搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光盘上集成的液体微透镜阵列与可重构超分辨成像

谷同凯 王兰兰 国阳 蒋维涛 史永胜 杨硕 陈金菊 刘红忠

引用本文:
Citation:

光盘上集成的液体微透镜阵列与可重构超分辨成像

谷同凯, 王兰兰, 国阳, 蒋维涛, 史永胜, 杨硕, 陈金菊, 刘红忠

Realization of reconfigurable super-resolution imaging by liquid microlens arrays integrated on light disk

Gu Tong-Kai, Wang Lan-Lan, Guo Yang, Jiang Wei-Tao, Shi Yong-Sheng, Yang Shuo, Chen Jin-Ju, Liu Hong-Zhong
PDF
HTML
导出引用
  • 微透镜辅助显微镜实现超分辨成像观测, 具有免标记、无损伤、实时、定域和环境兼容性好等优势. 液体微透镜阵列具有均一、易操控的特性, 可实现无复杂机械扫描与驱动的超分辨成像. 然而, 简单高效地精确控制成像距离是微透镜实现超分辨成像的关键技术挑战. 本文利用紫外曝光技术, 实现了光盘上光刻胶微孔深度的均一性. 结合液体自组装技术, 在微孔中填充甘油液滴, 保证微透镜辅助超分辨的成像距离. 在光学显微镜下实现了对226 nm光栅栅线的可重构超分辨观测与1.59倍成像放大. 本文从液体微透镜的阿贝显微成像原理出发, 通过理论与模拟解释了液体微透镜的成像放大与超分辨特性. 由此可见, 光盘上集成的液体微透镜阵列在光学纳米测量与传感等器件中展现了巨大的应用潜力.
    The microlens-assisted microscope realizes super-resolution imaging and observation, and has the advantages of no marking, no damage, real-time, localization, and good environmental compatibility. Liquid microlens arrays with uniformity and easy manipulation can realize super-resolution imaging without complicated mechanical scanning and driving. However, simply and efficiently controlling the imaging distance is a key technical challenge to the realization of super-resolution imaging of microlens. In this paper, the uniform depths of photoresist microholes on light disk are fabricated by ultraviolet exposure technology. Using liquid self-assembly technology, the microholes are filled with glycerol droplets, and thus ensuring the near-field imaging distance of the microlens. The reconfigurable super-resolution of 226-nm-wide grating line and the imaging magnification of 1.59 times are observed under the optical microscope. At present, the theory of super-resolution imaging based on microlens is not unified and perfect. In this paper, the Abbe imaging principle is used to explain the imaging magnification and super-resolution characteristics. Therefore, the liquid microlens arrays integrated on the light disk show great potential application in optical nanometer measurements and sensing devices.
      通信作者: 王兰兰, lanlan1900@mail.xjtu.edu.cn ; 刘红忠, hzliu@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52075433, 52011530186, 51625504, 51827805)、陕西省重点产业链项目(批准号: 2021ZDLGY12-04)和高等学校博士学科点专项科研基金(批准号: 2016M600785, 2016BSHEDZZ126, 2018T111048)资助的课题.
      Corresponding author: Wang Lan-Lan, lanlan1900@mail.xjtu.edu.cn ; Liu Hong-Zhong, hzliu@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52075433, 52011530186, 51625504, 51827805), the Key Research and Development Program of Shaanxi Province, China (Grant No. 2021ZDLGY12-04), and the Specialized Research Fund for the Doctoral Program of High Education, China (Grant Nos. 2016M600785, 2016BSHEDZZ126, 2018T111048).
    [1]

    Ling J Z, Wang Y C, Liu X, Wang X R 2021 Opt. Lett. 46 1265Google Scholar

    [2]

    Chen L W, Zhou Y, Li Y, Hong M H 2019 Appl. Phys. Rev. 6 021304Google Scholar

    [3]

    Hüser L, Pahl T, Künne M, Lehmann P 2022 J. Opt. Microsyst. 2 044501Google Scholar

    [4]

    Wang Z B, Guo W, Li L, Luk'yanchuk B S, Khan A, Liu Z, Chun Z C, Hong M H 2011 Nat. Commun. 2 218Google Scholar

