搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液氩探测器在稀有事例探测中的应用和发展

郑昊哲 刘圆圆 王力 程建平

引用本文:
Citation:

液氩探测器在稀有事例探测中的应用和发展

郑昊哲, 刘圆圆, 王力, 程建平

Application and development of liquid argon detector in rare event detection

Zheng Hao-Zhe, Liu Yuan-Yuan, Wang Li, Cheng Jian-Ping
PDF
HTML
导出引用
  • 稀有事例探测是近几年热门的粒子物理前沿课题, 如暗物质、无中微子双贝塔衰变、中微子-核子相干弹性散射等实验都在逐渐被规划和实施. 进行稀有事例探测要求探测器有极佳的性能, 同时对环境本底有很高的要求, 因此探测器和相关材料的选择是稀有事例探测的一个重要课题. 液氩因为成本低、闪烁性能好、体积限制较小等优势成为稀有事例探测器的一种重要介质. 经过几十年的发展, 单相液氩闪烁体探测器和两相氩时间投影室成为两种常见的液氩探测器类型, 并开始被国内外各实验组应用于稀有事例探测实验中. 本文首先对两种常见的液氩探测器的原理和特性进行介绍, 然后详细介绍国内外相关稀有事例探测实验组对液氩探测器的研究和应用现状以及未来规划, 最后讨论未来液氩探测器在稀有事例探测中的应用前景和优化方向.
    Rare event detection is a frontier subject in particle physics and nuclear physics. In particular, dark matter detection, neutrino-free double beta decay and neutrino-nucleon coherent elastic scattering are being planned and implemented gradually. Rare event detection requires not only the detectors to possess excellent performances but also extremely low environmental background, so the selection of detectors and related materials is an important issue in rare event detection. Liquid argon has become an important scintillator material for scintillator detectors because of its low cost, good scintillation performance and large volume. Liquid argon was first studied in the 1940s as a sensitive material for ionizing radiation detectors. The first measurements of high-energy beta particles were obtained by using a liquid argon ionization chamber in 1953. The ICARUS group put forward the idea of constructing liquid argon temporal projection chamber, and made attempt to construct liquid argon temporal projection chamber in 1977. The scintillation light signals were collected for the first time in a liquid argon temporal projection chamber in 1999. Thus, the drift time of the particle can be obtained to determine the particle track. After development, single-phase liquid argon scintillator detector and two-phase argon time projection chamber have become two common types of liquid argon detectors, and have been extensively used in rare event detection experiments in recent years. For dark matter detection, the DEAP group and DarkSide group have achieved good results with single-phase liquid argon scintillation detector and two-phase argon time projection chamber, respectively. For neutrino-free double beta decay experiments, the GERDA group has done a lot of researches of liquid argon anti-coincidence system and applied the said system to experiments. The LEGEND group, which is the combination of GERDA and MAJORANA experimental group, upgraded the liquid argon anti-coincidence system which was applied to the following LEGEND-200 project. For neutrino-nucleon elastic scattering experiments, COHERENT obtained the latest results by using the liquid argon detectors. The Taishan neutrino-nucleon coherent elastic scattering project of the High Energy Institute of Chinese Academy of Sciences has also begun to study the feasibility of liquid argon anti-coincidence system. Finally, this paper discusses the direction of optimizing the liquid argon detector, such as exposure, background level and optical readout scheme, and gives a good prospect of liquid argon detector applied to rare event detection in the future.
      通信作者: 刘圆圆, yyliu@bnu.edu.cn ; 王力, wangl@bnu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFA1604701)和国家自然科学基金(批准号: 1222200227) 资助的课题.
      Corresponding author: Liu Yuan-Yuan, yyliu@bnu.edu.cn ; Wang Li, wangl@bnu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1604701) and the National Natural Science Foundation of China (Grant No. 1222200227).
    [1]

    Rubin V C, Ford Jr W K 1970 Astrophys. J. 159 379Google Scholar

    [2]

    Furry W H 1939 Phys. Rev. 56 1184Google Scholar

    [3]

    Freedman D Z 1974 Phys. Rev. D 9 1389Google Scholar

    [4]

