搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强激光与固体密度等离子体作用产生孤立阿秒脉冲的研究进展

王云良 颜学庆

引用本文:
Citation:

强激光与固体密度等离子体作用产生孤立阿秒脉冲的研究进展

王云良, 颜学庆

Isolated attosecond pulse generation from the interaction of intense laser pulse with solid density plasma

Wang Yun-Liang, Yan Xue-Qing
PDF
HTML
导出引用
  • 强激光与固体密度等离子体作用产生的阿秒脉冲具有强度高、脉宽短等优势, 因此吸引了很多研究者的注意. 由于超快过程的泵浦探测技术需要的是一个孤立的阿秒脉冲, 因此本文重点讨论了相对论强激光与固体密度等离子体作用产生孤立阿秒脉冲的几种物理机理. 最近的几个代表性工作表明, 强激光与固体密度等离子体作用还可以产生脉宽更短、强度更高的半周期阿秒脉冲. 半周期孤立阿秒脉冲在对原子、固体中的电子进行超快的非对称操纵或探测等方面具有重要的应用, 因此本文对半周期阿秒脉冲产生的理论机制、实验可行性、标定测量、及应用前景进行了深入的讨论.
    This article gives an overview on recent progress in the generation of isolated attosecond pulse and isolated half-cycle attosecond pulse. As an isolated attosecond pulse is preferred in the pump-probe experiments for the dynamics of electrons in atom, molecule, or solid, we focus on the isolated attosecond pulses generation from the intense laser pulses interaction with solid density plasma, which have higher intensity and narrower pulse width than that generated in the interaction of laser pulse with gas target. We have firstly discussed the physical mechanism of isolated attosecond pulse generation, such as polarization gating, two-color laser pulses, attosecond light houses, and capacitor target mechanism. In the polarization gating mechanism, we have discussed the physical mechanism that the higher-order harmonic efficiency decreases with the increase of ellipticity. Both the coherent synchrotron radiation mechanism and the relativistic oscillation mechanism can control the intensity of high-order harmonic generation by controlling ellipticity of the incident laser pulse. We also discussed other mechanism to enhance the isolated attosecond pulse bursts in detail. Secondly, we focus on the isolated half-cycle attosecond pulses, which can also be generated from the intense laser pulses interaction with solid density plasma by double foil target mechanism, gas-foil target mechanism, cascaded generation mechanism, microstructured target mechanism, and three-color laser pulse mechanism. The half-cycle attosecond pulses can be useful for probing ultrafast electron dynamics in matter via asymmetric manipulation. Accordingly we discussed the physcial mechanism, experimental feasibility, calibration measurement, and application prospect of half-cycle attosecond pulse in this article. The above mechanism can directly generate ultra-intense isolated attosecond pulses in the transmission direction without requiring extra filters and gating techniques. The dense electron sheet is crucial for the generation of intense attosecond pulses in different mechanisms, such as coherent wake emission (CWE), relativistic oscillating mirror (ROM) and coherent synchrotron emission (CSE). In this article, all the mechanism for half-cycle attosecond pulses generation can ensure only one electron sheet contributing to the transmitted radiation. We discuss the theoretical model of nanobunching of the electron sheet, which shows that the relativistic oscillation is crucial for the formation of electron sheet.
      通信作者: 王云良, ylwang@ustb.edu.cn ; 颜学庆, x.yan@pku.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974043, 11921006)和国家重大科学仪器设备开发专项(批准号: 2019YFF01014400)资助的课题.
      Corresponding author: Wang Yun-Liang, ylwang@ustb.edu.cn ; Yan Xue-Qing, x.yan@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974043, 11921006) and the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 2019YFF01014400)
    [1]

    Hentschel M, Kienberger R, Spielmann Ch, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509Google Scholar

    [2]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [3]

    Heissler P, Tzallas P, Mikhailova J M, Khrennikov K, Waldecker L, Krausz F, Karsch S, Charalambidis D, Tsakiris G D 2010 New J. Phys. 14 043025

    [4]

    汪洋, 刘煜, 吴成印 2022 物理学报 71 234205Google Scholar

    Wang Y, Liu Y, Wu C Y 2022 Acta Phys. Sin. 71 234205Google Scholar

    [5]

    徐一丹, 姜雯昱, 童继红, 韩露露, 左子潭, 许理明, 宫晓春, 吴健 2022 物理学报 71 233301Google Scholar

    Xu Y D, Jiang W Y, Tong J H, Han L L, Zuo Z T, Xu L M, Gong X C, Wu J 2022 Acta Phys. Sin. 71 233301Google Scholar

    [6]

    屠倩, 陈友龙, 刘凯, 王凤, 张晓凡, 杨溢, 唐富明, 廖青 2021 物理学报 70 113202Google Scholar

    Tu Q, Chen Y L, Liu K, Wang F, Zhang X F, Yang Y, Tang F M, Liao Q 2021 Acta Phys. Sin. 70 113202Google Scholar

    [7]

    Tzallas P, Charalambidis D, Papadogiannis N A, Witte K, Tsakiris G D 2003 Nature 426 267Google Scholar

    [8]

    Nabekawa Y, Shimizu T, Okino T, Furusawa K, Hasegawa H, Yamanouchi K, Midorikawa K 2006 Phys. Rev. Lett. 97 153904Google Scholar

    [9]

    Takahashi E J, Lan P, Mücke O D, Nabekawa Y, Midorikawa K 2013 Nat. Commun. 4 2691Google Scholar

    [10]

    Gauthier D, Guizar-Sicairos M, Ge X, Boutu W, Carré B, Fienup J R, Merdji H 2010 Phys. Rev. Lett. 105 093901Google Scholar

    [11]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [12]

    Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, De Silvestri S, Nisoli M 2006 Science 314 443Google Scholar

    [13]

    Ferrari F, Calegari F, Lucchini M, Vozzi C, Stagira S, Sansone G, Nisoli M 2010 Nat. Photonics 4 875Google Scholar

    [14]

    Hu S, Chen Z Y 2022 Phys. Plasmas 29 013102Google Scholar

    [15]

    Xu X, Zhang Y, Zhang H, Lu H, Zhou W, Zhou C, Dromey B, Zhu S, Zepf M, He X, Qiao B 2020 Optica 7 355Google Scholar

    [16]

    Pang R, Wang Y, Yan X, Eliasson B 2022 Phys. Rev. Appl. 18 024024Google Scholar

    [17]

    Gordienko S, Pukhov A, Shorokhov O, Baeva T 2004 Phys. Rev. Lett. 93 115002Google Scholar

    [18]

    Chen Z Y, Pukhov A 2016 Nat. Commun. 7 12515Google Scholar

    [19]

    Teubner U, Gibbon P 2009 Rev. Mod. Phys. 81 445Google Scholar

    [20]

    Thaury C, Quéré F, Geindre J P, Levy A, Ceccotti T, Monot P, Bougeard M, Réau F, d’Oliveira P, Audebert P, Marjoribanks R, Martin Ph 2007 Nat. Phys. 3 424Google Scholar

    [21]

    Gao J, Ye D, Liu J, Kang W 2022 Matter Radiat. Extremes 7 044403Google Scholar

    [22]

    蔡怀鹏, 高健, 李博原, 刘峰, 陈黎明, 远晓辉, 陈民, 盛政明, 张杰 2018 物理学报 67 214205Google Scholar

    Cai H P, Gao J, Li B Y, Liu F, Chen L M, Yuan X H, Chen M, Sheng Z M, Zhang J 2018 Acta Phys. Sin. 67 214205Google Scholar

    [23]

    徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾 2021 物理学报 70 084206Google Scholar

    Xu X R, Zhong C L, Zhang Y, Liu F, Wang S Y, Tan F, Zhang Y X, Zhou W M, Qiao B 2021 Acta Phys. Sin. 70 084206Google Scholar

    [24]

    Liang Z, Shen B, Zhang X, Zhang L 2020 Matter Radiat. Extremes 5 054401Google Scholar

    [25]

    Zhu X L, Chen M, Yu T P, Weng S M, He F, Sheng Z M 2019 Matter Radiat. Extremes 4 014401Google Scholar

    [26]

    Brunel F 1987 Phys. Rev. Lett. 59 52Google Scholar

    [27]

    Quéré F, Thaury C, Monot P, Dobosz S, Martin Ph, Geindre J P, Audebert P 2006 Phys. Rev. Lett. 96 125004Google Scholar

    [28]

    Bulanov S V, Naumova N M, Pegoraro F 1994 Phys. Plasmas 1 745Google Scholar

    [29]

    Gibbon P 1996 Phys. Rev. Lett. 76 50Google Scholar

    [30]

    Lichters R, Meyer-ter-Vehn J, Pukhov A 1996 Phys. Plasmas 3 3425Google Scholar

    [31]

    Pukhov A 2006 Nat. Phys. 2 439Google Scholar

    [32]

    Dollar F, Cummings P, Chvykov V, Willingale L, Vargas M, Yanovsky V, Zulick C, Maksimchuk A, Thomas A G R, Krushelnick K 2013 Phys. Rev. Lett. 110 175002Google Scholar

    [33]

    Kahaly S, Monchocé S, Vincenti H, Dzelzainis T, Dromey B, Zepf M, Martin Ph, Quéré F 2013 Phys. Rev. Lett. 110 175001Google Scholar

    [34]

    Heissler P, Hörlein R, Mikhailova J M, Waldecker L, Tzallas P, Buck A, Schmid K, Sears C M S, Krausz F, Veisz L, Zepf M, Tsakiris G D 2012 Phys. Rev. Lett. 108 235003Google Scholar

    [35]

    Dromey B, Zepf M, Gopal A, Lancaster K, Wei M S, Krushelnick K, Tatarakis M, Vakakis N, Moustaizis S, Kodama R, Tampo M, Stoeckl C, Clarke R, Habara H, Neely D, Karsch S, Norreys P 2006 Nat. Phys. 2 456Google Scholar

    [36]

    Dromey B, Kar S, Bellei C, Carroll D C, Clarke R J, Green J S, Kneip S, Markey K, Nagel S R, Simpson P T, Willingale L, McKenna P, Neely D, Najmudin Z, Krushelnick K, Norreys P A, Zepf M 2007 Phys. Rev. Lett. 99 085001Google Scholar

    [37]

    An der Brügge D, Pukhov A 2010 Phys. Plasmas 17 033110Google Scholar

    [38]

    Mikhailova J M, Fedorov M V, Karpowicz N, Gibbon P, Platonenko V T, Zheltikov A M, Krausz F 2012 Phys. Rev. Lett. 109 245005Google Scholar

    [39]

    Dromey B, Rykovanov S, Yeung M, Hörlein R, Jung D, Gautier D C, Dzelzainis T, Kiefer D, Palaniyppan S, Shah R, Schreiber J, Ruhl H, Fernandez J C, Lewis C L S, Zepf M, Hegelich B M 2012 Nat. Phys. 8 804Google Scholar

    [40]

    Jiang Y, Chen Z Y, Liu Z, Cao L, Zheng C, Xie R, Chao Y, He X 2021 Opt. Lett. 46 1285Google Scholar

    [41]

    Wu Y Y, Dong Q L, Wang Z H, Liu P, Wang C Z, Zhang Y H, Sheng Z M, Zhang J 2018 Chin. Phys. Lett. 35 095201Google Scholar

