搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毛细管压力作用下的非饱和双重孔隙介质中弹性波传播

石志奇 何晓 刘琳 陈德华 王秀明

引用本文:
Citation:

毛细管压力作用下的非饱和双重孔隙介质中弹性波传播

石志奇, 何晓, 刘琳, 陈德华, 王秀明

Elastic wave propagation characteristics in unsaturated double-porosity medium under capillary pressure

Shi Zhi-Qi, He Xiao, Liu Lin, Chen De-Hua, Wang Xiu-Ming
PDF
HTML
导出引用
  • 岩石孔隙中常常含有两相或多相流体, 了解弹性波作用下流体压力扩散对弹性波频散和衰减的影响对于地球资源探测至关重要. 本文建立了由一种骨架和两种流体组成的非饱和双重孔隙介质模型, 推导了考虑毛细管压力作用的, 包含宏观全局流和中观局域流两种机制的弹性波传播方程. 利用平面波分析的方法分析了三种纵波(P1, P2和P3波)和一种横波(S波)的频散和衰减特性, 并重点讨论了嵌入体半径、饱和度、渗透率和孔隙度等孔隙介质参数对其中P1波传播特性的影响. 经理论分析验证, 该模型在特定参数条件下可退化为经典Biot饱和流体孔隙模型. 根据数值模拟结果, 低频P1波速度会出现低于Gassmann-Wood低频极限的现象, 这是由于在考虑宏观尺度上流体间毛细管力作用的情况下, 全局流和局域流的耦合作用加速了孔隙压力的平衡过程, 使得岩石不排水的基本假设不再成立; 孔隙介质参数与弹性波频散和衰减之间是复杂的非线性关系; 与仅考虑宏观全局流机制的Santos模型相比, 本模型预测的岩石弹性模量在低频段与实际岩心测量数据较吻合, 证实了该模型在地震勘探速度场建模方面具有更好的可靠性.
    Rock pores often contain two-phase or multi-phase fluids, so it is important to understand how the wave-induced fluid pressure diffusion affects dispersion and attenuation of elastic waves for resource exploration. To describe the propagation of elastic wave in a double-porosity medium saturated by two-phase fluids, a wave propagation model, including both global and local flow mechanisms and considering the effect of capillary pressure, is derived. The dispersion and attenuation characteristics of three longitudinal waves (P1, P2, P3) and one transverse wave (S wave) are investigated by analyzing a plane wave, and the effects of physical parameters, such as inclusion radius, water saturation, permeability and porosity, on the propagation characteristics of P1 wave are investigated. Theoretical analysis shows that the model derived in this work can be degenerated into the Biot model under specific conditions. According to the numerical simulation results, due to the coupling of global flow and local flow, the P1 wave velocity may decrease below the Gassmann-Wood limit. The physical explanation of this phenomenon is as follows: when considering the effect of capillary pressure, the coupling effect of global flow and local flow will break the basic assumption that rock is undrained. The relationship between physical parameters of porous medium and the dispersion and attenuation characteristics of elastic wave is complicated and nonlinear. Compared with Santos model, elastic modulus predicted by Santos-Rayleigh model is in good agreement with the experimental data in the low frequency band, which proves that this model has good reliability in modeling the velocity field of seismic exploration.
      通信作者: 何晓, hex@mail.ioa.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 12174421, 42074174)资助的课题.
      Corresponding author: He Xiao, hex@mail.ioa.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174421, 42074174).
    [1]

    Müller T M, Gurevich B, Lebedev M 2010 Geophysics 75 75A147Google Scholar

    [2]

    Biot M A 1956 J. Acoust. Soc. Am. 28 168Google Scholar

    [3]

    Biot M A 1962 J. Appl. Phys. 33 1482Google Scholar

    [4]

    巴晶 2013 岩石物理学进展与评述 (北京: 清华大学出版社) 第151页

    Ba J 2013 Progress and Review of Rock Physics (Beijing: Tsinghua University Press) p151 (in Chinese)

    [5]

    Santos J E, Douglas J, Corberó J, Lovera O M 1990 J. Acoust. Soc. Am. 87 1439Google Scholar

    [6]

    Santos J E, Corberó J M, Douglas J 1990 J. Acoust. Soc. Am. 87 1428Google Scholar

    [7]

    Lo W C, Sposito G, Majer E 2005 Water Resour. Res. 41 W02025Google Scholar

    [8]

    王婷, 崔志文, 刘金霞, 王克协 2018 物理学报 67 114301Google Scholar

    Wang T, Cui Z W, Liu J X, Wang K X 2018 Acta Phys. Sin. 67 114301Google Scholar

    [9]