    Akerib D S, Akerlof C W, Akimov D Y, et al. 2020 Nucl. Instrum. Methods. Phys. Res. , Sect. A 953 163047Google Scholar

    [5]

    Amaudruz P A, Baldwin M, Batygov M, et al. 2019 Astropart. Phys. 108 1Google Scholar

    [6]

    Aalseth C E, Barbeau P S, Bowden N S, et al. 2011 Phys. Rev. Lett. 106 131301Google Scholar

    [7]

    Agnese R, Anderson A J, Aralis T, et al. 2018 Phys. Rev. D 97 022002Google Scholar

    [8]

    Agnes P, Albuquerque I F M, Alexander T, et al. 2018 Phys. Rev. Lett. 121 081307Google Scholar

    [9]

    Agostini M, Araujo G R, Bakalyarov A M, et al. 2020 Phys. Rev. Lett. 125 252502Google Scholar

    [10]

    Akimov D, Albert J B, An P, et al. 2019 Phys. Rev. D 100 115020Google Scholar

    [11]

    Davidson N, Larsh J A E 1948 Phys. Rev. 74 220Google Scholar

    [12]

    Marshall J H 1954 Rev. Sci. Instrum. 25 232Google Scholar

    [13]

    Dolgoshein B A, Lebedenko V N, Rodionov B U 1970 JETP Lett. 11 351

    [14]

    Rubbia C 1977 https://cds.cern.ch/record/117852/files/CERN- EP-INT-77-8/[2022-10-27]

    [15]

    Bvnetti P, Bettini A, Calligarich E, et al. 1993 Nucl. Instrum. Methods. Phys. Res. , Sect. A 332 395Google Scholar

    [16]

    Cennini P, Cittolin S, Revol J P, et al. 1994 Nucl. Instrum. Methods. Phys. Res. , Sect. A 345 230Google Scholar

    [17]

    Kubota S, Hishida M, Nohara A 1978 Nucl. Instrum. Methods 150 561Google Scholar

    [18]

    Cennini P, Revol J P, Rubbia C, et al. 1999 Nucl. Instrum. Methods. Phys. Res. , Sect. A 432 240Google Scholar

    [19]

    Ajaj R, Amaudruz P A, Araujo G R, et al. 2019 Phys. Rev. D 100 022004Google Scholar

    [20]

    Agnes P, Albuquerque I F M, Alexander T, et al. 2018 Phys. Rev. D 98 102006Google Scholar

    [21]

    Suzuki M, Gen J R, Kubota S 1982 Nucl. Instrum. Methods Phys. Res. 192 565Google Scholar

    [22]

    Doke T, Hitachi A, Kikuchi J, Masuda K, Okada H, Shibamura E 2002 Jpn. J. Appl. Phys. 41 1538Google Scholar

    [23]

    Hitachi A, Takahashi T, Funayama N, Masuda K, Kikuchi J, Doke T 1983 Phys. Rev. B 27 5279Google Scholar

    [24]

    Peiffer J P 2007 Ph. D. Dissertation (Heidelberg: Ruperto-Carola University)

    [25]

    Acciarri R, Antonello M, Baibussinov B, et al. 2010 J. Instrum. 5 P06003Google Scholar

    [26]

    Acciarri R, Antonello M, Baibussinov B, et al. 2010 J. Instrum. 5 P05003Google Scholar

    [27]

    Calvo J, Cantini C, Crivelli P, et al. 2018 Astropart. Phys. 97 186Google Scholar

    [28]

    Canci N 2020 J. Instrum. 15 C03026Google Scholar

    [29]

    Zani A 2014 Adv. High. Energy Phys. 2014 1Google Scholar

    [30]

    Amaudruz P A, Batygov M, Beltran B, et al. 2016 Astropart. Phys. 85 1Google Scholar

    [31]

    Adhikari P, Ajaj R, Alpízar-Venegas M, et al. 2021 Eur. Phys. J. C 81 1Google Scholar

    [32]

    Adhikari P, Ajaj R, Alpizar-Venegas M, et al. 2022 Phys. Rev. Lett. 128 011801Google Scholar

    [33]

