搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Yb:CaYAlO4再生放大器

王阁阳 白川 麦海静 郑立 田轩 于洋 田文龙 徐晓东 魏志义 朱江峰

引用本文:
Citation:

Yb:CaYAlO4再生放大器

王阁阳, 白川, 麦海静, 郑立, 田轩, 于洋, 田文龙, 徐晓东, 魏志义, 朱江峰

Yb:CaYAlO4 regenerative amplifier

Wang Ge-Yang, Bai Chuan, Mai Hai-Jing, Zheng Li, Tian Xuan, Yu Yang, Tian Wen-Long, Xu Xiao-Dong, Wei Zhi-Yi, Zhu Jiang-Feng
PDF
HTML
导出引用
  • 阿秒科学是驱动超强超快激光往高平均功率和短脉冲宽度方向快速发展的动力之一. 本文针对高重复频率阿秒光源的实际需求, 开展了基于国产Yb:CaYAlO4晶体的再生放大理论和实验研究. 在理论研究中, 根据Yb:CaYAlO4晶体的热透镜计算结果, 设计了热稳定性良好的模式可调再生腔; 并对晶体πσ偏振的放大输出能量和光谱进行计算. 在此基础上, 开展了Yb:CaYAlO4晶体不同偏振性质的再生放大实验研究. 在晶体π偏振的实验中, 获得了平均功率16.1 W、单脉冲能量1.61 mJ、光谱中心波长1030 nm、光谱半高全宽16 nm的放大输出, 压缩后的激光脉冲宽度为149 fs, 压缩效率为92.1%, 峰值功率大于9.5 GW. 在σ偏振获得了平均功率28.7 W、单脉冲能量2.87 mJ、光谱中心波长1037 nm、光谱半高全宽11 nm的放大输出, 压缩后的激光脉冲宽度为178 fs, 压缩效率为91.5%, 峰值功率大于14.2 GW, 光束质量因子M 2 < 1.2. 以上研究结果实现了目前Yb:CaYAlO4晶体最高平均功率和最大单脉冲能量的输出. 针对高重复频率阿秒光源、太赫兹和光参量放大领域的应用, 后续计划增加两级行波放大实现平均功率200 W、脉冲能量20 mJ、脉冲宽度小于200 fs的激光输出.
    Attosecond science is one of the driving forces for developing the femtosecond amplifiers of high average power and ultrashort pulse duration. In this work, the regenerative amplification is studied experimentally and theoretically based on Yb:CaYAlO4 crystal for the practical needs of high-repetition-rate attosecond light sources. In the theoretical study, a mode-tunable regenerative cavity with good thermal stability is designed based on the thermal lens calculations of Yb:CaYAlO4 crystal; the amplified output energy and spectra of π and σ polarization of the crystal are calculated. In the experiment, the π-axis of Yb:CaYAlO4 crystal is parallel to the laser polarization, and the laser amplifier emits 1.61 mJ pulses with average power 16.1 W. Notably, the dip of the π-polarization emission spectrum near 1025.1 nm compensates for the gain narrowing of the seed laser during amplification. Thus, the center wavelength and the spectral full width at a half maximum of the amplified laser are 1030 nm and 16 nm respectively. Using a grating-pair for compression, 149 fs pulses with peak power 9.5 GW are obtained. In comparison, the σ-polarization emission spectrum of Yb:CaYAlO4 crystal is relatively flat in a range from 1000 to 1050 nm, but with a larger gain cross-section. When the laser polarization is parallel to the σ-axis of Yb:CaYAlO4 crystal, 2.87 mJ pulses at 10 kHz repetition rate are achieved, with an average power of 28.7 W. In this case, the center wavelength and the spectral full width at half maximum of the amplified laser are 1037 nm and 11 nm respectively. Using a grating-pair for compression, 178 fs pulses with peak power of 14.2 GW are obtained. The beam quality factor measured is 1.09 along the x-axis of the amplified laser and 1.17 along the y-axis. To the best of our knowledge, this is the highest average power and the maximum pulse energy obtained from the Yb:CaYAlO4 amplifier. For applications in high-repetition-rate attosecond light sources, terahertz generation and optical parametric amplification, subsequent laser outputs with average power 200 W, pulse energy 20 mJ and pulse duration less than 200 fs are expected to be achieved by adding two stages of traveling-wave amplification.
      通信作者: 田文龙, wltian@xidian.edu.cn ; 朱江峰, jfzhu@xidian.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFB4601102)、国家自然科学基金(批准号: 11774277, 61975071)、陕西省自然科学基础研究计划(批准号: 2019JCW-03)和西安市科技创新计划(批准号: 202005YK01)资助的课题.
      Corresponding author: Tian Wen-Long, wltian@xidian.edu.cn ; Zhu Jiang-Feng, jfzhu@xidian.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFB4601102), the National Natural Science Foundation of China (Grant Nos. 11774277, 61975071), the Natural Science Basic Research Program of Shaanxi, China (Grant No. 2019JCW-03), and the Science and Technology Program of Xi’an, China (Grant No. 202005YK01).
    [1]