    [42]

    Corkum P B, Burnett N H, Ivanov M Y 1994 Opt. Lett. 19 1870Google Scholar

    [43]

    Platonenko V T, Strelkov V V 1999 J. Opt. Soc. Am. B 16 435Google Scholar

    [44]

    Tscherbakoff O, Mevel E, Descamps D, Plumridge J, Constant E 2003 Phys. Rev. A 68 043804Google Scholar

    [45]

    Tzallas P, Skantzakis E, Kalpouzos C, Benis E P, Tsakiris G D, Charalambidis D 2007 Nat. Phys. 3 846Google Scholar

    [46]

    Charambidis D, Tzallas P, Benis E P, Maravellias G, Nikolopoulos L A A, Peralta C A, Tsakiris G D 2008 New J. Phys. 10 025018Google Scholar

    [47]

    Baeva T, Gordienko S, Pukhov A 2006 Phys. Rev. E 74 065401

    [48]

    Yeung M, Dromey B, Cousens S, Dzelzainis T, Kiefer D, Schreiber J, Bin J H, Ma W, Kreuzer C, Meyer-ter-Vehn J, Streeter M J V, Foster P S, Rykovanov S, Zepf M 2014 Phys. Rev. Lett. 112 123902Google Scholar

    [49]

    Heissler P, Hörlein R, Stafe M, Mikhailova J M, Nomura Y, Herrmann D, Tautz R, Rykovanov S G, Földes I B, Varjú K, Tavella F, Marcinkevicius A, Krausz F, Veisz L, Tsakiris G D 2010 Appl. Phys. B 101 511Google Scholar

    [50]

    Easter J H, Nees J A, Hou B X, Mordovanakis A, Mourou G, Thomas A G R, Krushelnick K 2013 New J. Phys. 15 025035Google Scholar

    [51]

    Rykovanov S G, Geissler M, Meyer-ter-Vehn J, Tsakiris G D 2008 New J. Phys. 10 025025Google Scholar

    [52]

    Yeung M, Bierbach J, Eckner E, Rykovanov S, Kuschel S, Sövert A, Förster M, Rödel C, Paulus G G, Cousens S, Coughlan M, Dromey B, Zepf M 2015 Phys. Rev. Lett. 115 193903Google Scholar

    [53]

    Li B Y, Liu F, Chen M, Wu F Y, Wang J W, Lu L, Li J L, Ge X L, Yuan X H, Yan W C, Chen L M, Sheng Z M, Zhang J 2022 Phys. Rev. Lett. 128 244801Google Scholar

    [54]

    Chen Z Y, Li X Y, Li B Y, Chen M, Liu F 2018 Opt. Express 26 4572Google Scholar

    [55]

    Pfeifer T, Gallmann L, Abel M J, Neumark D M, Leone S R 2006 Opt. Lett. 31 975Google Scholar

    [56]

    Yoshitomi D, Kobayashi Y, Takada H, Kakehata M, Torizuka K 2005 Opt. Lett. 30 1408Google Scholar

    [57]

    Zhang G T, Liu X S 2009 J. Phys. B: At. Mol. Opt. 42 125603Google Scholar

    [58]

    Yuan K J, Bandrauk A D J 2013 Phys. Rev. Lett. 110 023003Google Scholar

    [59]

    Li P C, Liu I L, Chu S I 2011 Opt. Express 19 23857Google Scholar

    [60]

    Qin Y F, Guo F M, Li S Y, Yang Y J, Chen G 2014 Chin. Phys. B 23 093205Google Scholar

    [61]

    汉琳, 苗淑莉, 李鹏程 2022 物理学报 71 233204Google Scholar

    Han L, Miao S L, Li P C 2022 Acta Phys. Sin. 71 233204Google Scholar

    [62]

    杜进旭, 王国利, 李小勇, 周效信 2022 物理学报 71 233207Google Scholar

    Du J X, Wang G L, Li X Y, Zhou X X 2022 Acta Phys. Sin. 71 233207Google Scholar

    [63]

    陈高 2022 物理学报 71 054204Google Scholar

    Chen G 2022 Acta Phys. Sin. 71 054204Google Scholar

    [64]

    陈高, 杨玉军, 郭福明 2013 物理学报 62 073203Google Scholar

    Chen G, Yang Y J, Guo F M 2013 Acta Phys. Sin. 62 073203Google Scholar

    [65]

    Chang Z J 2007 Phys. Rev. A 76 051403Google Scholar

    [66]

    Tarasevitch A, Kohn R, von der Linde D 2009 J. Phys. B 42 134006Google Scholar

    [67]

    Tarasevitch A, von der Linde D 2009 Eur. Phys. J. Special Topics 175 35Google Scholar

    [68]

    Edwards M R, Platonenko V T, Mikhailova J M 2014 Opt. Lett. 39 6823Google Scholar

    [69]

    Zhang Y X, Rykovanov S, Shi M, Zhong C L, He X T, Qiao B, Zepf M 2020 Phys. Rev. Lett. 124 114802Google Scholar

    [70]

    Vincenti H, Quéré F 2012 Phys. Rev. Lett. 108 113904Google Scholar

    [71]

    Wheeler J A, Borot A, Monchocé S, Vincenti H, Ricci A, Malvache A, Lopez-Martens R, Quéré F 2012 Nat. Photonics 6 829Google Scholar

    [72]

    Hammond T J, Brown G G, Kim K T, Villeneuve D M, Corkum P B 2016 Nat. Photonics 10 171Google Scholar

    [73]

    Xu X R, Qiao B, Chang H X, Zhang Y X, Zhang H, Zhong C L, Zhou C T, Zhu S P, He X T 2018 Plasma Phys. Control. Fusion 60 045005Google Scholar

