搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平面波声场中内置偏心液滴的弹性球壳声辐射力

潘瑞琪 李凡 杜芷玮 胡静 莫润阳 王成会

引用本文:
Citation:

平面波声场中内置偏心液滴的弹性球壳声辐射力

潘瑞琪, 李凡, 杜芷玮, 胡静, 莫润阳, 王成会

Acoustic radiation force of elastic spherical shell with eccentric droplet in plane wave acoustic field

Pan Rui-Qi, Li Fan, Du Zhi-Wei, Hu Jing, Mo Run-Yang, Wang Cheng-Hui
PDF
HTML
导出引用
  • 基于声波在细胞操控中的应用, 建立了一个三层内置偏心液滴的弹性球壳模型模拟具有细胞核、细胞质和细胞膜的有核细胞, 并分析细胞在声场中受到的声辐射力. 从薄球壳理论出发, 结合球函数加法定理推导了平面波声场中内置偏心液滴的充液球壳所受声辐射力的函数表达式. 数值分析了偏心液滴偏心距、半径以及液体腔内外介质特性阻抗对于充液球壳所受声辐射力的影响. 结果表明, 充液球壳受到的声辐射力对偏心液滴的位置及大小非常敏感, 偏心液滴偏心程度越大, 充液球壳所受的声辐射力越大. 声辐射力随着偏心液滴半径的变化在无量纲粒子半径ka < 3范围内出现共振峰值点增多的现象, 在ka > 3范围内曲线腹点位置发生偏移. 当液体腔内液滴位置及半径同时变化时, 位置变化对充液球壳所受声辐射力的影响更加显著, 且二者产生的影响会相互叠加. 对照细胞核相对特性阻抗分别为0.8, 0.9, 1, 1.1和1.2 时的辐射力函数随ka变化曲线发现特性阻抗的变化主要影响辐射力的大小且随着细胞核阻抗的增大, 在ka = 5附近的起伏幅度逐步增加, 且腹点位置有右移的趋势. 因此, 细胞核阻抗的增大在一定的频率或者细胞尺寸范围内可增强其辐射力响应. 本文的研究结果对有核细胞的操作、分选及靶向治疗具有潜在的价值.
    Based on the application of acoustic waves in cell manipulation, a model consisting of an elastic spherical shell and eccentric droplet is established to simulate a eukaryotic cell and analyze the acoustic radiation force (ARF) on the cell. In this work, we derive an exact expression for the ARF on the liquid-filled spherical shell. The influence of eccentric distance, radius of the eccentric droplet and impedance of the medium inside the liquid-filled spherical shell on the ARF are analyzed numerically. The results show that the ARF is very sensitive to the position and size of the eccentric droplet. As the eccentricity of the eccentric droplet increases, the ARF becomes greater. In a low frequency region (ka<3) the resonance peak point increases, and the position of the curve ventral point shifts to the high frequency region (ka>3) with the increase of the radius of the eccentric droplet. The effect of the position variation on the ARF is more significant than that of the radius change, and both of their effects will be superimposed on each other. The ARF, as a function of ka, is mainly affected by the variation of the nucleus characteristic impedance. The ARF amplitude around ka = 5 increases and the position of the ventral point tends to shift rightwards with the enlargement of the nucleus impedance. Therefore, the radiation response at a certain frequency or in a cell size range can be enhanced when the nucleus impedance increases. The results of this study provide theoretical basis for the cell sorting and targeted therapy.
      通信作者: 胡静, hjwlx@snnu.edu.cn ; 王成会, wangld001@snnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974232, 11727813)资助的课题.
      Corresponding author: Hu Jing, hjwlx@snnu.edu.cn ; Wang Cheng-Hui, wangld001@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974232, 11727813).
    [1]

    Alan B, Utangaç M, Göya C, Dağgülli M 2016 Med. Sci. Monit 22 4523Google Scholar

    [2]

    Carugo D, Ankrett D N, Glynne-Jones P, Capretto L, Boltryk R J, Zhang X L, Townsend P A, Hill M 2011 Biomicrofluidics 5 044108Google Scholar