    [5]

    周锐, 吴梦雪, 沈飞, 洪明辉 2017 物理学报 66 140702Google Scholar

    Zhou R, Wu M X, Shen F, Hong M H 2017 Acta Phys. Sin. 66 140702Google Scholar

    [6]

    宋扬, 杨西斌, 闫冰, 王驰, 孙建美, 熊大曦 2020 物理学报 69 134201Google Scholar

    Song Y, Yang X B, Yan B, Wang C, Sun J M, Xiong D X 2020 Acta Phys. Sin. 69 134201Google Scholar

    [7]

    王建国, 杨松林, 叶永红 2018 物理学报 67 214209Google Scholar

    Wang J G, Yang S L, Ye Y H 2018 Acta Phys. Sin. 67 214209Google Scholar

    [8]

    Darafsheh A 2022 J. Appl. Phys. 131 031102Google Scholar

    [9]

    Pei Y, Zang J J, Yang S L, Wang J G, Cao Y Y, Ye Y H 2021 ACS Appl. Nano Mater. 4 11281Google Scholar

    [10]

    Yang S L, Ye Y H, Shi Q F, Zhang J Y 2020 J. Phys. Chem. C 124 25951Google Scholar

    [11]

    Gu G Q, Zhang P C, Chen S H, Zhang Y, Yang H 2021 Photonics. Res. 9 1157Google Scholar

    [12]

    Zhang P P, Yan B, Gu G Q, Yu Z T, Chen X, Wang Z B, Yang H 2022 Sensor. Actuat. B-Chem. 357 131401Google Scholar

    [13]

    Kwon S, Park J, Kim K, Cho Y, Lee M 2022 Light Sci. Appl. 11 32Google Scholar

    [14]

    Gu G Q, Song J, Ming C, Xiao P, Liang H D, Qu J L 2018 Nanoscale 10 14182Google Scholar

    [15]

    Xie Y, Cai D, Pan J, Zhou N, Guo X, Wang P, Tong L 2022 Adv. Opt. Mater. 10 2102269Google Scholar

    [16]

    Su S J, Liang J S, Li X J, Xin W W, Chen L, Yin P H, Wang Z Z, Ye X S, Xiao J P, Wang D 2021 Adv. Mater. Technol-US. 6 2100449Google Scholar

    [17]

    Darafsheh A 2021 J. Phys. Photonics. 3 022001Google Scholar

    [18]

    Wang F F, Liu L Q, Yu H B, Wen Y D, Yu P, Liu Z, Wang Y C, Li W J 2016 Nat. Commun. 7 13748Google Scholar

    [19]

    Wang S Y, Zhang D X, Zhang H J, Han X, Xu R 2015 Microsc. Res. Techniq. 78 1128Google Scholar

    [20]

    Zhang T Y, Yu H B, Li P, Wang X D, Wang F F, Shi J L, Liu Z, Yu P, Yang W G, Wang Y C, Liu L Q 2020 ACS Appl. Mater. Inter. 12 48093Google Scholar

    [21]

    Chen X X, Wu T L, Gong Z Y, Guo J H, Liu X S, Zhang Y, Li Y C, Ferraro P, Li B J 2021 Light Sci. Appl. 12 242Google Scholar

    [22]

    李姮, 张熙熙, 张垚, 李宇超, 李宝军 2022 光学学报 42 0411003Google Scholar

    Li H, Chen X X, Zhang Y, Li Y C, Li B J 2022 Acta. Opt. Sin. 42 0411003Google Scholar

    [23]

    Jia B L, Wang F F, Chan H Y, Zhang G L, Li W J 2019 Microsyst. Nanoeng. 5 13Google Scholar

    [24]

    Gu T K, Wang L L, Li R, Dong Y Z, Zhang Y J, Jia M C, Jiang W T, Liu H Z 2018 Opt. Commun. 428 89Google Scholar

    [25]