    [74]

    Wu H C, Meyer-ter-Vehn J, Hegelich B M, Fernandez J C 2011 Phys. Rev. Spec. Top. Accel Beams 14 070702

    [75]

    Arkhipov M V, Arkhipov R M, Pakhomov A V, Babushkin I V, Demircan A, Morgner U, Rosanov N N 2017 Opt. Lett. 42 2189Google Scholar

    [76]

    Moskalenko A S, Zhu Z G, Berakdar J 2017 Phys. Rep. 672 1Google Scholar

    [77]

    Thiele I, Siminos E, Fülöp T 2019 Phys. Rev. Lett. 122 104803Google Scholar

    [78]

    Pakhomov A V, Arkhipov R M, Babushkin I V, Arkhipov M V, Tolmachev Y A, Rosanov N N 2017 Phys. Rev. A 95 013804Google Scholar

    [79]

    Gao Y, Drake T, Chen Z, DeCamp M F 2008 Opt. Lett. 33 2776Google Scholar

    [80]

    Greene B I, Federici J F, Dykaar D R, Jones R R, Bucksbaum P H 1991 Appl. Phys. Lett. 59 893Google Scholar

    [81]

    Liang H, Krogen P, Wang Z, Park H, Kroh T, Zawilski K, Schunemann P, Moses J, DiMauro L F, Körtner F X, Hong K -H 2017 Nat. Commun. 8 141Google Scholar

    [82]

    Hassan M Th, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 6

    [83]

    Wu H C, Meyer-ter-Vehn J 2012 Nat. Photonics 6 304Google Scholar

    [84]

    Ma W J, Bin J H, Wang H Y, Yeung M, Kreuzer C, Streeter M, Foster P S, Cousens S, Kiefer D, Dromey B, Yan X Q, Meyer-ter-Vehn J, Zepf M, Schreiber J 2014 Phys. Rev. Lett. 113 235002Google Scholar

    [85]

    Xu J, Shen B, Zhang X, Shi Y, Ji L, Zhang L, Xu T, Wang W, Zhao X, Xu Z 2018 Sci. Rep. 8 2669Google Scholar

    [86]

    Shou Y, Hu R, Gong Z, Yu J, Chen J, Mourou G, Yan X, Ma W 2021 New J. Phys. 23 053003Google Scholar

    [87]

    Cousens S, Reville B, Dromey B, Zepf M 2016 Phys. Rev. Lett. 116 083901Google Scholar

    [88]

    Wei S, Wang Y, Yan X, Eliasson B 2022 Phys. Rev. E 106 025203Google Scholar

    [89]

    Mourou G, Mironov S, Khazanov E, Sergeev A 2014 Eur. Phys. J. Special Topics 223 1181Google Scholar

    [90]

    Henig A, Steinke S, Schnürer M, Sokollik T, Hörlein R, Kiefer D, Jung D, Schreiber J, Hegelich B M, Yan X Q, Meyer-ter-Vehn J, Tajima T, Nickles P V, Sandner W, Habs D 2009 Phys. Rev. Lett. 103 245003Google Scholar

    [91]

    Cantono G, Permogorov A, Ferri J, Smetanina E, Dmitriev A, Persson A, Fülöp T, Wahlström C G 2021 Sci. Rep. 11 5006Google Scholar

    [92]

    Kobayashi Y, Sekikawa T, Nabekawa Y, Watanabe S 1998 Opt. Lett. 23 64Google Scholar

    [93]

    Itatani J, Quere F, Yudin G L, Ivanov M Y, Krausz F, Corkum P B 2002 Phys. Rev. Lett. 88 173903Google Scholar

    [94]

    Reider G A 2004 J. Phys. D: Appl. Phys. 37 R37Google Scholar

    [95]

    Frustaglia D, Hentschel M, Richter K 2004 Phys. Rev. B 69 155327Google Scholar

    [96]

    Moskalenko A S, Berakdar J 2008 Phys. Rev. A 78 051804(RGoogle Scholar

  • 图 1  (a)实验装置示意图; (b), (c)高次谐波辐射强度随椭偏度的变化趋势[48]

    Fig. 1.  (a) Sketch of the experimental setup; (b), (c) high-order harmonic generation varies with the ellipticity of the driven laser pulse reported in Ref. [48]

    图 2  由两块双折射晶体组成的时变椭圆度脉冲产生方案[51]

    Fig. 2.  Scheme for generating a pulse with time-varying ellipticity with quartz plate and $ \lambda/4 $ plate[51]

    图 3  非共线偏振门控方案示意图. 具有正交光轴的四分之一波片将两个具有时间延迟的线偏振激光脉冲分别转换为左旋和右旋圆偏振激光脉冲. 这些脉冲在焦点处的重叠部分形成线偏振光[52]

    Fig. 3.  Sketch of the noncollinear polarization gating method. A split quarter wave plate with orthogonal optical axes converts two delayed linearly polarized half beam pulses into left and right circularly polarized pulses. These pulses overlap at focus and create a linear gate[52]

    图 4  在不同谐波波段内, 谐波产生效率与驱动激光椭偏度的关系[54]

    Fig. 4.  Harmonic generation efficiency varies with the driving laser ellipticity for different harmonic ranges[54]

    图 5  (a)单色和双色驱动激光脉冲的波形; (b)单色和(c)双色驱动激光脉冲两种情况下产生的阿秒脉冲对比[69]

    Fig. 5.  (a) Temporal intensity of one color and two color laser pulses; (b), (c) generated attosecond pulses for two cases[69]

    图 6  飞秒激光的脉冲前沿倾斜和波前旋转的物理机理示意图[70]

    Fig. 6.  Pulse-front tilt and wave-front rotation in the chirped-pulse-amplification laser[70]

    图 7  相对论振荡镜模型下, 不同波前旋转角速度对应的阿秒脉冲空间分离效果[70]

    Fig. 7.  Results of the relativistic oscillating mirror model for the attosecond lighthouse effect with different rotation velocity[70]

    图 8  孤立阿秒脉冲产生的电容器靶方案 (a)电容器靶的充电过程; (b)电容器靶的放电过程[15]

    Fig. 8.  Scheme of a single attosecond pulse generation by an intense laser irradiating a capacitor-nanofoil target: (a) Formation of relativistic flying electrons sheets from first target; (b) relativistic electron sheet from the second target for enhanced coherent synchrotron emission of attosecond pulse[15].