    Midorikawa K 2022 Nat. Photonics 16 267Google Scholar

    [2]

    D’Arcy R, Chappell J, Beinortaite J, et al. 2022 Nature 603 58Google Scholar

    [3]

    Lloyd-Hughes J, Oppeneer P M, Pereira dos Santos T, et al. 2021 J. Phys. Condens. Matter 33 353001Google Scholar

    [4]

    Maiuri M, Garavelli M, Cerullo G 2020 J. Am. Chem. Soc. 142 3Google Scholar

    [5]

    Kroll F, Brack F E, Bernert C, et al. 2022 Nat. Phys. 18 316Google Scholar

    [6]

    Lin Z Y, Hong M H 2021 Ultrafast Sci. 2021 9783514

    [7]

    C. Phillips K, H. Gandhi H, Mazur E, Sundaram S K 2015 Adv. Opt. Photonics 7 684Google Scholar

    [8]

    Iwasawa H 2020 Electron. Struct. 2 043001Google Scholar

    [9]

    Zheng W, Jiang P Z, Zhang L F, Wang Y, Sun Q, Liu Y Q, Gong Q H, Wu C Y 2021 Rev. Sci. Instrum. 92 043709Google Scholar

    [10]

    Miao J W, Ishikawa T, K. Robinson I, M. Murnane M 2015 Science 348 530Google Scholar

    [11]

    Auböck G, Consani C, Mourik F V, Chergui M 2012 Opt. Lett. 37 2337Google Scholar

    [12]

    Hönninger C, Paschotta R, Graf M, et al. 1999 Appl. Phys. B 69 3

    [13]

    朱江峰, 田文龙, 高子叶, 魏志义 2017 中国激光 44 0900001Google Scholar

    Zhu J F, Tian W L, Gao Z Y, Wei Z Y 2017 Chin. J. Lasers 44 0900001Google Scholar

    [14]

    白川, 田文龙, 王阁阳, 郑立, 徐瑞, 张大成, 王兆华, 朱江峰, 魏志义 2021 中国激光 48 0501005Google Scholar

    Bai C, Tian W L, Wang G Y, Zheng L, Xu R, Zhang D C, Wang Z H, Zhu J F, Wei Z Y 2021 Chin. J. Lasers 48 0501005Google Scholar

    [15]

    Russbueldt P, Mans T, Weitenberg J, Hoffmann H D, Poprawe R 2010 Opt. Lett. 35 4169Google Scholar

    [16]

    Negel J P, Voss A, Ahmed M A, Bauer D, Sutter D, Killi A, Graf T 2013 Opt. Lett. 38 5442Google Scholar

    [17]

    Li D Z, Xu X D, Zhu H M, Chen X Y, Tan W D, Zhang J, Tang D Y, Ma J, Wu F, Xia C T, Xu J 2011 J. Opt. Soc. Am. B 28 1650Google Scholar

    [18]

    Rudenkov A, Kisel V, Yasukevich A, Hovhannesyan K, Petrosyan A, Kuleshov N 2016 Opt. Lett. 41 2249Google Scholar

    [19]

    Rudenkov A, Kisel V, Yasukevich A, Hovhannesyan K, Petrosyan A, Kuleshov N 2018 Devices Methods Meas. 9 205

    [20]