    Benetti P, Acciarri R, Belluco M, et al. 2011 Nucl. Phys. B Proc. Suppl. 221 53Google Scholar

    [34]

    Alexander T, Alton D, Arisaka K, et al. 2013 Astropart. Phys. 49 44Google Scholar

    [35]

    Agnes P, Alexander T, Alton A, et al. 2015 Phys. Lett. B 743 456Google Scholar

    [36]

    Aalseth C E, Acerbi F, Agnes P, et al. 2018 Eur. Phys. J. Plus 133 1Google Scholar

    [37]

    Rossi M 2021 Nuovo Cimento 44 1Google Scholar

    [38]

    Carnesecchi F 2020 J. Instrum. 15 C03038Google Scholar

    [39]

    Consiglio L 2020 J. Instrum. 15 C05063Google Scholar

    [40]

    Majorana E 1937 Nuovo Cimento 14 171Google Scholar

    [41]

    Abt I, Altmann M, Bakalyarov A, et al. 2004 arXiv: 0404.039v1 [hep-ex]

    [42]

    Simgen H 2005 Nucl. Phys. B Proc. Suppl. 143 567Google Scholar

    [43]

    Orrell J L, Aalseth C E, Amsbaugh J F, Doe P J, Hossbach T W 2007 Nucl. Instrum. Methods. Phys. Res., Sect. A 579 91Google Scholar

    [44]

    Heider M B 2009 Ph. D. Dissertation (Heidelberg: Ruperto-Carola University)

    [45]

    Agostini M, Barnabé-Heider M, Budjáš D, et al. 2015 Eur. Phys. J. C 75 1Google Scholar

    [46]

    Agostini M, Bakalyarov A M, Balata M, et al. 2018 Eur. Phys. J. C 78 1Google Scholar

    [47]

    Agostini M, Allardt M, Bakalyarov A M, et al. 2017 Nature 544 47Google Scholar

    [48]

    Hoppe E W, Aalseth C E, Farmer O T, Hossbach T W, Liezers M, Miley H S, Overman N R, Reeves J H 2014 Nucl. Instrum. Methods. Phys. Res., Sect. A 764 116Google Scholar

    [49]

    Schwarz M, Krause P, Leonhardt A, et al. 2021 EPJ Web Conf. 253 11014Google Scholar

    [50]

    Efremenko Y, Fajt L, Febbraro M, et al. 2019 J. Instrum. 14 P07006Google Scholar

    [51]

    Wang L, Yue Q, Kang K J, et al. 2017 Sci. Chin. Phys. Mech. 60 1Google Scholar

    [52]

    Wang Z, Yue Q, Kang K J, et al. 2013 Phys. Rev. D 88 052004Google Scholar

    [53]

    Yue Q, Wang Z, Kang K J, et al. 2014 Phys. Rev. D 90 091701Google Scholar

    [54]

    Yang L T, Li H B, Yue Q, et al. 2019 Phys. Rev. Lett. 123 221301Google Scholar

    [55]

    Jiang H, Jia L P, Yue Q, et al. 2018 Phys. Rev. Lett. 120 241301Google Scholar

    [56]

    She Z, Jia L P, Yue Q, et al. 2020 Phys. Rev. Lett. 124 111301Google Scholar

    [57]

    Dai W H, Ma H, Yue Q, et al. 2022 Phys. Rev. D 106 032012Google Scholar

    [58]

    Xiao M J, Xiao X, Zhao L, et al. 2014 Sci. Chin. Phys. Mech. 57 2024Google Scholar

    [59]

    Ni K X, Lai Y H, Abdukerim A, et al. 2019 Chin. Phys. C 43 113001Google Scholar

    [60]

    Cui X, Abdukerim A, Chen W, et al. 2017 Phys. Rev. Lett. 119 181302Google Scholar

    [61]

    Meng Y, Wang Z, Tao Y, et al. 2021 Phys. Rev. Lett. 127 261802Google Scholar

    [62]

    Wang S B 2020 Nucl. Instrum. Methods. Phys. Res., Sect. A 958 162439Google Scholar

    [63]

    Akimov D, Albert J B, An P, et al. 2017 Science 357 1123Google Scholar

    [64]