    图 9  激光斜入射双靶产生阿秒脉冲方案示意图

    Fig. 9.  Scheme of attosecond pulse generation for the laser oblique irradiating double target

    图 10  (a)实验测得辐射谱, NSF表示正入射单靶, OSF表示斜入射单靶, NDF表示正入射双靶, ODF表示斜入射双靶; (b)用厚度为50 nm的铝膜进行滤波的谱, 这里只给出了不同靶条件下相对振幅的大小; (c)离轴与轴上的谐波强度之比, 用$ 50\, {\rm nm} $斜入射单靶的数据进行了归一化[84]

    Fig. 10.  (a) Experimental spectra in the range of 18–400 eV. (b) Spectra are recorded behind a $50\; {\rm nm}$ Al filter without calibration. They give only relative amplitudes for different target geometry, but not the actual shape of the spectra. (c) Ratio of off-axis to on-axis intensity, normalized to the case of OSF at 50 nm[84]

    图 11  多周期激光入射气体-固体组合靶产生半周期阿秒脉冲机制[85]

    Fig. 11.  Scheme of half-cycle attosecond pulse emission and detection for relativistic multi-cycle laser pulse irradiating gas-foil target[85]

    图 12  半周期阿秒脉冲的产生机制 (a)—(d)电子片的形成过程及相应的阿秒脉冲辐射的级联过程; (e)电子密度的时空演化图[86]

    Fig. 12.  Generation mechanism of a sub-10 as half-cycle pulse: (a)–(d) Formation of the electron sheets and the attosecond pulse generation step by step; (e) spatial-temporal evolution of the electron density[86]

    图 13  强激光与三层微结构靶作用产生阿秒脉冲的示意图[88]

    Fig. 13.  Schematic of an attosecond pulse (AP) generated by the interaction of intense laser pulse with a microstructured foil[88]

    图 14  (a)双色激光合成脉冲的波形; (b)透射方向产生的半周期阿秒脉冲的电场波形; (c)阿秒脉冲强度分布波形, 脉宽为$5\; {\rm as}$; (d)电子数密度的时空演化过程. 图中电子片B用绿色点线标出, 电子片A和C用蓝色点线标出[88]

    Fig. 14.  (a) Spatial profile of normalized electric field of the driving two-color laser pulses; (b) normalized electric field of an attosecond pulse in transmission direction; (c) attosecond pulse has a FWHM of about $5\; {\rm as}$; (d) spatiotemporal evolution of the normalized electron number density. The trajectory of electron sheet B is marked by a green dotted line and the trajectory of electron sheets A and C are represented by blue dotted lines[88]

    图 15  (a)电子密度的时空演化图; (b)三色激光合成脉冲的波形; (c)产生的半周期阿秒脉冲, 脉宽为7 as[16]

    Fig. 15.  (a) Spatiotemporal evolution of the normalized electron number density; (b) waveform of the normalized electric field from the three-color laser pulses before it interacts with the foil; (c) generated half-cycle attosecond pulse in the transmission direction. The left inset shows a unipolar profile and the right inset shows a close-up of the attosecond pulse having a FWHM of about 7 as[16]

    图 16  从理论模型得到的$x\text{-}t$平面上的电子轨迹 (a)电子片会聚的理论模型结果; (b)电子片发散的理论模型结果[16]

    Fig. 16.  Electron trajectory in the $x\text{-}t$ plane from the analytical model: (a) Nanobunching model for explaining the convergence mechanism of electrons; (b) model for explaining the divergence mechanism of electron nanobunch[16]

  • [1]

    Hentschel M, Kienberger R, Spielmann Ch, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509Google Scholar

    [2]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [3]

    Heissler P, Tzallas P, Mikhailova J M, Khrennikov K, Waldecker L, Krausz F, Karsch S, Charalambidis D, Tsakiris G D 2010 New J. Phys. 14 043025

    [4]

    汪洋, 刘煜, 吴成印 2022 物理学报 71 234205Google Scholar

    Wang Y, Liu Y, Wu C Y 2022 Acta Phys. Sin. 71 234205Google Scholar

    [5]

    徐一丹, 姜雯昱, 童继红, 韩露露, 左子潭, 许理明, 宫晓春, 吴健 2022 物理学报 71 233301Google Scholar

    Xu Y D, Jiang W Y, Tong J H, Han L L, Zuo Z T, Xu L M, Gong X C, Wu J 2022 Acta Phys. Sin. 71 233301Google Scholar

    [6]

    屠倩, 陈友龙, 刘凯, 王凤, 张晓凡, 杨溢, 唐富明, 廖青 2021 物理学报 70 113202Google Scholar

    Tu Q, Chen Y L, Liu K, Wang F, Zhang X F, Yang Y, Tang F M, Liao Q 2021 Acta Phys. Sin. 70 113202Google Scholar

    [7]

    Tzallas P, Charalambidis D, Papadogiannis N A, Witte K, Tsakiris G D 2003 Nature 426 267Google Scholar