    S. Petrov L, Georgiev K, Velkov D, Trifonov A, Xu X D, Xu J, Buchvarov I 2022 Conference on Lasers and Electro-Optics San Jose The United States of America, May 15–20, 2022 pJTh3B.23

    [21]

    Loiko P, Becker P, Bohatý L, et al. 2017 Opt. Lett. 42 2275Google Scholar

    [22]

    Dörring J, Killi A, Morgner U, Lang A, Lederer M, Kopf D 2004 Opt. Express 12 1759Google Scholar

    [23]

    Kroetz P, Ruehl A, Murari K, Cankaya H, Kärtner F X, Hartl I, Miller R J D 2016 Opt. Express 24 9905Google Scholar

    [24]

    Ye P, Oldal L G, Csizmadia T, Filus Z, Grósz T, Jójárt P, Seres I, Bengery Z, Gilicze B, Kahaly S, Varjú K, Major B 2022 Ultrafast Sci. 2022 9823783

    [25]

    王天泽, 雷弘毅, 孙方正, 王丹, 廖国前, 李玉同 2021 物理学报 70 085205Google Scholar

    Wang T Z, Lei H Y, Sun F Z, Wang D, Liao G Q, Li Y T 2021 Acta Phys. Sin. 70 085205Google Scholar

    [26]

    马文君, 刘志鹏, 王鹏杰, 赵家瑞, 颜学庆 2021 物理学报 70 084102Google Scholar

    Ma W J, Liu Z P, Wang P J, Zhao J R, Yan X Q 2021 Acta Phys. Sin. 70 084102Google Scholar

  • 图 1  Yb:CYA全固态放大器的技术路线

    Fig. 1.  Schematic illustration of the all-solid-state Yb:CYA amplifier.

    图 2  Yb:CYA晶体泵浦端面沿π轴和σ轴的温度分布和屈光度变化 (a) 温度分布; (b) 屈光度变化

    Fig. 2.  Simulated temperature and diopter distributions along π and σ axes of the Yb:CYA crystal: (a) Temperature distribution; (b) diopter distribution.

    图 3  Yb:CYA再生腔的激光模式计算 (a) 本征模式分布; (b) 热透镜对增益介质处激光模式的影响

    Fig. 3.  Calculated resonant cavity mode of the Yb:CYA regenerative amplifier: (a) Laser mode distribution; (b) laser mode at the crystal affected by the thermal lens.

    图 4  Yb:CYA晶体在π和σ偏振方向下的放大输出仿真 (a) 脉冲能量; (b) 放大光谱

    Fig. 4.  The output characteristics and simulation results along π and σ axes of Yb:CYA crystal: (a) Pulse energy; (b) amplified spectrum.

    图 5  Yb:CYA再生放大器实验装置 (Seed为Yb:KGW振荡器, HR为平面高反镜片, λ/2为1/2波片, PBS为偏振分光棱镜, FR为法拉第旋光器, TG为透射光栅, M1为平凹反射镜, F为激光透镜, λ/4为1/4波片, HV为高压驱动, PC为普克尔盒, Crystal为激光晶体, M2为激光双色镜, LD为981 nm半导体激光器, DM为激光双色镜, PM为功率计, PD为光电探测器)

    Fig. 5.  Experimental set-up of the Yb:CYA regenerative amplifier. (Seed, Yb:KGW oscillator; HR, dielectric flat mirror; λ/2, half-wave plate; PBS, polarizing beam splitter; FR, faraday rotator; TG, transmission grating; M1, concave laser mirror; F, lens; λ/4, quarter wave plate; HV, pockels cell driver; PC, pockels cell; Crystal, Yb:CYA crystal; M2, dichroic mirror; LD, 981 nm laser diode; DM, dichroic mirror; PM, power meter; PD, photodiode).

    图 6  Yb:CYA晶体在π偏振方向下的放大输出 (a) 功率曲线; (b) 放大光谱

    Fig. 6.  The amplified output results along π-axis of Yb:CYA crystal: (a) Measured power performance of the regenerative amplifier; (b) optical spectrum of amplified pulse.

    图 7  (a) 傅里叶变换极限脉冲宽度; (b) 压缩脉冲的自相关曲线

    Fig. 7.  (a) Fourier transform limited pulse duration; (b) intensity autocorrelation trace of amplified pulse.