    Zhang H C, Qi T Y, Zhu X Y, Zhou L J, Li Z H, Zhang Y F, Yang W C, Yang J J, Peng Z L, Zhang G M, Wang F, Guo P F, Lan H B 2021 ACS Appl. Mater. Inter. 13 36295Google Scholar

    [26]

    Wang L, Luo Y, Liu Z Z, Feng X M, Lu B H 2018 Appl. Surf. Sci. 442 417Google Scholar

    [27]

    Wang L L, Liu H Z, Jiang W T, Li R, Li F, Yang Z B, Yin L, Shi Y S, Chen B D 2015 J. Mater. Chem. C 3 5896Google Scholar

    [28]

    Wang L L, Li F, Liu H Z, Jiang W T, Niu D, Li R, Yin L, Shi Y S, Chen B D 2015 ACS Appl. Mater. Inter. 7 21416Google Scholar

    [29]

    Xu M, Zhou Z W, Wang Z, Lu H B 2020 ACS Appl. Mater. Inter. 12 7826Google Scholar

    [30]

    Chen X X, Wu T L, Gong Z Y, Li Y C, Zhang Y, Li B J 2020 Photonics. Res. 8 225Google Scholar

    [31]

    Yang H, Trouillon R, Huszka G, Gijs M A 2016 Nano. Lett. 16 4862Google Scholar

    [32]

    叶燃, 许楚, 汤芬, 尚晴晴, 范瑶, 李加基, 叶永红, 左超 2022 红外与激光工程 51 20220086Google Scholar

    Ye R, Xu C, Tang F, Shang Q Q, Fan Y, Li J J, Ye Y H, Zuo C 2022 Infrared Laser Eng. 51 20220086Google Scholar

    [33]

    Duan Y, Barbastathis G, Zhang B 2013 Opt. Lett. 38 2988Google Scholar

    [34]

    Zhou S, Deng Y B, Zhou W C, Yu M X, Urbach H P, Wu Y H 2017 Appl. Phys. B 123 236Google Scholar

  • 图 1  阿贝成像过程示意图

    Fig. 1.  Schematic diagram of the Abbe imaging process.

    图 2  光盘上液体微透镜阵列制备的示意图 (a)光盘光栅; (b)旋涂光刻胶; (c)紫外曝光; (d)疏水处理; (e)自组装过程

    Fig. 2.  Schematic diagram of the fabrication process of liquid microlens arrays on light disk grating: (a) Disk grating; (b) spin-on photoresist; (c) UV exposure; (d) hydrophobic treatment; (e) liquid self-assembly process.

    图 3  光盘及其观测结果 (a)通过3000×显微镜; (b)通过扫描电子显微镜

    Fig. 3.  Blue disk and its observation: (a) Through 3000× microscopy; (b) through SEM.

    图 4  液体自组装前后模板的共聚焦扫描结果 (a) 微孔阵列; (b)微孔轮廓和结构参数; (c)微透镜阵列; (d) 微透镜轮廓和结构参数

    Fig. 4.  Observation of template before and after liquid self-assembly process through CLSM: (a) Microhole arrays; (b) profile and parameters of microholes; (c) liquid microlens arrays (LMLAs); (d) profile and parameters of microlenses.

    图 5  光盘光栅的金相显微镜观测 (a) 成像示意图; (b) 实验全局图; (c) 通过微透镜阵列; (d) 未通过微透镜阵列

    Fig. 5.  Observation of blue disk gratings through metalloscope: (a) Schematic diagram of experiment; (b) figure of experimental equipment; (c) through LMLAs; (d) not through LMLAs.

    图 6  光盘光栅透过微透镜在5000×光学显微镜下的观测 (a) 通过微透镜阵列成像; (b) 在(a)图中蓝线对应的灰度分布

    Fig. 6.  Observation of blue disk gratings through 5000× microscope: (a) Image grating through LMLAs; (b) the grayscale of blue line in (a).

    图 7  液体微透镜阵列对光盘光栅的可重构超分辨成像

    Fig. 7.  Reconstructable super-resolution imaging of optical disk gratings by LMLA.