    [8]

    Nabekawa Y, Shimizu T, Okino T, Furusawa K, Hasegawa H, Yamanouchi K, Midorikawa K 2006 Phys. Rev. Lett. 97 153904Google Scholar

    [9]

    Takahashi E J, Lan P, Mücke O D, Nabekawa Y, Midorikawa K 2013 Nat. Commun. 4 2691Google Scholar

    [10]

    Gauthier D, Guizar-Sicairos M, Ge X, Boutu W, Carré B, Fienup J R, Merdji H 2010 Phys. Rev. Lett. 105 093901Google Scholar

    [11]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [12]

    Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, De Silvestri S, Nisoli M 2006 Science 314 443Google Scholar

    [13]

    Ferrari F, Calegari F, Lucchini M, Vozzi C, Stagira S, Sansone G, Nisoli M 2010 Nat. Photonics 4 875Google Scholar

    [14]

    Hu S, Chen Z Y 2022 Phys. Plasmas 29 013102Google Scholar

    [15]

    Xu X, Zhang Y, Zhang H, Lu H, Zhou W, Zhou C, Dromey B, Zhu S, Zepf M, He X, Qiao B 2020 Optica 7 355Google Scholar

    [16]

    Pang R, Wang Y, Yan X, Eliasson B 2022 Phys. Rev. Appl. 18 024024Google Scholar

    [17]

    Gordienko S, Pukhov A, Shorokhov O, Baeva T 2004 Phys. Rev. Lett. 93 115002Google Scholar

    [18]

    Chen Z Y, Pukhov A 2016 Nat. Commun. 7 12515Google Scholar

    [19]

    Teubner U, Gibbon P 2009 Rev. Mod. Phys. 81 445Google Scholar

    [20]

    Thaury C, Quéré F, Geindre J P, Levy A, Ceccotti T, Monot P, Bougeard M, Réau F, d’Oliveira P, Audebert P, Marjoribanks R, Martin Ph 2007 Nat. Phys. 3 424Google Scholar

    [21]

    Gao J, Ye D, Liu J, Kang W 2022 Matter Radiat. Extremes 7 044403Google Scholar

    [22]

    蔡怀鹏, 高健, 李博原, 刘峰, 陈黎明, 远晓辉, 陈民, 盛政明, 张杰 2018 物理学报 67 214205Google Scholar

    Cai H P, Gao J, Li B Y, Liu F, Chen L M, Yuan X H, Chen M, Sheng Z M, Zhang J 2018 Acta Phys. Sin. 67 214205Google Scholar

    [23]

    徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾 2021 物理学报 70 084206Google Scholar

    Xu X R, Zhong C L, Zhang Y, Liu F, Wang S Y, Tan F, Zhang Y X, Zhou W M, Qiao B 2021 Acta Phys. Sin. 70 084206Google Scholar

    [24]

    Liang Z, Shen B, Zhang X, Zhang L 2020 Matter Radiat. Extremes 5 054401Google Scholar

    [25]

    Zhu X L, Chen M, Yu T P, Weng S M, He F, Sheng Z M 2019 Matter Radiat. Extremes 4 014401Google Scholar

    [26]

    Brunel F 1987 Phys. Rev. Lett. 59 52Google Scholar

    [27]

    Quéré F, Thaury C, Monot P, Dobosz S, Martin Ph, Geindre J P, Audebert P 2006 Phys. Rev. Lett. 96 125004Google Scholar

    [28]

    Bulanov S V, Naumova N M, Pegoraro F 1994 Phys. Plasmas 1 745Google Scholar

    [29]

    Gibbon P 1996 Phys. Rev. Lett. 76 50Google Scholar

    [30]

    Lichters R, Meyer-ter-Vehn J, Pukhov A 1996 Phys. Plasmas 3 3425Google Scholar

    [31]

    Pukhov A 2006 Nat. Phys. 2 439Google Scholar

    [32]

    Dollar F, Cummings P, Chvykov V, Willingale L, Vargas M, Yanovsky V, Zulick C, Maksimchuk A, Thomas A G R, Krushelnick K 2013 Phys. Rev. Lett. 110 175002Google Scholar

    [33]

    Kahaly S, Monchocé S, Vincenti H, Dzelzainis T, Dromey B, Zepf M, Martin Ph, Quéré F 2013 Phys. Rev. Lett. 110 175001Google Scholar

    [34]

    Heissler P, Hörlein R, Mikhailova J M, Waldecker L, Tzallas P, Buck A, Schmid K, Sears C M S, Krausz F, Veisz L, Zepf M, Tsakiris G D 2012 Phys. Rev. Lett. 108 235003Google Scholar

    [35]

    Dromey B, Zepf M, Gopal A, Lancaster K, Wei M S, Krushelnick K, Tatarakis M, Vakakis N, Moustaizis S, Kodama R, Tampo M, Stoeckl C, Clarke R, Habara H, Neely D, Karsch S, Norreys P 2006 Nat. Phys. 2 456Google Scholar

    [36]

    Dromey B, Kar S, Bellei C, Carroll D C, Clarke R J, Green J S, Kneip S, Markey K, Nagel S R, Simpson P T, Willingale L, McKenna P, Neely D, Najmudin Z, Krushelnick K, Norreys P A, Zepf M 2007 Phys. Rev. Lett. 99 085001Google Scholar

    [37]

    An der Brügge D, Pukhov A 2010 Phys. Plasmas 17 033110Google Scholar

    [38]

    Mikhailova J M, Fedorov M V, Karpowicz N, Gibbon P, Platonenko V T, Zheltikov A M, Krausz F 2012 Phys. Rev. Lett. 109 245005Google Scholar

    [39]