    Mavko G, Nur A 1975 J. Geophys. Res. 80 1444Google Scholar

    [10]

    White J E 1975 Geophysics 40 224Google Scholar

    [11]

    Dutta N C, Odé H 1979 Geophysics 44 1777Google Scholar

    [12]

    Wang Y, Zhao L, Cao C, Yao Q, Yang Z, Cao H, Geng J 2022 Geophysics 87 MR247Google Scholar

    [13]

    Johnson D L 2001 J. Acoust. Soc. Am. 110 682Google Scholar

    [14]

    Tserkovnyak Y, Johnson D L 2003 J. Acoust. Soc. Am. 114 2596Google Scholar

    [15]

    Qi Q, Müller T M, Gurevich B, Lopes S, Lebedev M, Caspari E 2014 Geophysics 79 WB35Google Scholar

    [16]

    Ciz R, Shapiro S A 2007 Geophysics 72 A75Google Scholar

    [17]

    Müller T M, Gurevich B 2005 J. Acoust. Soc. Am. 117 2732Google Scholar

    [18]

    Dvorkin J, Nur A 1993 Geophysics 58 524Google Scholar

    [19]

    Pride S R, Berryman, Harris J M 2004 J. Geophys. Res. 109 B01201Google Scholar

    [20]

    巴晶, Carcione J M, 曹宏, 杜启振, 袁振宇, 卢明辉 2012 地球物理学报 55 219Google Scholar

    Ba J, Carcione J M, Cao H, Du Q Z, Yuan Z Y, Lu M H 2012 Chin. J. Geophys. 55 219Google Scholar

    [21]

    Sun W T, Ba J, Carcione J M 2016 Geophys. J. Int. 205 22Google Scholar

    [22]

    Ba J, Xu W, Fu L Y, Carcione J M, Zhang L 2017 J. Geophys. Res. Solid Earth 122 1949Google Scholar

    [23]

    Zhang L, Ba J, Carcione J M, Wu C F 2022 J. Geophys. Res. Solid Earth 127 e2021JB023809Google Scholar

    [24]

    李红星, 张嘉辉, 樊嘉伟, 陶春辉, 肖昆, 黄光南, 盛书中, 宫猛 2022 物理学报 71 089101Google Scholar

    Li H X, Zhang J H, Fan J W, Tao C H, Xiao K, Huang G N, Sheng S Z, Gong M 2022 Acta Phys. Sin. 71 089101Google Scholar

    [25]

    Murphy W M 1984 J. Geophys. Res. Solid Earth 89 11549Google Scholar

    [26]

    Batzle M L, Han D H, Hofmann R 2006 Geophysics 71 N1Google Scholar

    [27]

    Chapman S, Borgomano J V M, Quintal B, Benson S M, Fortin J 2021 J. Geophys. Res. Solid Earth 126 e2021JB021643Google Scholar

    [28]

    Ravazzoli C L, Santos J E, Carcione J M 2003 J. Acoust. Soc. Am. 113 1801Google Scholar

    [29]

    赵海波 2007 博士学位论文 (北京: 中国科学院研究生院)

    Zhao H B 2007 Ph. D. Dissertation (Beijing: Graduate University of Chinese Academy of Sciences) (in Chinese)

    [30]

    Carcione J M, Cavallini F, Santos J E, Ravazzoli C L, Gauzellino P M 2004 Wave Motion 39 227Google Scholar

  • 图 1  一种骨架和两种流体组成的非饱和双重孔隙介质示意图. 红色虚线箭头和黑色实线箭头分别表示波传播方向上的全局流矢量和嵌入体径向的局域流矢量

    Fig. 1.  Schematic diagram of unsaturated double-porosity medium composed of one type skeleton and two types of fluids. The velocity vectors of global flow and local flow are indicated by red dashed and black solid arrows respectively.

    图 2  Santos模型和Santos-Rayleigh模型预测的P1波速度与衰减随频率变化曲线对比 (a) P1波相速度; (b) P1波逆品质因子

    Fig. 2.  Comparison of P1 wave velocity and attenuation as the function of frequencies predicted by Santos and Santos-Rayleigh models: (a) Phase velocity of P1 wave; (b) dissipation factor of P1 wave.

    图 3  Santos模型和Santos-Rayleigh模型预测的P2和P3波速度与衰减随频率变化曲线对比 (a) P2, P3波相速度; (b) P2, P3波逆品质因子

    Fig. 3.  Comparison of P2 and P3 wave velocities and attenuations as the function of frequencies predicted by Santos and Santos-Rayleigh models: (a) Phase velocity of P2 and P3 wave; (b) dissipation factor of P2 and P3 wave.