    [3]

    Rapoport N, Kennedy A M, Shea J E, Scaife C L, Nam K H 2009 Mol. Pharmaceutics 7 22

    [4]

    Meng L, Cai F Y, Li F, Zhou W, Niu L L, Zheng H R 2019 J. Phys. D Appl. Phys. 52 1

    [5]

    Wu J R, Pepe J, Rincón M 2006 Ultrasonics 44 e21Google Scholar

    [6]

    Wang W B, Chen Y S, Farooq U, Xuan W P, Jin H, Dong S R, Luo J K 2017 Appl. Phys. Lett. 110 143504Google Scholar

    [7]

    Mishra P, Hill M, Glynne-Jones P 2014 Biomicrofluidics 8 034109Google Scholar

    [8]

    Silva G T, Tian L F, Franklin A, Wang X J, Han X J, Mann S, Drinkwater B W 2019 Phy. Rev. E 99 063002Google Scholar

    [9]

    Zhang R Q, Guo H L, Deng W Y, Huang X Q, Li F, Lu J Y, Liu Z Y 2020 Appl. Phys. Lett. 116 123503Google Scholar

    [10]

    Settnes M, Bruus H 2012 Phys. Rev. E 85 016327Google Scholar

    [11]

    Barmatz M, Collas P 1985 J. Acoust. Soc. Am. 77 928Google Scholar

    [12]

    Silva G T 2014 J. Acoust. Soc. Am. 136 2405Google Scholar

    [13]

    Léon F, Lecroq F, Décultot D, Mazé G 1992 J. Acoust. Soc. Am. 91 1388Google Scholar

    [14]

    Sharma G S, Marsick A, Maxit L, Skvortsov A, MacGillivray I, Kessissoglou N 2021 J. Acoust. Soc. Am. 150 4308Google Scholar

    [15]

    King L V 1934 Proc. Roy. Soc. A 137 212

    [16]

    Rajabi M, Mojahed A 2016 J. Sound Vib. 383 265Google Scholar

    [17]

    Flax L, Dragonette L R, Überall H 1978 J. Acoust. Soc. Am. 63 723Google Scholar

    [18]

    Sapozhnikov O A, Bailey M R 2013 J. Acoust. Soc. Am. 133 661Google Scholar

    [19]

    Baasch T, Dual J 2020 Phys. Rev. Appl. 14 024052Google Scholar

    [20]

    Hasegawa T, Hino Y, Annou A, Noda H, Kato M, Naoki Inoue 1992 J. Acoust. Soc. Am. 93 154

    [21]

    Junger M C 1952 J. Acoust. Soc. Am. 24 366Google Scholar

    [22]

    Mitri F G 2005 Ultrasonics 43 681Google Scholar

    [23]

    Wang H B, Liu X Z, Gao S, Cui J, Liu J H, He A J, Zhang G T 2018 Chin. Phys. B 27 034302Google Scholar

    [24]

    Wang Y Y, Yao J, Wu X W, Wu D J, Liu X J 2017 J. Appl. Phys. 122 094902Google Scholar

    [25]

    Thompson W 1973 J. Acoust. Soc. Am. 54 1694Google Scholar

    [26]

    Roumeliotis J A, Kanellopoulos J D, Fikioris J G 1991 J. Acoust. Soc. Am. 90 1144Google Scholar

    [27]

    Hasheminejad S M, Azarpeyvand M 2004 Mech. Res. Commun. 31 493Google Scholar

    [28]

    臧雨宸, 林伟军, 苏畅, 吴鹏飞, 常钦 2022 声学学报 47 379

    Zang Y C, Lin W J, Su C, Wu P F, Chang Q 2022 Acta Acustica 47 379

    [29]

    Ivanov Y A 1970 NASA Tech. Transl. F-597

    [30]

    Mo R Y, Hu J, Chen S, Wang C H 2020 Chin. Phys. B 29 094301Google Scholar

    [31]

    Hunt J W, Worthington A E, Xuan A, Kolios M C, Czarnota G J, Sherar M D 2002 Ultrasound in Medicine and Biology 28 217Google Scholar

    [32]

    肖娜, 高雨彤, 肖述兵, 陈从文 2021 临床与实验病理学杂志 37 1496

    Xiao N, Gao Y T, Xiao S B, Chen C W 2021 J. Clin. Exp. Psychopathol. 37 1496

    [33]

    Jo M C, Guldiken R 2012 Sens. Actuators, A 187 22Google Scholar

  • 图 1  充液球壳几何模型图

    Fig. 1.  Geometric model of liquid-filled spherical shell.