    Wei Y T, Guan M Y, Liu J C, Yu Z Y, Yang C G, Guo C, Xiong W X, Gan Y Y, Zhao Q, Li J J 2021 Radiat. Detect. Technol. 5 297Google Scholar

    [65]

    Guo C, Guan M Y, Sun X L, Xiong W X, Zhang P, Yang C G, Wei Y T, Gan Y Y, Zhao Q 2020 Nucl. Instrum. Methods. Phys. Res., Sect. A 980 164488Google Scholar

    [66]

    Wang L, Guan M Y, Qin H J, et al. 2021 J. Instrum. 16 P07021Google Scholar

    [67]

    Adams D Q, Alduino C, Alfonso K, et al. 2022 Nature 604 53Google Scholar

  • 图 1  激发态氩原子形成原理

    Fig. 1.  Formation mechanism of excited argon.

    图 2  液氩闪烁光产生和收集过程示意图

    Fig. 2.  Schematic diagram of the generation and collection process of liquid argon scintillation.

    图 3  两相氩TPC装置示意图[28]

    Fig. 3.  Schematic diagram of double-phase argon TPC[28].

    图 4  60Co源测试能谱[45]

    Fig. 4.  The energy spectrum of 60Co source[45].

    图 5  GERDAⅡ期实验装置图 (a) 锗探测器阵列和液氩反符合系统装置图[46]; (b)实验整体装置图[46]

    Fig. 5.  GERDA phase Ⅱ experimental setup: (a) Diagram of germanium detector array and liquid argon veto system[46]; (b) the overall setup[46].

    图 6  GERDAⅡ期实验结果[9]

    Fig. 6.  Results of GERDA phaseⅡ experiment[9]

    表 1  稀有事例探测常用探测器类型对比

    Table 1.  Comparison of detector types in rare event detection.

    液态惰性气体探测器高纯锗探测器极低温量热器
    液氩探测器液氙探测器
    优势成本低, 有粒子甄别能力,
    探测效率高
    有粒子甄别能力,
    探测效率高
    低阈值, 极高能量分辨率高能量分辨率,
    有粒子甄别能力
    缺点能量分辨率相对较低成本较高, 能量
    分辨率相对低
    成本较高, 探测器生产
    工艺复杂, 单个晶体
    质量增加困难
    需要极低温环境
    (mK量级)
    下载: 导出CSV

    表 2  液氩闪烁光特性[24]

    Table 2.  Scintillation properties of liquid argon.

    闪烁特性相关物理量符号数值
    光产额/(光子·keV–1)Y41±2
    发光峰值波长/nmλmax128
    单态时间常数/nsτs6
    三重态时间常数/μsτt1.59
    β事件快慢成分比Is/It (e)0.3
    α事件快慢成分比Is/It (α)1.3
    裂变碎片事件快慢成分比Is/It (ff)3
    下载: 导出CSV

    表 3  国内外液氩探测器相关实验组概况

    Table 3.  General situation of liquid argon detector related experimental groups at home and abroad.

    实验组
    名称
    稀有事例
    探测类型
    探测器类型液氩探测
    器质量
    光读出运行状态主要特点
    DEAP暗物质单相液氩闪烁体3260 kgPMT+光导运行中较早采用液氩为介质探测暗物质
    WArP暗物质两相氩TPC140 kgPMT已结束最早尝试用TPC探测暗物质
    DarkSide暗物质两相氩TPC46.4 kgPMT运行中地下氩、中子反符合
    GERDA0νββ高纯锗探测器+单相液氩
    闪烁体(反符合)
    1400 kgSiPM+光
    纤/PMT
    已结束系统地研究液氩反符合
    系统并应用
    LEGEND0νββ高纯锗探测器+单相液氩
    闪烁体(反符合)
    SiPM+光纤建设中实验组合并, 新的读出方案研究
    COHERENTCEνNS单相液氩闪烁体79.5 kgPMT运行中第一个尝试用液氩探测器探测CEνNS事例
    TaishanCEνNS两相氩TPC+单相液氩闪
    烁体(反符合)
    200 kgPMT建设中尝试用液氩探测器作为CEνNS
    事例的反符合系统
    下载: 导出CSV

    表 4  液氩探测器优化和升级

    Table 4.  Optimization and upgrade of liquid argon detector.

