/aps.61.163203
    [14] 季沛勇, 鲁楠, 祝俊. 量子等离子体中波的色散关系以及朗道阻尼. 物理学报, 2009, 58(11): 7473-7478. doi: 10.7498/aps.58.7473
    [15] 葛琳, 季沛勇. 等离子体波背景下的光子Berry相位. 物理学报, 2009, 58(1): 347-353. doi: 10.7498/aps.58.347
    [16] 何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰. 强激光与稠密等离子体作用引起的冲击波加速离子的研究. 物理学报, 2009, 58(1): 363-372. doi: 10.7498/aps.58.363
    [17] 黄仕华, 吴锋民. 外加静电场的聚焦激光脉冲真空加速电子方案. 物理学报, 2008, 57(12): 7680-7684. doi: 10.7498/aps.57.7680
    [18] 曾贵华, 诸鸿文, 徐至展. 欠稠密等离子体中诱发的偶次相对论谐波. 物理学报, 2001, 50(10): 1946-1949. doi: 10.7498/aps.50.1946
    [19] 赖国俊, 季沛勇. 基于激光等离子体的光子加速. 物理学报, 2000, 49(12): 2399-2403. doi: 10.7498/aps.49.2399
    [20] 常文蔚, 张立夫, 邵福球. 激光等离子体波电子加速器. 物理学报, 1991, 40(2): 182-189. doi: 10.7498/aps.40.182
计量
  • 文章访问数:  2859
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-21
  • 修回日期:  2023-04-04
  • 上网日期:  2023-04-21
  • 刊出日期:  2023-06-20

/

返回文章
返回