    图 2  弹性壳厚度对球体所受声辐射力的影响

    Fig. 2.  Influence of elastic shell thickness on ARF of the sphere.

    图 3  不同流体介质中球体所受声辐射力 (a) 甘油; (b) 水银

    Fig. 3.  ARF on the sphere in different fluid medium: (a) Glycerol; (b) mercury.

    图 4  细胞核不同偏心距细胞所受声辐射力(d/a = 0, 0.05, 0.10, 0.20)

    Fig. 4.  ARF on the cell with different nucleus eccentric distances (d/a = 0, 0.05, 0.10, 0.20).

    图 5  不同大小细胞核细胞所受声辐射力(b/a = 0.5, 0.6, 0.7)

    Fig. 5.  ARF on the cell with different nucleus size (b/a = 0.5, 0.6, 0.7).

    图 6  细胞核不同大小和偏心距下细胞所受声辐射力函数曲线 (d/a = 0实线, d/a = 0.1虚线)

    Fig. 6.  ARF on the cell with different nuclear size and eccentricity distances (d/a = 0 is shown by the solid line, d/a = 0.1 is shown by the dotted line).

    图 7  不同阻抗下细胞所受声辐射力 (a) 细胞核; (b) 细胞质

    Fig. 7.  ARF on the cell with different impedance: (a) Nucleus; (b) cytoplasm.

    表 B1  液体介质参数值

    Table B1.  Some parameter of liquid medium.

    细胞质细胞核水银甘油
    声速/(m·s–1)1508.01508. 51500.01407.01923.0
    密度/(kg·m–3)100014301000136001260
    阻抗/MRayl1.512.161.5019.12.42
    下载: 导出CSV

    表 B2  弹性球壳参数值

    Table B2.  Some parameters of elastic shell.

    球壳材料密度ρ/(kg·m–3)杨氏模量E/GPa泊松比ν
    聚糖6000.20. 4
    不锈钢7900200.00. 264
    下载: 导出CSV
  • [1]

    Alan B, Utangaç M, Göya C, Dağgülli M 2016 Med. Sci. Monit 22 4523Google Scholar

    [2]

    Carugo D, Ankrett D N, Glynne-Jones P, Capretto L, Boltryk R J, Zhang X L, Townsend P A, Hill M 2011 Biomicrofluidics 5 044108Google Scholar

    [3]

    Rapoport N, Kennedy A M, Shea J E, Scaife C L, Nam K H 2009 Mol. Pharmaceutics 7 22

    [4]

    Meng L, Cai F Y, Li F, Zhou W, Niu L L, Zheng H R 2019 J. Phys. D Appl. Phys. 52 1

    [5]

    Wu J R, Pepe J, Rincón M 2006 Ultrasonics 44 e21Google Scholar

    [6]

    Wang W B, Chen Y S, Farooq U, Xuan W P, Jin H, Dong S R, Luo J K 2017 Appl. Phys. Lett. 110 143504Google Scholar

    [7]

    Mishra P, Hill M, Glynne-Jones P 2014 Biomicrofluidics 8 034109Google Scholar

    [8]

    Silva G T, Tian L F, Franklin A, Wang X J, Han X J, Mann S, Drinkwater B W 2019 Phy. Rev. E 99 063002Google Scholar

    [9]

    Zhang R Q, Guo H L, Deng W Y, Huang X Q, Li F, Lu J Y, Liu Z Y 2020 Appl. Phys. Lett. 116 123503Google Scholar

    [10]