    实验组名称39Ar本底抑制其它本底抑制氩纯度监测和稳定光读出方案升级
    DEAP利用液氩的粒子甄别能力扣除水切伦科夫探测器抑制μ子氡捕集阱去除放射性杂质
    DarkSide地下氩生产技术应用水切伦科夫探测器抑制μ子, 载硼或载钆液闪抑制中子同时进行去除电负性
    杂质和氩同位素分离
    SiPM低温稳定读出和紫外
    波段直接读出技术研究
    GERDA水切伦科夫探测器抑制μ子, 液氩探测器抑制其他本底SiPM+光纤读出
    LEGEND地下氩生成技术研究水切伦科夫探测器抑制μ子, 液氩探测器抑制其他本底液氩纯度监测仪SiPM+光纤双端读出
    Taishan地下氩生产技术研究塑料闪烁体抑制μ子, 液氩探测器抑制其他本底SiPM低温稳定读出技术研究
    下载: 导出CSV
  • [1]

    Rubin V C, Ford Jr W K 1970 Astrophys. J. 159 379Google Scholar

    [2]

    Furry W H 1939 Phys. Rev. 56 1184Google Scholar

    [3]

    Freedman D Z 1974 Phys. Rev. D 9 1389Google Scholar

    [4]

    Akerib D S, Akerlof C W, Akimov D Y, et al. 2020 Nucl. Instrum. Methods. Phys. Res. , Sect. A 953 163047Google Scholar

    [5]

    Amaudruz P A, Baldwin M, Batygov M, et al. 2019 Astropart. Phys. 108 1Google Scholar

    [6]

    Aalseth C E, Barbeau P S, Bowden N S, et al. 2011 Phys. Rev. Lett. 106 131301Google Scholar

    [7]

    Agnese R, Anderson A J, Aralis T, et al. 2018 Phys. Rev. D 97 022002Google Scholar

    [8]

    Agnes P, Albuquerque I F M, Alexander T, et al. 2018 Phys. Rev. Lett. 121 081307Google Scholar

    [9]

    Agostini M, Araujo G R, Bakalyarov A M, et al. 2020 Phys. Rev. Lett. 125 252502Google Scholar

    [10]

    Akimov D, Albert J B, An P, et al. 2019 Phys. Rev. D 100 115020Google Scholar

    [11]

    Davidson N, Larsh J A E 1948 Phys. Rev. 74 220Google Scholar

    [12]

    Marshall J H 1954 Rev. Sci. Instrum. 25 232Google Scholar

    [13]

    Dolgoshein B A, Lebedenko V N, Rodionov B U 1970 JETP Lett. 11 351

    [14]

    Rubbia C 1977 https://cds.cern.ch/record/117852/files/CERN- EP-INT-77-8/[2022-10-27]

    [15]

    Bvnetti P, Bettini A, Calligarich E, et al. 1993 Nucl. Instrum. Methods. Phys. Res. , Sect. A 332 395Google Scholar

    [16]

    Cennini P, Cittolin S, Revol J P, et al. 1994 Nucl. Instrum. Methods. Phys. Res. , Sect. A 345 230Google Scholar

    [17]

    Kubota S, Hishida M, Nohara A 1978 Nucl. Instrum. Methods 150 561Google Scholar

    [18]

    Cennini P, Revol J P, Rubbia C, et al. 1999 Nucl. Instrum. Methods. Phys. Res. , Sect. A 432 240Google Scholar

    [19]

    Ajaj R, Amaudruz P A, Araujo G R, et al. 2019 Phys. Rev. D 100 022004Google Scholar

    [20]

    Agnes P, Albuquerque I F M, Alexander T, et al. 2018 Phys. Rev. D 98 102006Google Scholar

    [21]

    Suzuki M, Gen J R, Kubota S 1982 Nucl. Instrum. Methods Phys. Res. 192 565Google Scholar

    [22]