    图 8  光盘上液体微透镜成像过程的模拟 (a)设置物光栅; (b)微透镜所在平面光强分布; (c)微透镜焦平面光强分布; (d)匹配滤波器

    Fig. 8.  Simulation of imaging process of liquid microlens on blue disk: (a) Set gratings; (b) light intensity of microlens surface; (c) light intensity of microlens focal plane; (d) light wave filter.

    图 9  光盘光栅再现像与剖线 (a)未用滤波器的再现像; (b)用滤波器的再现像; (c) 图(a)中心横向截线上灰度分布; (d)图(b)中心横向截线上灰度分布

    Fig. 9.  Reconstructed images of blue disk gratings and their section lines: (a) Reconstructed image without filter; (b) reconstructed image with filter; (c) section line of (a); (d) section line of (b).

    图 10  微透镜聚焦的FDTD模型与结果 (a) FDTD模型; (b) xy平面光强分布; (c) y = 0时x方向上的光强分布; (d) x = 53.5 μm处y方向上的光强分布

    Fig. 10.  FDTD model and results of microlens focusing: (a) FDTD modeling; (b) light intensity in xy plane; (c) light intensity at y = 0 μm; (d) light intensity at x = 53.5 μm.

  • [1]

    Ling J Z, Wang Y C, Liu X, Wang X R 2021 Opt. Lett. 46 1265Google Scholar

    [2]

    Chen L W, Zhou Y, Li Y, Hong M H 2019 Appl. Phys. Rev. 6 021304Google Scholar

    [3]

    Hüser L, Pahl T, Künne M, Lehmann P 2022 J. Opt. Microsyst. 2 044501Google Scholar

    [4]

    Wang Z B, Guo W, Li L, Luk'yanchuk B S, Khan A, Liu Z, Chun Z C, Hong M H 2011 Nat. Commun. 2 218Google Scholar

    [5]

    周锐, 吴梦雪, 沈飞, 洪明辉 2017 物理学报 66 140702Google Scholar

    Zhou R, Wu M X, Shen F, Hong M H 2017 Acta Phys. Sin. 66 140702Google Scholar

    [6]

    宋扬, 杨西斌, 闫冰, 王驰, 孙建美, 熊大曦 2020 物理学报 69 134201Google Scholar

    Song Y, Yang X B, Yan B, Wang C, Sun J M, Xiong D X 2020 Acta Phys. Sin. 69 134201Google Scholar

    [7]

    王建国, 杨松林, 叶永红 2018 物理学报 67 214209Google Scholar

    Wang J G, Yang S L, Ye Y H 2018 Acta Phys. Sin. 67 214209Google Scholar

    [8]

    Darafsheh A 2022 J. Appl. Phys. 131 031102Google Scholar

    [9]

    Pei Y, Zang J J, Yang S L, Wang J G, Cao Y Y, Ye Y H 2021 ACS Appl. Nano Mater. 4 11281Google Scholar

    [10]

    Yang S L, Ye Y H, Shi Q F, Zhang J Y 2020 J. Phys. Chem. C 124 25951Google Scholar

    [11]

    Gu G Q, Zhang P C, Chen S H, Zhang Y, Yang H 2021 Photonics. Res. 9 1157Google Scholar

    [12]

    Zhang P P, Yan B, Gu G Q, Yu Z T, Chen X, Wang Z B, Yang H 2022 Sensor. Actuat. B-Chem. 357 131401Google Scholar

    [13]

    Kwon S, Park J, Kim K, Cho Y, Lee M 2022 Light Sci. Appl. 11 32Google Scholar

    [14]

    Gu G Q, Song J, Ming C, Xiao P, Liang H D, Qu J L 2018 Nanoscale 10 14182Google Scholar

    [15]

    Xie Y, Cai D, Pan J, Zhou N, Guo X, Wang P, Tong L 2022 Adv. Opt. Mater. 10 2102269Google Scholar

    [16]

    Su S J, Liang J S, Li X J, Xin W W, Chen L, Yin P H, Wang Z Z, Ye X S, Xiao J P, Wang D 2021 Adv. Mater. Technol-US. 6 2100449Google Scholar

    [17]

    Darafsheh A 2021 J. Phys. Photonics. 3 022001Google Scholar

    [18]