    Settnes M, Bruus H 2012 Phys. Rev. E 85 016327Google Scholar

    [11]

    Barmatz M, Collas P 1985 J. Acoust. Soc. Am. 77 928Google Scholar

    [12]

    Silva G T 2014 J. Acoust. Soc. Am. 136 2405Google Scholar

    [13]

    Léon F, Lecroq F, Décultot D, Mazé G 1992 J. Acoust. Soc. Am. 91 1388Google Scholar

    [14]

    Sharma G S, Marsick A, Maxit L, Skvortsov A, MacGillivray I, Kessissoglou N 2021 J. Acoust. Soc. Am. 150 4308Google Scholar

    [15]

    King L V 1934 Proc. Roy. Soc. A 137 212

    [16]

    Rajabi M, Mojahed A 2016 J. Sound Vib. 383 265Google Scholar

    [17]

    Flax L, Dragonette L R, Überall H 1978 J. Acoust. Soc. Am. 63 723Google Scholar

    [18]

    Sapozhnikov O A, Bailey M R 2013 J. Acoust. Soc. Am. 133 661Google Scholar

    [19]

    Baasch T, Dual J 2020 Phys. Rev. Appl. 14 024052Google Scholar

    [20]

    Hasegawa T, Hino Y, Annou A, Noda H, Kato M, Naoki Inoue 1992 J. Acoust. Soc. Am. 93 154

    [21]

    Junger M C 1952 J. Acoust. Soc. Am. 24 366Google Scholar

    [22]

    Mitri F G 2005 Ultrasonics 43 681Google Scholar

    [23]

    Wang H B, Liu X Z, Gao S, Cui J, Liu J H, He A J, Zhang G T 2018 Chin. Phys. B 27 034302Google Scholar

    [24]

    Wang Y Y, Yao J, Wu X W, Wu D J, Liu X J 2017 J. Appl. Phys. 122 094902Google Scholar

    [25]

    Thompson W 1973 J. Acoust. Soc. Am. 54 1694Google Scholar

    [26]

    Roumeliotis J A, Kanellopoulos J D, Fikioris J G 1991 J. Acoust. Soc. Am. 90 1144Google Scholar

    [27]

    Hasheminejad S M, Azarpeyvand M 2004 Mech. Res. Commun. 31 493Google Scholar

    [28]

    臧雨宸, 林伟军, 苏畅, 吴鹏飞, 常钦 2022 声学学报 47 379

    Zang Y C, Lin W J, Su C, Wu P F, Chang Q 2022 Acta Acustica 47 379

    [29]

    Ivanov Y A 1970 NASA Tech. Transl. F-597

    [30]

    Mo R Y, Hu J, Chen S, Wang C H 2020 Chin. Phys. B 29 094301Google Scholar

    [31]

    Hunt J W, Worthington A E, Xuan A, Kolios M C, Czarnota G J, Sherar M D 2002 Ultrasound in Medicine and Biology 28 217Google Scholar

    [32]

    肖娜, 高雨彤, 肖述兵, 陈从文 2021 临床与实验病理学杂志 37 1496

    Xiao N, Gao Y T, Xiao S B, Chen C W 2021 J. Clin. Exp. Psychopathol. 37 1496

    [33]