    Doke T, Hitachi A, Kikuchi J, Masuda K, Okada H, Shibamura E 2002 Jpn. J. Appl. Phys. 41 1538Google Scholar

    [23]

    Hitachi A, Takahashi T, Funayama N, Masuda K, Kikuchi J, Doke T 1983 Phys. Rev. B 27 5279Google Scholar

    [24]

    Peiffer J P 2007 Ph. D. Dissertation (Heidelberg: Ruperto-Carola University)

    [25]

    Acciarri R, Antonello M, Baibussinov B, et al. 2010 J. Instrum. 5 P06003Google Scholar

    [26]

    Acciarri R, Antonello M, Baibussinov B, et al. 2010 J. Instrum. 5 P05003Google Scholar

    [27]

    Calvo J, Cantini C, Crivelli P, et al. 2018 Astropart. Phys. 97 186Google Scholar

    [28]

    Canci N 2020 J. Instrum. 15 C03026Google Scholar

    [29]

    Zani A 2014 Adv. High. Energy Phys. 2014 1Google Scholar

    [30]

    Amaudruz P A, Batygov M, Beltran B, et al. 2016 Astropart. Phys. 85 1Google Scholar

    [31]

    Adhikari P, Ajaj R, Alpízar-Venegas M, et al. 2021 Eur. Phys. J. C 81 1Google Scholar

    [32]

    Adhikari P, Ajaj R, Alpizar-Venegas M, et al. 2022 Phys. Rev. Lett. 128 011801Google Scholar

    [33]

    Benetti P, Acciarri R, Belluco M, et al. 2011 Nucl. Phys. B Proc. Suppl. 221 53Google Scholar

    [34]

    Alexander T, Alton D, Arisaka K, et al. 2013 Astropart. Phys. 49 44Google Scholar

    [35]

    Agnes P, Alexander T, Alton A, et al. 2015 Phys. Lett. B 743 456Google Scholar

    [36]

    Aalseth C E, Acerbi F, Agnes P, et al. 2018 Eur. Phys. J. Plus 133 1Google Scholar

    [37]

    Rossi M 2021 Nuovo Cimento 44 1Google Scholar

    [38]

    Carnesecchi F 2020 J. Instrum. 15 C03038Google Scholar

    [39]

    Consiglio L 2020 J. Instrum. 15 C05063Google Scholar

    [40]

    Majorana E 1937 Nuovo Cimento 14 171Google Scholar

    [41]

    Abt I, Altmann M, Bakalyarov A, et al. 2004 arXiv: 0404.039v1 [hep-ex]

    [42]

    Simgen H 2005 Nucl. Phys. B Proc. Suppl. 143 567Google Scholar

    [43]

    Orrell J L, Aalseth C E, Amsbaugh J F, Doe P J, Hossbach T W 2007 Nucl. Instrum. Methods. Phys. Res., Sect. A 579 91Google Scholar

    [44]

    Heider M B 2009 Ph. D. Dissertation (Heidelberg: Ruperto-Carola University)

    [45]

    Agostini M, Barnabé-Heider M, Budjáš D, et al. 2015 Eur. Phys. J. C 75 1Google Scholar

    [46]

    Agostini M, Bakalyarov A M, Balata M, et al. 2018 Eur. Phys. J. C 78 1Google Scholar

    [47]

    Agostini M, Allardt M, Bakalyarov A M, et al. 2017 Nature 544 47Google Scholar

    [48]

    Hoppe E W, Aalseth C E, Farmer O T, Hossbach T W, Liezers M, Miley H S, Overman N R, Reeves J H 2014 Nucl. Instrum. Methods. Phys. Res., Sect. A 764 116Google Scholar

    [49]

    Schwarz M, Krause P, Leonhardt A, et al. 2021 EPJ Web Conf. 253 11014Google Scholar

    [50]

    Efremenko Y, Fajt L, Febbraro M, et al. 2019 J. Instrum. 14 P07006Google Scholar

    [51]

    Wang L, Yue Q, Kang K J, et al. 2017 Sci. Chin. Phys. Mech. 60 1Google Scholar

    [52]

    Wang Z, Yue Q, Kang K J, et al. 2013 Phys. Rev. D 88 052004Google Scholar

    [53]