    Dromey B, Rykovanov S, Yeung M, Hörlein R, Jung D, Gautier D C, Dzelzainis T, Kiefer D, Palaniyppan S, Shah R, Schreiber J, Ruhl H, Fernandez J C, Lewis C L S, Zepf M, Hegelich B M 2012 Nat. Phys. 8 804Google Scholar

    [40]

    Jiang Y, Chen Z Y, Liu Z, Cao L, Zheng C, Xie R, Chao Y, He X 2021 Opt. Lett. 46 1285Google Scholar

    [41]

    Wu Y Y, Dong Q L, Wang Z H, Liu P, Wang C Z, Zhang Y H, Sheng Z M, Zhang J 2018 Chin. Phys. Lett. 35 095201Google Scholar

    [42]

    Corkum P B, Burnett N H, Ivanov M Y 1994 Opt. Lett. 19 1870Google Scholar

    [43]

    Platonenko V T, Strelkov V V 1999 J. Opt. Soc. Am. B 16 435Google Scholar

    [44]

    Tscherbakoff O, Mevel E, Descamps D, Plumridge J, Constant E 2003 Phys. Rev. A 68 043804Google Scholar

    [45]

    Tzallas P, Skantzakis E, Kalpouzos C, Benis E P, Tsakiris G D, Charalambidis D 2007 Nat. Phys. 3 846Google Scholar

    [46]

    Charambidis D, Tzallas P, Benis E P, Maravellias G, Nikolopoulos L A A, Peralta C A, Tsakiris G D 2008 New J. Phys. 10 025018Google Scholar

    [47]

    Baeva T, Gordienko S, Pukhov A 2006 Phys. Rev. E 74 065401

    [48]

    Yeung M, Dromey B, Cousens S, Dzelzainis T, Kiefer D, Schreiber J, Bin J H, Ma W, Kreuzer C, Meyer-ter-Vehn J, Streeter M J V, Foster P S, Rykovanov S, Zepf M 2014 Phys. Rev. Lett. 112 123902Google Scholar

    [49]

    Heissler P, Hörlein R, Stafe M, Mikhailova J M, Nomura Y, Herrmann D, Tautz R, Rykovanov S G, Földes I B, Varjú K, Tavella F, Marcinkevicius A, Krausz F, Veisz L, Tsakiris G D 2010 Appl. Phys. B 101 511Google Scholar

    [50]

    Easter J H, Nees J A, Hou B X, Mordovanakis A, Mourou G, Thomas A G R, Krushelnick K 2013 New J. Phys. 15 025035Google Scholar

    [51]

    Rykovanov S G, Geissler M, Meyer-ter-Vehn J, Tsakiris G D 2008 New J. Phys. 10 025025Google Scholar

    [52]

    Yeung M, Bierbach J, Eckner E, Rykovanov S, Kuschel S, Sövert A, Förster M, Rödel C, Paulus G G, Cousens S, Coughlan M, Dromey B, Zepf M 2015 Phys. Rev. Lett. 115 193903Google Scholar

    [53]

    Li B Y, Liu F, Chen M, Wu F Y, Wang J W, Lu L, Li J L, Ge X L, Yuan X H, Yan W C, Chen L M, Sheng Z M, Zhang J 2022 Phys. Rev. Lett. 128 244801Google Scholar

    [54]

    Chen Z Y, Li X Y, Li B Y, Chen M, Liu F 2018 Opt. Express 26 4572Google Scholar

    [55]

    Pfeifer T, Gallmann L, Abel M J, Neumark D M, Leone S R 2006 Opt. Lett. 31 975Google Scholar

    [56]

    Yoshitomi D, Kobayashi Y, Takada H, Kakehata M, Torizuka K 2005 Opt. Lett. 30 1408Google Scholar

    [57]

    Zhang G T, Liu X S 2009 J. Phys. B: At. Mol. Opt. 42 125603Google Scholar

    [58]

    Yuan K J, Bandrauk A D J 2013 Phys. Rev. Lett. 110 023003Google Scholar

    [59]

    Li P C, Liu I L, Chu S I 2011 Opt. Express 19 23857Google Scholar

    [60]

    Qin Y F, Guo F M, Li S Y, Yang Y J, Chen G 2014 Chin. Phys. B 23 093205Google Scholar

    [61]

    汉琳, 苗淑莉, 李鹏程 2022 物理学报 71 233204Google Scholar

    Han L, Miao S L, Li P C 2022 Acta Phys. Sin. 71 233204Google Scholar

    [62]

    杜进旭, 王国利, 李小勇, 周效信 2022 物理学报 71 233207Google Scholar

    Du J X, Wang G L, Li X Y, Zhou X X 2022 Acta Phys. Sin. 71 233207Google Scholar

    [63]

    陈高 2022 物理学报 71 054204Google Scholar

    Chen G 2022 Acta Phys. Sin. 71 054204Google Scholar

    [64]

    陈高, 杨玉军, 郭福明 2013 物理学报 62 073203Google Scholar

    Chen G, Yang Y J, Guo F M 2013 Acta Phys. Sin. 62 073203Google Scholar

    [65]

    Chang Z J 2007 Phys. Rev. A 76 051403Google Scholar

    [66]

    Tarasevitch A, Kohn R, von der Linde D 2009 J. Phys. B 42 134006Google Scholar

    [67]

    Tarasevitch A, von der Linde D 2009 Eur. Phys. J. Special Topics 175 35Google Scholar

    [68]

    Edwards M R, Platonenko V T, Mikhailova J M 2014 Opt. Lett. 39 6823Google Scholar

    [69]

    Zhang Y X, Rykovanov S, Shi M, Zhong C L, He X T, Qiao B, Zepf M 2020 Phys. Rev. Lett. 124 114802Google Scholar

    [70]