    图 8  Yb:CYA晶体在σ偏振方向下的放大输出 (a) 功率曲线; (b) 放大光谱

    Fig. 8.  The amplified output results along σ–axis of Yb:CYA crystal: (a) Measured power performance of the regenerative amplifier; (b) optical spectrum of amplified pulse.

    图 9  (a) 傅里叶极限脉冲宽度; (b) 压缩脉冲的自相关曲线

    Fig. 9.  (a) The Fourier–limit pulse duration; (b) intensity autocorrelation trace of amplified pulse.

    图 10  (a) 光束质量和光斑形状; (b) 放大脉冲建立过程

    Fig. 10.  (a) The output beam quality and profile; (b) the build-up of pulse energy.

    图 11  高速示波器测量的脉冲轨迹 (a) 500 ps/div; (b) 50 μs/div

    Fig. 11.  Sampling oscilloscope traces of laser pulse in the time scale of (a) 500 ps/div and (b) 50 μs/div.

    图 12  Yb:CYA晶体的行波放大仿真 (a) 输出功率; (b) 放大光谱

    Fig. 12.  The simulation results of the Yb:CYA traveling-wave amplifier: (a) Output power; (b) amplified spectrum.

    表 1  Yb:CYA晶体的热性质参数

    Table 1.  Parameters of thermal performance for Yb:CYA crystal.

    晶体
    轴向
    热导率/
    (W·m–1·K–1)
    折射率
    n
    密度/
    (g·cm–3)
    热光系数/
    (10–6 K–1)
    热膨胀系数/
    (10–6 K–1)
    比热容/
    (J·g–1·K–1)
    (301 K)
    π3.21.8864.748–7.88.990.593
    σ3.61.909–8.78.97
    下载: 导出CSV

    表 2  Yb:CYA晶体πσ偏振放大参数比较

    Table 2.  Comparison of amplification indicators for π and σ axes of Yb:CYA crystal.

    偏振类型平均功率
    P/W
    重复频率
    f/kHz
    脉冲能量
    E/mJ
    中心波长
    λ/nm
    光谱宽度
    Δλ/nm
    脉冲宽度
    τ/fs
    π仿真20.3102.03103014115
    实验16.1101.61103016149
    σ仿真29.1102.91103413117
    实验28.7102.87103711178
    下载: 导出CSV
  • [1]

    Midorikawa K 2022 Nat. Photonics 16 267Google Scholar

    [2]

    D’Arcy R, Chappell J, Beinortaite J, et al. 2022 Nature 603 58Google Scholar

    [3]

    Lloyd-Hughes J, Oppeneer P M, Pereira dos Santos T, et al. 2021 J. Phys. Condens. Matter 33 353001Google Scholar

    [4]

    Maiuri M, Garavelli M, Cerullo G 2020 J. Am. Chem. Soc. 142 3Google Scholar

    [5]

    Kroll F, Brack F E, Bernert C, et al. 2022 Nat. Phys. 18 316Google Scholar

    [6]

    Lin Z Y, Hong M H 2021 Ultrafast Sci. 2021 9783514

    [7]

    C. Phillips K, H. Gandhi H, Mazur E, Sundaram S K 2015 Adv. Opt. Photonics 7 684Google Scholar

    [8]

    Iwasawa H 2020 Electron. Struct. 2 043001Google Scholar

    [9]

    Zheng W, Jiang P Z, Zhang L F, Wang Y, Sun Q, Liu Y Q, Gong Q H, Wu C Y 2021 Rev. Sci. Instrum. 92 043709Google Scholar

    [10]

    Miao J W, Ishikawa T, K. Robinson I, M. Murnane M 2015 Science 348 530Google Scholar

    [11]

    Auböck G, Consani C, Mourik F V, Chergui M 2012 Opt. Lett. 37 2337Google Scholar

    [12]

    Hönninger C, Paschotta R, Graf M, et al. 1999 Appl. Phys. B 69 3

    [13]

    朱江峰, 田文龙, 高子叶, 魏志义 2017 中国激光 44 0900001Google Scholar

    Zhu J F, Tian W L, Gao Z Y, Wei Z Y 2017 Chin. J. Lasers 44 0900001Google Scholar

    [14]