    Yue Q, Wang Z, Kang K J, et al. 2014 Phys. Rev. D 90 091701Google Scholar

    [54]

    Yang L T, Li H B, Yue Q, et al. 2019 Phys. Rev. Lett. 123 221301Google Scholar

    [55]

    Jiang H, Jia L P, Yue Q, et al. 2018 Phys. Rev. Lett. 120 241301Google Scholar

    [56]

    She Z, Jia L P, Yue Q, et al. 2020 Phys. Rev. Lett. 124 111301Google Scholar

    [57]

    Dai W H, Ma H, Yue Q, et al. 2022 Phys. Rev. D 106 032012Google Scholar

    [58]

    Xiao M J, Xiao X, Zhao L, et al. 2014 Sci. Chin. Phys. Mech. 57 2024Google Scholar

    [59]

    Ni K X, Lai Y H, Abdukerim A, et al. 2019 Chin. Phys. C 43 113001Google Scholar

    [60]

    Cui X, Abdukerim A, Chen W, et al. 2017 Phys. Rev. Lett. 119 181302Google Scholar

    [61]

    Meng Y, Wang Z, Tao Y, et al. 2021 Phys. Rev. Lett. 127 261802Google Scholar

    [62]

    Wang S B 2020 Nucl. Instrum. Methods. Phys. Res., Sect. A 958 162439Google Scholar

    [63]

    Akimov D, Albert J B, An P, et al. 2017 Science 357 1123Google Scholar

    [64]

    Wei Y T, Guan M Y, Liu J C, Yu Z Y, Yang C G, Guo C, Xiong W X, Gan Y Y, Zhao Q, Li J J 2021 Radiat. Detect. Technol. 5 297Google Scholar

    [65]

    Guo C, Guan M Y, Sun X L, Xiong W X, Zhang P, Yang C G, Wei Y T, Gan Y Y, Zhao Q 2020 Nucl. Instrum. Methods. Phys. Res., Sect. A 980 164488Google Scholar

    [66]

    Wang L, Guan M Y, Qin H J, et al. 2021 J. Instrum. 16 P07021Google Scholar

    [67]