    图 4  Santos模型和Santos-Rayleigh模型预测的S波速度与衰减随频率变化曲线对比 (a) S波相速度; (b) S波逆品质因子

    Fig. 4.  Comparison of S wave velocity and attenuation as the function of frequencies predicted by Santos and Santos-Rayleigh models: (a) Phase velocity of S wave; (b) dissipation factor of S wave.

    图 5  不同嵌入体半径下Santos-Rayleigh模型P1波速度与衰减随频率变化曲线 (a) P1波相速度; (b) P1波逆品质因子

    Fig. 5.  P1 wave velocity and attenuation predicted by Santos-Rayleigh model with different radii of inclusion: (a) Phase velocity of P1 wave; (b) dissipation factor of P1 wave.

    图 6  不同含水饱和度下Santos-Rayleigh模型P1波速度与衰减随频率变化曲线 (a) P1波相速度; (b) P1波逆品质因子

    Fig. 6.  P1 wave velocity and attenuation predicted by Santos-Rayleigh model with different water saturations: (a) Phase velocity of P1 wave; (b) dissipation factor of P1 wave.

    图 7  不同渗透率下Santos-Rayleigh模型P1波速度与衰减随频率变化曲线 (a) P1波相速度; (b) P1波逆品质因子

    Fig. 7.  P1 wave velocity and attenuation predicted by Santos-Rayleigh model with different permeabilities: (a) Phase velocity of P1 wave; (b) dissipation factor of P1 wave.

    图 8  不同孔隙度下Santos-Rayleigh模型P1波速度与衰减随频率变化曲线 (a) P1波相速度; (b) P1波逆品质因子

    Fig. 8.  P1 wave velocity and attenuation predicted by Santos-Rayleigh model with different porosities: (a) Phase velocity of P1 wave; (b) dissipation factor of P1 wave.

    图 9  Santos-Rayleigh模型与实际数据对比

    Fig. 9.  Comparison of measured data with Santos-Rayleigh model.

    表 1  非饱和孔隙介质物性参数表

    Table 1.  Physical parameters of unsaturated porous media model.

    参数
    固体基质体积模量/GPa36
    固体基质密度/(kg ·m–3)2650
    骨架体积模量/GPa6.21
    骨架剪切模量/GPa4.55
    孔隙度0.33
    渗透率/m24.935×10–12
    润湿相流体体积模量/GPa2.223
    润湿相流体密度/(kg·m–3)1000
    润湿相流体黏度/(Pa·s)0.001
    非润湿相流体体积模量/GPa0.022
    非润湿相流体密度/(kg·m–3)100
    非润湿相流体黏度/(Pa·s)15×10–6
    下载: 导出CSV

    表 2  Berea砂岩及流体物性参数表

    Table 2.  Physical parameters of Berea sandstone and fluids.

    参数
    固体基质体积模量/GPa30
    固体基质密度/(kg·m–3)2600
    骨架体积模量/GPa11.7
    骨架剪切模量/GPa11.1
    孔隙度0.196
    渗透率/m20.266×10–12
    地层水体积模量/GPa2.23
    地层水密度/(kg·m–3)997.67
    地层水黏度/(Pa·s)0.00091
    二氧化碳体积模量/GPa1.17×10–3
    二氧化碳密度/(kg·m–3)17.21
    二氧化碳黏度/(Pa·s)1.5×10–5
    下载: 导出CSV
  • [1]

    Müller T M, Gurevich B, Lebedev M 2010 Geophysics 75 75A147Google Scholar

    [2]

    Biot M A 1956 J. Acoust. Soc. Am. 28 168Google Scholar

    [3]

    Biot M A 1962 J. Appl. Phys. 33 1482Google Scholar

    [4]

    巴晶 2013 岩石物理学进展与评述 (北京: 清华大学出版社) 第151页

    Ba J 2013 Progress and Review of Rock Physics (Beijing: Tsinghua University Press) p151 (in Chinese)

    [5]

    Santos J E, Douglas J, Corberó J, Lovera O M 1990 J. Acoust. Soc. Am. 87 1439Google Scholar

    [6]

    Santos J E, Corberó J M, Douglas J 1990 J. Acoust. Soc. Am. 87 1428Google Scholar

    [7]

    Lo W C, Sposito G, Majer E 2005 Water Resour. Res. 41 W02025Google Scholar

    [8]