    白川, 田文龙, 王阁阳, 郑立, 徐瑞, 张大成, 王兆华, 朱江峰, 魏志义 2021 中国激光 48 0501005Google Scholar

    Bai C, Tian W L, Wang G Y, Zheng L, Xu R, Zhang D C, Wang Z H, Zhu J F, Wei Z Y 2021 Chin. J. Lasers 48 0501005Google Scholar

    [15]

    Russbueldt P, Mans T, Weitenberg J, Hoffmann H D, Poprawe R 2010 Opt. Lett. 35 4169Google Scholar

    [16]

    Negel J P, Voss A, Ahmed M A, Bauer D, Sutter D, Killi A, Graf T 2013 Opt. Lett. 38 5442Google Scholar

    [17]

    Li D Z, Xu X D, Zhu H M, Chen X Y, Tan W D, Zhang J, Tang D Y, Ma J, Wu F, Xia C T, Xu J 2011 J. Opt. Soc. Am. B 28 1650Google Scholar

    [18]

    Rudenkov A, Kisel V, Yasukevich A, Hovhannesyan K, Petrosyan A, Kuleshov N 2016 Opt. Lett. 41 2249Google Scholar

    [19]

    Rudenkov A, Kisel V, Yasukevich A, Hovhannesyan K, Petrosyan A, Kuleshov N 2018 Devices Methods Meas. 9 205

    [20]

    S. Petrov L, Georgiev K, Velkov D, Trifonov A, Xu X D, Xu J, Buchvarov I 2022 Conference on Lasers and Electro-Optics San Jose The United States of America, May 15–20, 2022 pJTh3B.23

    [21]

    Loiko P, Becker P, Bohatý L, et al. 2017 Opt. Lett. 42 2275Google Scholar

    [22]

    Dörring J, Killi A, Morgner U, Lang A, Lederer M, Kopf D 2004 Opt. Express 12 1759Google Scholar

    [23]

    Kroetz P, Ruehl A, Murari K, Cankaya H, Kärtner F X, Hartl I, Miller R J D 2016 Opt. Express 24 9905Google Scholar

    [24]

    Ye P, Oldal L G, Csizmadia T, Filus Z, Grósz T, Jójárt P, Seres I, Bengery Z, Gilicze B, Kahaly S, Varjú K, Major B 2022 Ultrafast Sci. 2022 9823783

    [25]

    王天泽, 雷弘毅, 孙方正, 王丹, 廖国前, 李玉同 2021 物理学报 70 085205Google Scholar

    Wang T Z, Lei H Y, Sun F Z, Wang D, Liao G Q, Li Y T 2021 Acta Phys. Sin. 70 085205Google Scholar

    [26]

    马文君, 刘志鹏, 王鹏杰, 赵家瑞, 颜学庆 2021 物理学报 70 084102Google Scholar

    Ma W J, Liu Z P, Wang P J, Zhao J R, Yan X Q 2021 Acta Phys. Sin. 70 084102Google Scholar