    Adams D Q, Alduino C, Alfonso K, et al. 2022 Nature 604 53Google Scholar

  • [1] 王德鑫, 张蕊, 尉德康, 那蕙, 姚张浩, 吴凌赫, 张苏雅拉吐, 梁泰然, 黄美容, 王志龙, 白宇, 黄永顺, 杨雪, 张嘉文, 刘梦迪, 马蔷, 于静, 纪秀艳, 于伊丽琦, 邵学鹏. 基于塑料闪烁体探测器的宇宙线缪子与太阳调制效应观测研究. 物理学报, 2025, 74(5): . doi: 10.7498/aps.74.20241704
    [2] 李杭, 陈萍, 田进寿, 薛彦华, 王俊锋, 缑永胜, 张敏睿, 何凯, 徐向晏, 赛小锋, 李亚晖, 刘百玉, 王向林, 辛丽伟, 高贵龙, 汪韬, 王兴, 赵卫. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器. 物理学报, 2022, 71(2): 028501. doi: 10.7498/aps.71.20210871
    [3] 李杭, 陈萍, 田进寿. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210871
    [4] 靳亚晴, 董瑞芳, 权润爱, 项晓, 刘涛, 张首刚. 门控下InGaAs/InP单光子探测器用于符合测量的时域滤波特性研究. 物理学报, 2021, 70(7): 074202. doi: 10.7498/aps.70.20201648
    [5] 安涛, 涂传宝, 龚伟. 具有光电倍增的宽光谱三相体异质结有机彩色探测器. 物理学报, 2018, 67(19): 198503. doi: 10.7498/aps.67.20180502
    [6] 赵磊, 徐妙华, 张翌航, 张喆, 朱保君, 姜炜曼, 张笑鹏, 赵旭, 仝博伟, 贺书凯, 卢峰, 吴玉迟, 周维民, 张发强, 周凯南, 谢娜, 黄征, 仲佳勇, 谷渝秋, 李玉同, 李英骏. 利用气泡探测器测量激光快中子. 物理学报, 2018, 67(22): 222101. doi: 10.7498/aps.67.20181035
    [7] 温志文, 祁辉荣, 王艳凤, 孙志嘉, 张余炼, 王海云, 张建, 欧阳群, 陈元柏, 李玉红. 二维多丝室探测器读出方法的优化. 物理学报, 2017, 66(7): 072901. doi: 10.7498/aps.66.072901
    [8] 温志文, 祁辉荣, 代洪亮, 张余炼, 魏堃, 张建, 欧阳群, 邵剑雄. 一维丝室气体探测器衍射像差的修正方法研究. 物理学报, 2015, 64(8): 082901. doi: 10.7498/aps.64.082901
    [9] 黄建微, 王乃彦. 基于蒙特卡罗方法的NaI探测器效率刻度及其测量轫致辐射实验. 物理学报, 2014, 63(18): 180702. doi: 10.7498/aps.63.180702
    [10] 王兰喜, 陈学康, 吴敢, 曹生珠, 尚凯文. 晶界对金刚石紫外探测器时间响应性能的影响. 物理学报, 2012, 61(3): 038101. doi: 10.7498/aps.61.038101
    [11] 徐妙华, 李红伟, 刘峰, 刘必成, 杜飞, 张璐, 苏鲁宁, 李英骏, 李玉同, 陈佳洱, 张杰. 实时离子探测器塑料闪烁体性能的实验研究. 物理学报, 2012, 61(10): 105202. doi: 10.7498/aps.61.105202
    [12] 吕绮雯, 郑阳恒, 田彩星, 刘福虎, 蔡啸, 方建, 高龙, 葛永帅, 刘颖彪, 孙丽君, 孙希磊, 牛顺利, 王志刚, 谢宇广, 薛镇, 俞伯祥, 章爱武, 胡涛, 吕军光. 利用ICCD定位宇宙线来测量探测器时间分辨的方法研究. 物理学报, 2012, 61(7): 072904. doi: 10.7498/aps.61.072904
    [13] 张小东, 邱孟通, 张建福, 欧阳晓平, 张显鹏, 陈亮. 一种基于4He气闪烁体的裂变中子探测器. 物理学报, 2012, 61(23): 232502. doi: 10.7498/aps.61.232502
    [14] 言杰, 李澄, 刘荣, 蒋励, 鹿心鑫, 王玫. 利用252 Cf快裂变室测量BC501A液闪探测器的相对探测效率和响应函数. 物理学报, 2011, 60(3): 032901. doi: 10.7498/aps.60.032901
    [15] 侯立飞, 李芳, 袁永腾, 杨国洪, 刘慎业. 化学气相沉积金刚石探测器测量软X射线能谱. 物理学报, 2010, 59(2): 1137-1142. doi: 10.7498/aps.59.1137
    [16] 马海强, 王素梅, 吴令安. 基于偏振纠缠光子对的单光子源. 物理学报, 2009, 58(2): 717-721. doi: 10.7498/aps.58.717
    [17] 欧阳晓平, 李真富, 霍裕昆, 宋献才. 用于脉冲γ强度测量的φ60,1000μm PIN探测器. 物理学报, 2007, 56(3): 1353-1357. doi: 10.7498/aps.56.1353
    [18] 李 园, 李 刚, 张玉驰, 王晓勇, 王军民, 张天才. 计数率和分辨时间对光场统计性质测量的影响——单探测器直接测量的实验分析. 物理学报, 2006, 55(11): 5779-5783. doi: 10.7498/aps.55.5779
    [19] 吴关洪, 王蕴玉, 唐孝威. 用Ge(Li)探测器测量正电子3γ湮没. 物理学报, 1983, 32(3): 417-422. doi: 10.7498/aps.32.417
    [20] 徐平茂. 体吸收、边电极热电探测器的分析. 物理学报, 1980, 29(11): 1445-1451. doi: 10.7498/aps.29.1445
计量
  • 文章访问数:  4704
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-27
  • 修回日期:  2022-12-10
  • 上网日期:  2022-12-27
  • 刊出日期:  2023-03-05

/

返回文章
返回