    王婷, 崔志文, 刘金霞, 王克协 2018 物理学报 67 114301Google Scholar

    Wang T, Cui Z W, Liu J X, Wang K X 2018 Acta Phys. Sin. 67 114301Google Scholar

    [9]

    Mavko G, Nur A 1975 J. Geophys. Res. 80 1444Google Scholar

    [10]

    White J E 1975 Geophysics 40 224Google Scholar

    [11]

    Dutta N C, Odé H 1979 Geophysics 44 1777Google Scholar

    [12]

    Wang Y, Zhao L, Cao C, Yao Q, Yang Z, Cao H, Geng J 2022 Geophysics 87 MR247Google Scholar

    [13]

    Johnson D L 2001 J. Acoust. Soc. Am. 110 682Google Scholar

    [14]

    Tserkovnyak Y, Johnson D L 2003 J. Acoust. Soc. Am. 114 2596Google Scholar

    [15]

    Qi Q, Müller T M, Gurevich B, Lopes S, Lebedev M, Caspari E 2014 Geophysics 79 WB35Google Scholar

    [16]

    Ciz R, Shapiro S A 2007 Geophysics 72 A75Google Scholar

    [17]

    Müller T M, Gurevich B 2005 J. Acoust. Soc. Am. 117 2732Google Scholar

    [18]

    Dvorkin J, Nur A 1993 Geophysics 58 524Google Scholar

    [19]

    Pride S R, Berryman, Harris J M 2004 J. Geophys. Res. 109 B01201Google Scholar

    [20]

    巴晶, Carcione J M, 曹宏, 杜启振, 袁振宇, 卢明辉 2012 地球物理学报 55 219Google Scholar

    Ba J, Carcione J M, Cao H, Du Q Z, Yuan Z Y, Lu M H 2012 Chin. J. Geophys. 55 219Google Scholar

    [21]

    Sun W T, Ba J, Carcione J M 2016 Geophys. J. Int. 205 22Google Scholar

    [22]

    Ba J, Xu W, Fu L Y, Carcione J M, Zhang L 2017 J. Geophys. Res. Solid Earth 122 1949Google Scholar

    [23]

    Zhang L, Ba J, Carcione J M, Wu C F 2022 J. Geophys. Res. Solid Earth 127 e2021JB023809Google Scholar

    [24]

    李红星, 张嘉辉, 樊嘉伟, 陶春辉, 肖昆, 黄光南, 盛书中, 宫猛 2022 物理学报 71 089101Google Scholar

    Li H X, Zhang J H, Fan J W, Tao C H, Xiao K, Huang G N, Sheng S Z, Gong M 2022 Acta Phys. Sin. 71 089101Google Scholar

    [25]

    Murphy W M 1984 J. Geophys. Res. Solid Earth 89 11549Google Scholar

    [26]

    Batzle M L, Han D H, Hofmann R 2006 Geophysics 71 N1Google Scholar

    [27]

    Chapman S, Borgomano J V M, Quintal B, Benson S M, Fortin J 2021 J. Geophys. Res. Solid Earth 126 e2021JB021643Google Scholar

    [28]

    Ravazzoli C L, Santos J E, Carcione J M 2003 J. Acoust. Soc. Am. 113 1801Google Scholar

    [29]

    赵海波 2007 博士学位论文 (北京: 中国科学院研究生院)

    Zhao H B 2007 Ph. D. Dissertation (Beijing: Graduate University of Chinese Academy of Sciences) (in Chinese)

    [30]

    Carcione J M, Cavallini F, Santos J E, Ravazzoli C L, Gauzellino P M 2004 Wave Motion 39 227Google Scholar