    Wang F F, Liu L Q, Yu H B, Wen Y D, Yu P, Liu Z, Wang Y C, Li W J 2016 Nat. Commun. 7 13748Google Scholar

    [19]

    Wang S Y, Zhang D X, Zhang H J, Han X, Xu R 2015 Microsc. Res. Techniq. 78 1128Google Scholar

    [20]

    Zhang T Y, Yu H B, Li P, Wang X D, Wang F F, Shi J L, Liu Z, Yu P, Yang W G, Wang Y C, Liu L Q 2020 ACS Appl. Mater. Inter. 12 48093Google Scholar

    [21]

    Chen X X, Wu T L, Gong Z Y, Guo J H, Liu X S, Zhang Y, Li Y C, Ferraro P, Li B J 2021 Light Sci. Appl. 12 242Google Scholar

    [22]

    李姮, 张熙熙, 张垚, 李宇超, 李宝军 2022 光学学报 42 0411003Google Scholar

    Li H, Chen X X, Zhang Y, Li Y C, Li B J 2022 Acta. Opt. Sin. 42 0411003Google Scholar

    [23]

    Jia B L, Wang F F, Chan H Y, Zhang G L, Li W J 2019 Microsyst. Nanoeng. 5 13Google Scholar

    [24]

    Gu T K, Wang L L, Li R, Dong Y Z, Zhang Y J, Jia M C, Jiang W T, Liu H Z 2018 Opt. Commun. 428 89Google Scholar

    [25]

    Zhang H C, Qi T Y, Zhu X Y, Zhou L J, Li Z H, Zhang Y F, Yang W C, Yang J J, Peng Z L, Zhang G M, Wang F, Guo P F, Lan H B 2021 ACS Appl. Mater. Inter. 13 36295Google Scholar

    [26]

    Wang L, Luo Y, Liu Z Z, Feng X M, Lu B H 2018 Appl. Surf. Sci. 442 417Google Scholar

    [27]

    Wang L L, Liu H Z, Jiang W T, Li R, Li F, Yang Z B, Yin L, Shi Y S, Chen B D 2015 J. Mater. Chem. C 3 5896Google Scholar

    [28]

    Wang L L, Li F, Liu H Z, Jiang W T, Niu D, Li R, Yin L, Shi Y S, Chen B D 2015 ACS Appl. Mater. Inter. 7 21416Google Scholar

    [29]

    Xu M, Zhou Z W, Wang Z, Lu H B 2020 ACS Appl. Mater. Inter. 12 7826Google Scholar

    [30]

    Chen X X, Wu T L, Gong Z Y, Li Y C, Zhang Y, Li B J 2020 Photonics. Res. 8 225Google Scholar

    [31]

    Yang H, Trouillon R, Huszka G, Gijs M A 2016 Nano. Lett. 16 4862Google Scholar

    [32]

    叶燃, 许楚, 汤芬, 尚晴晴, 范瑶, 李加基, 叶永红, 左超 2022 红外与激光工程 51 20220086Google Scholar

    Ye R, Xu C, Tang F, Shang Q Q, Fan Y, Li J J, Ye Y H, Zuo C 2022 Infrared Laser Eng. 51 20220086Google Scholar

    [33]

    Duan Y, Barbastathis G, Zhang B 2013 Opt. Lett. 38 2988Google Scholar

    [34]

    Zhou S, Deng Y B, Zhou W C, Yu M X, Urbach H P, Wu Y H 2017 Appl. Phys. B 123 236Google Scholar