    Jo M C, Guldiken R 2012 Sens. Actuators, A 187 22Google Scholar

  • [1] 刘腾, 乔玉配, 宫门阳, 刘晓宙. 有界黏性流体中自由球形粒子的声辐射力. 物理学报, 2025, 74(1): 014301. doi: 10.7498/aps.74.20241354
    [2] 王俊, 蔡飞燕, 张汝钧, 李永川, 周伟, 李飞, 邓科, 郑海荣. 基于压电声子晶体板波声场的微粒操控. 物理学报, 2024, 73(7): 074302. doi: 10.7498/aps.73.20231886
    [3] 陈聪, 张若钦, 李锋, 李志远. 基于亚波长管道增强的漩涡声场悬浮操控微粒和液滴的实验研究. 物理学报, 2023, 72(12): 124302. doi: 10.7498/aps.72.20230383
    [4] 王燕萍, 蔡飞燕, 李飞, 张汝钧, 李永川, 王金萍, 张欣, 郑海荣. 基于二维声子晶体板共振声场的微粒操控. 物理学报, 2023, 72(14): 144207. doi: 10.7498/aps.72.20230099
    [5] 齐绍富, 蔡飞燕, 田振, 黄先玉, 周娟, 王金萍, 李文成, 郑海荣, 邓科. 基于一维声栅共振场的大规模微粒并行排列 的实验研究. 物理学报, 2023, 72(2): 024301. doi: 10.7498/aps.72.20221793
    [6] 臧雨宸, 苏畅, 吴鹏飞, 林伟军. 零阶Bessel驻波场中任意粒子声辐射力和力矩的Born近似. 物理学报, 2022, 71(10): 104302. doi: 10.7498/aps.71.20212251
    [7] 朱纪霖, 高东宝, 曾新吾. 基于相位变换声镊的单个微粒平面移动操控. 物理学报, 2021, 70(21): 214302. doi: 10.7498/aps.70.20210981
    [8] 商德江, 钱治文, 何元安, 肖妍. 基于联合波叠加法的浅海信道下圆柱壳声辐射研究. 物理学报, 2018, 67(8): 084301. doi: 10.7498/aps.67.20171963
    [9] 黄先玉, 蔡飞燕, 李文成, 郑海荣, 何兆剑, 邓科, 赵鹤平. 空气中一维声栅对微粒的声操控. 物理学报, 2017, 66(4): 044301. doi: 10.7498/aps.66.044301
    [10] 夏峙, 李秀坤. 水下目标弹性声散射信号分离. 物理学报, 2015, 64(9): 094302. doi: 10.7498/aps.64.094302
    [11] 潘安, 范军, 王斌, 陈志刚, 郑国垠. 双层周期加肋有限长圆柱壳声散射精细特征研究. 物理学报, 2014, 63(21): 214301. doi: 10.7498/aps.63.214301
    [12] 张兴坊, 闫昕. 金纳米球壳表面等离激元共振波长调谐特性研究. 物理学报, 2013, 62(3): 037805. doi: 10.7498/aps.62.037805
    [13] 羊奕伟, 严小松, 刘荣, 鹿心鑫, 蒋励, 王玫, 林菊芳. 贫铀球壳中D-T中子诱发的铀反应率的测量与分析. 物理学报, 2013, 62(2): 022801. doi: 10.7498/aps.62.022801
    [14] 潘安, 范军, 卓琳凯. 准周期加隔板有限长圆柱壳声散射. 物理学报, 2013, 62(2): 024301. doi: 10.7498/aps.62.024301
    [15] 明付仁, 张阿漫, 姚熊亮. 弹性壳结构静力与动力分析的光滑粒子法. 物理学报, 2013, 62(11): 110203. doi: 10.7498/aps.62.110203
    [16] 邹伟博, 周骏, 金理, 张昊鹏. 金纳米球壳对的局域表面等离激元共振特性分析. 物理学报, 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [17] 潘安, 范军, 卓琳凯. 周期性加隔板有限长圆柱壳声散射. 物理学报, 2012, 61(21): 214301. doi: 10.7498/aps.61.214301
    [18] 赵翠兰, 丛银川. 球壳量子点中极化子和量子比特的声子效应. 物理学报, 2012, 61(18): 186301. doi: 10.7498/aps.61.186301
    [19] 姜泽辉, 郭波, 张峰, 王福力. 摩擦力对非弹性蹦球倍周期运动的影响. 物理学报, 2010, 59(12): 8444-8450. doi: 10.7498/aps.59.8444
    [20] 吴大建, 刘晓峻. 金纳米球壳光学吸收的Mie理论分析. 物理学报, 2008, 57(8): 5138-5142. doi: 10.7498/aps.57.5138
计量
  • 文章访问数:  3602
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-11
  • 修回日期:  2022-12-11
  • 上网日期:  2022-12-26
  • 刊出日期:  2023-03-05

/

返回文章
返回