  • [1] 万城亮, 潘俞舟, 朱丽萍, 李鹏飞, 张浩文, 赵卓彦, 袁华, 樊栩宏, 孙文胜, 杜战辉, 陈乾, 崔莹, 廖天发, 魏晓慧, 王天琦, 陈熙萌, 李公平, ReinholdSchuch, 张红强. 基于玻璃毛细管的大气环境MeV质子微束的产生与测量. 物理学报, 2024, 73(10): 104101. doi: 10.7498/aps.73.20240301
    [2] 石志奇, 何晓, 刘琳, 陈德华. 基于有限差分的部分饱和双重孔隙介质弹性波模拟与分析. 物理学报, 2024, 73(10): 100201. doi: 10.7498/aps.73.20240227
    [3] 祝昕哲, 李博原, 刘峰, 李建龙, 毕择武, 鲁林, 远晓辉, 闫文超, 陈民, 陈黎明, 盛政明, 张杰. 面向激光等离子体尾波加速的毛细管放电实验研究. 物理学报, 2022, 71(9): 095202. doi: 10.7498/aps.71.20212435
    [4] 李红星, 张嘉辉, 樊嘉伟, 陶春辉, 肖昆, 黄光南, 盛书中, 宫猛. 多尺度波致流非饱和孔隙介质波传播理论研究. 物理学报, 2022, 71(8): 089101. doi: 10.7498/aps.71.20211463
    [5] 苏娜娜, 韩庆邦, 蒋謇. 无限流体中孔隙介质圆柱周向导波的传播特性. 物理学报, 2019, 68(8): 084301. doi: 10.7498/aps.68.20182300
    [6] 王婷, 崔志文, 刘金霞, 王克协. 含少量气泡流体饱和孔隙介质中的弹性波. 物理学报, 2018, 67(11): 114301. doi: 10.7498/aps.67.20180209
    [7] 周宏伟, 王林伟, 徐升华, 孙祉伟. 微重力条件下与容器连通的毛细管中的毛细流动研究. 物理学报, 2015, 64(12): 124703. doi: 10.7498/aps.64.124703
    [8] 宋永佳, 胡恒山. 含定向非均匀体固体材料的横观各向同性有效弹性模量. 物理学报, 2014, 63(1): 016202. doi: 10.7498/aps.63.016202
    [9] 员美娟, 郑伟, 李云宝, 李钰. 单毛细管中赫切尔-巴尔克莱流体的分形分析. 物理学报, 2012, 61(16): 164701. doi: 10.7498/aps.61.164701
    [10] 董克攻, 吴玉迟, 郑无敌, 朱斌, 曹磊峰, 何颖玲, 马占南, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 魏来, 臧华平, 余金清, 谷渝秋, 张保汉, 王晓方. 充气型放电毛细管的密度测量及磁流体模拟. 物理学报, 2011, 60(9): 095202. doi: 10.7498/aps.60.095202
    [11] 崔志文, 刘金霞, 王春霞, 王克协. 基于Biot-喷射流统一模型Maxwell流体饱和孔隙介质中的弹性波. 物理学报, 2010, 59(12): 8655-8661. doi: 10.7498/aps.59.8655
    [12] 郭铁英, 娄淑琴, 李宏雷, 简水生. 用于制作光子晶体光纤的毛细管的拉制理论与实验分析. 物理学报, 2009, 58(7): 4724-4730. doi: 10.7498/aps.58.4724
    [13] 曹士英, 王 颖, 张志刚, 柴 路, 王清月, 杨建军, 朱晓农. 空心毛细管束缚高压气体成丝的光谱演变. 物理学报, 2006, 55(9): 4734-4738. doi: 10.7498/aps.55.4734
    [14] 韦中超, 戴峭峰, 汪河洲. 毛细管中柱对称类面心结构胶体晶体的光谱特性. 物理学报, 2006, 55(2): 733-736. doi: 10.7498/aps.55.733
    [15] 孙 姣, 张家良, 王德真, 马腾才. 一种新型大气压毛细管介质阻挡放电冷等离子体射流技术. 物理学报, 2006, 55(1): 344-350. doi: 10.7498/aps.55.344
    [16] 关 威, 胡恒山, 储昭坦. 声诱导电磁场的赫兹矢量表示与多极声电测井模拟. 物理学报, 2006, 55(1): 267-274. doi: 10.7498/aps.55.267
    [17] 赵永蓬, 程元丽, 王 骐, 林 靖, 崛田荣喜. 毛细管放电激励软x射线激光的产生时间. 物理学报, 2005, 54(6): 2731-2734. doi: 10.7498/aps.54.2731
    [18] 程元丽, 栾伯含, 吴寅初, 赵永蓬, 王 骐, 郑无敌, 彭惠民, 杨大为. 预脉冲在毛细管快放电软x射线激光中的作用. 物理学报, 2005, 54(10): 4979-4984. doi: 10.7498/aps.54.4979
    [19] 胡恒山. 孔隙地层井壁上的声波首波及其诱导电磁场的原因. 物理学报, 2003, 52(8): 1954-1959. doi: 10.7498/aps.52.1954
    [20] 杜启振, 杨慧珠. 线性黏弹性各向异性介质速度频散和衰减特征研究. 物理学报, 2002, 51(9): 2101-2108. doi: 10.7498/aps.51.2101
计量
  • 文章访问数:  3870
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-28
  • 修回日期:  2023-01-06
  • 上网日期:  2023-01-12
  • 刊出日期:  2023-03-20

/

返回文章
返回