  • [1] 罗泽伟, 武戈, 陈挚, 邓驰楠, 万蓉, 杨涛, 庄正飞, 陈同生. 双通道结构光照明超分辨定量荧光共振能量转移成像系统. 物理学报, 2023, 72(20): 208701. doi: 10.7498/aps.72.20230853
    [2] 王晓雷, 赵洁惠, 李淼, 姜光科, 胡晓雪, 张楠, 翟宏琛, 刘伟伟. 基于人工表面等离激元探针实现太赫兹波的紧聚焦和场增强. 物理学报, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [3] 王佳林, 严伟, 张佳, 王璐玮, 杨志刚, 屈军乐. 受激辐射损耗超分辨显微成像系统研究的新进展. 物理学报, 2020, 69(10): 108702. doi: 10.7498/aps.69.20200168
    [4] 李潇男, 关国荣, 刘忆琨, 梁浩文, 张爱琴, 周建英. 矢量光共焦扫描显微系统纳米标准样品的制备与物理测量精度. 物理学报, 2019, 68(14): 148102. doi: 10.7498/aps.68.20190252
    [5] 范启蒙, 尹成友. 高对比度目标的电磁逆散射超分辨成像. 物理学报, 2018, 67(14): 144101. doi: 10.7498/aps.67.20180266
    [6] 赵天宇, 周兴, 但旦, 千佳, 汪召军, 雷铭, 姚保利. 结构光照明显微中的偏振控制. 物理学报, 2017, 66(14): 148704. doi: 10.7498/aps.66.148704
    [7] 陈刚, 温中泉, 武志翔. 光学超振荡与超振荡光学器件. 物理学报, 2017, 66(14): 144205. doi: 10.7498/aps.66.144205
    [8] 胡睿璇, 潘冰洋, 杨玉龙, 张伟华. 基于线性成像系统的光学超分辨显微术回顾. 物理学报, 2017, 66(14): 144209. doi: 10.7498/aps.66.144209
    [9] 李少东, 陈永彬, 刘润华, 马晓岩. 基于压缩感知的窄带高速自旋目标超分辨成像物理机理分析. 物理学报, 2017, 66(3): 038401. doi: 10.7498/aps.66.038401
    [10] 赵光远, 郑程, 方月, 匡翠方, 刘旭. 基于点扫描的超分辨显微成像进展. 物理学报, 2017, 66(14): 148702. doi: 10.7498/aps.66.148702
    [11] 秦飞, 洪明辉, 曹耀宇, 李向平. 平面超透镜的远场超衍射极限聚焦和成像研究进展. 物理学报, 2017, 66(14): 144206. doi: 10.7498/aps.66.144206
    [12] 蒋忠君, 刘建军. 超振荡及其远场聚焦成像研究进展. 物理学报, 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [13] 李少东, 陈文峰, 杨军, 马晓岩. 低信噪比下的二维联合线性布雷格曼迭代快速超分辨成像算法. 物理学报, 2016, 65(3): 038401. doi: 10.7498/aps.65.038401
    [14] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像. 物理学报, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [15] 章志敏, 王秉中, 葛广顶. 一种用于时间反演通信的亚波长天线阵列设计. 物理学报, 2012, 61(5): 058402. doi: 10.7498/aps.61.058402
    [16] 支绍韬, 章海军, 张冬仙. 基于大数值孔径环形光锥照明的超分辨光学显微成像方法研究. 物理学报, 2012, 61(2): 024207. doi: 10.7498/aps.61.024207
    [17] 卢婧, 李昊, 何毅, 史国华, 张雨东. 超分辨率活体人眼视网膜共焦扫描成像系统. 物理学报, 2011, 60(3): 034207. doi: 10.7498/aps.60.034207
    [18] 赵维谦, 陈珊珊, 冯政德. 图像复原式整形环形光横向超分辨共焦显微测量新方法. 物理学报, 2006, 55(7): 3363-3367. doi: 10.7498/aps.55.3363
    [19] 刘锡民, 刘立人, 孙建锋, 郎海涛, 潘卫清, 赵 栋. 星间激光通讯中的精跟踪研究. 物理学报, 2005, 54(11): 5149-5156. doi: 10.7498/aps.54.5149
    [20] 刘 力, 邓小强, 王桂英, 徐至展. 改善共焦系统轴向分辨率的位相型光瞳滤波器. 物理学报, 2001, 50(1): 48-51. doi: 10.7498/aps.50.48
计量
  • 文章访问数:  4378
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-23
  • 修回日期:  2023-02-12
  • 上网日期:  2023-03-22
  • 刊出日期:  2023-05-05

/

返回文章
返回