  • [1] 陶琛玉, 雷建廷, 余璇, 骆炎, 马新文, 张少锋. 阿秒脉冲的发展及其在原子分子超快动力学中的应用. 物理学报, 2023, 72(5): 053202. doi: 10.7498/aps.72.20222436
    [2] 杨帅帅, 滕浩, 何鹏, 黄杭东, 王兆华, 董全力, 魏志义. 基于大基模体积的10 mJ飞秒钛宝石激光再生放大器. 物理学报, 2017, 66(10): 104209. doi: 10.7498/aps.66.104209
    [3] 张伟, 滕浩, 沈忠伟, 何鹏, 王兆华, 魏志义. 18 mJ,100 Hz飞秒钛宝石激光放大器. 物理学报, 2016, 65(22): 224204. doi: 10.7498/aps.65.224204
    [4] 何鹏, 滕浩, 张宁华, 刘阳阳, 王兆华, 魏志义. 腔模可调的高平均功率飞秒激光再生放大器. 物理学报, 2016, 65(24): 244201. doi: 10.7498/aps.65.244201
    [5] 沈忠伟, 王兆华, 范海涛, 秦爽, 滕浩, 何鹏, 魏志义. 输出能量4mJ的1kHz飞秒掺钛蓝宝石激光再生放大研究. 物理学报, 2014, 63(10): 104211. doi: 10.7498/aps.63.104211
    [6] 连富强, 樊仲维, 白振岙, 余锦, 林蔚然, 张晓雷, 刘迪, 赵天卓. 基于1064 nm光纤皮秒种子源的Nd:YAG再生放大器. 物理学报, 2014, 63(13): 134207. doi: 10.7498/aps.63.134207
    [7] 张伟, 滕浩, 王兆华, 沈忠伟, 刘成, 魏志义. 采用环形再生腔结构的飞秒激光啁啾脉冲放大研究. 物理学报, 2013, 62(10): 104211. doi: 10.7498/aps.62.104211
    [8] 姜曼, 肖虎, 周朴, 王小林, 刘泽金. 高功率、低量子亏损同带抽运掺镱光纤放大器. 物理学报, 2013, 62(4): 044210. doi: 10.7498/aps.62.044210
    [9] 张大鹏, 胡明列, 谢辰, 柴路, 王清月. 基于非线性偏振旋转锁模的高功率光子晶体光纤飞秒激光振荡器. 物理学报, 2012, 61(4): 044206. doi: 10.7498/aps.61.044206
    [10] 刘华刚, 黄见洪, 翁文, 李锦辉, 郑晖, 戴殊韬, 赵显, 王继扬, 林文雄. 高功率全正色散锁模掺Yb3+双包层光纤飞秒激光器. 物理学报, 2012, 61(15): 154210. doi: 10.7498/aps.61.154210
    [11] 刘华刚, 胡明列, 刘博文, 宋有建, 柴路, 王清月. 高功率高重复频率多波长飞秒激光系统的研究. 物理学报, 2010, 59(6): 3979-3985. doi: 10.7498/aps.59.3979
    [12] 邓青华, 彭翰生, 隋 展, 丁 磊, 李明中, 王建军, 唐 军, 罗亦鸣, 林宏奂, 张 锐, 邓 颖, 卢振华. 高功率激光二极管阵列端面抽运放大器新型耦合方式研究. 物理学报, 2008, 57(10): 6340-6347. doi: 10.7498/aps.57.6340
    [13] 赵振宇, 段开椋, 王建明, 赵 卫, 王屹山. 高功率光子晶体光纤放大器实验研究. 物理学报, 2008, 57(10): 6335-6339. doi: 10.7498/aps.57.6335
    [14] 刘博文, 胡明列, 宋有建, 柴 路, 王清月. 亚百飞秒高功率掺镱大模面积光子晶体光纤飞秒激光放大器的实验研究. 物理学报, 2008, 57(11): 6921-6925. doi: 10.7498/aps.57.6921
    [15] 曹 伟, 兰鹏飞, 陆培祥. 利用43飞秒的强激光脉冲实现单个阿秒脉冲输出的新机理. 物理学报, 2007, 56(3): 1608-1612. doi: 10.7498/aps.56.1608
    [16] 冯伟伟, 林礼煌, 王文耀, 李儒新, 汪丽春. 用钛宝石再生放大器产生高重复率啁啾脉冲列. 物理学报, 2007, 56(7): 3955-3960. doi: 10.7498/aps.56.3955
    [17] 莫嘉琪, 张伟江, 何 铭. 激光脉冲放大器传输波的计算. 物理学报, 2006, 55(7): 3233-3236. doi: 10.7498/aps.55.3233
    [18] 刘仁红, 蔡希洁, 杨 琳, 张志祥, 毕纪军. 激光脉冲放大器的增益通量曲线研究. 物理学报, 2005, 54(7): 3140-3143. doi: 10.7498/aps.54.3140
    [19] 张志刚, 孙虹. 飞秒脉冲放大器中色散的计算和评价方法. 物理学报, 2001, 50(6): 1080-1086. doi: 10.7498/aps.50.1080
    [20] 尹元昭. 自由电子激光放大器的理论分析. 物理学报, 1983, 32(11): 1407-1415. doi: 10.7498/aps.32.1407
计量
  • 文章访问数:  4093
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-09
  • 修回日期:  2022-12-22
  • 上网日期:  2022-12-29
  • 刊出日期:  2023-03-05

/

返回文章
返回