    Vincenti H, Quéré F 2012 Phys. Rev. Lett. 108 113904Google Scholar

    [71]

    Wheeler J A, Borot A, Monchocé S, Vincenti H, Ricci A, Malvache A, Lopez-Martens R, Quéré F 2012 Nat. Photonics 6 829Google Scholar

    [72]

    Hammond T J, Brown G G, Kim K T, Villeneuve D M, Corkum P B 2016 Nat. Photonics 10 171Google Scholar

    [73]

    Xu X R, Qiao B, Chang H X, Zhang Y X, Zhang H, Zhong C L, Zhou C T, Zhu S P, He X T 2018 Plasma Phys. Control. Fusion 60 045005Google Scholar

    [74]

    Wu H C, Meyer-ter-Vehn J, Hegelich B M, Fernandez J C 2011 Phys. Rev. Spec. Top. Accel Beams 14 070702

    [75]

    Arkhipov M V, Arkhipov R M, Pakhomov A V, Babushkin I V, Demircan A, Morgner U, Rosanov N N 2017 Opt. Lett. 42 2189Google Scholar

    [76]

    Moskalenko A S, Zhu Z G, Berakdar J 2017 Phys. Rep. 672 1Google Scholar

    [77]

    Thiele I, Siminos E, Fülöp T 2019 Phys. Rev. Lett. 122 104803Google Scholar

    [78]

    Pakhomov A V, Arkhipov R M, Babushkin I V, Arkhipov M V, Tolmachev Y A, Rosanov N N 2017 Phys. Rev. A 95 013804Google Scholar

    [79]

    Gao Y, Drake T, Chen Z, DeCamp M F 2008 Opt. Lett. 33 2776Google Scholar

    [80]

    Greene B I, Federici J F, Dykaar D R, Jones R R, Bucksbaum P H 1991 Appl. Phys. Lett. 59 893Google Scholar

    [81]

    Liang H, Krogen P, Wang Z, Park H, Kroh T, Zawilski K, Schunemann P, Moses J, DiMauro L F, Körtner F X, Hong K -H 2017 Nat. Commun. 8 141Google Scholar

    [82]

    Hassan M Th, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 6

    [83]

    Wu H C, Meyer-ter-Vehn J 2012 Nat. Photonics 6 304Google Scholar

    [84]

    Ma W J, Bin J H, Wang H Y, Yeung M, Kreuzer C, Streeter M, Foster P S, Cousens S, Kiefer D, Dromey B, Yan X Q, Meyer-ter-Vehn J, Zepf M, Schreiber J 2014 Phys. Rev. Lett. 113 235002Google Scholar

    [85]

    Xu J, Shen B, Zhang X, Shi Y, Ji L, Zhang L, Xu T, Wang W, Zhao X, Xu Z 2018 Sci. Rep. 8 2669Google Scholar

    [86]

    Shou Y, Hu R, Gong Z, Yu J, Chen J, Mourou G, Yan X, Ma W 2021 New J. Phys. 23 053003Google Scholar

    [87]

    Cousens S, Reville B, Dromey B, Zepf M 2016 Phys. Rev. Lett. 116 083901Google Scholar

    [88]

    Wei S, Wang Y, Yan X, Eliasson B 2022 Phys. Rev. E 106 025203Google Scholar

    [89]

    Mourou G, Mironov S, Khazanov E, Sergeev A 2014 Eur. Phys. J. Special Topics 223 1181Google Scholar

    [90]

    Henig A, Steinke S, Schnürer M, Sokollik T, Hörlein R, Kiefer D, Jung D, Schreiber J, Hegelich B M, Yan X Q, Meyer-ter-Vehn J, Tajima T, Nickles P V, Sandner W, Habs D 2009 Phys. Rev. Lett. 103 245003Google Scholar

    [91]

    Cantono G, Permogorov A, Ferri J, Smetanina E, Dmitriev A, Persson A, Fülöp T, Wahlström C G 2021 Sci. Rep. 11 5006Google Scholar

    [92]

    Kobayashi Y, Sekikawa T, Nabekawa Y, Watanabe S 1998 Opt. Lett. 23 64Google Scholar

    [93]

    Itatani J, Quere F, Yudin G L, Ivanov M Y, Krausz F, Corkum P B 2002 Phys. Rev. Lett. 88 173903Google Scholar

    [94]

    Reider G A 2004 J. Phys. D: Appl. Phys. 37 R37Google Scholar

    [95]

    Frustaglia D, Hentschel M, Richter K 2004 Phys. Rev. B 69 155327Google Scholar

    [96]

    Moskalenko A S, Berakdar J 2008 Phys. Rev. A 78 051804(RGoogle Scholar

  • [1] 岳东宁, 董全力, 陈民, 赵耀, 耿盼飞, 远晓辉, 盛政明, 张杰. 强激光与近临界密度等离子体相互作用中的无碰撞静电冲击波产生. 物理学报, 2023, 72(11): 115202. doi: 10.7498/aps.72.20230271
    [2] 岳东宁, 董全力, 陈民, 赵耀, 耿盼飞, 远晓辉, 盛政明, 张杰. 强激光与亚临界密度等离子体相互作用中的近前向散射驱动光子加速机制. 物理学报, 2023, 72(12): 125201. doi: 10.7498/aps.72.20222014
    [3] 赵鑫, 杨晓虎, 张国博, 马燕云, 刘彦鹏, 郁明阳. 高功率激光辐照平面靶后辐射冷却效应对等离子体成丝的影响. 物理学报, 2022, 71(23): 235202. doi: 10.7498/aps.71.20220870
    [4] 杜进旭, 王国利, 李小勇, 周效信. 优化双色近红外激光及其二次谐波场驱动原子产生孤立阿秒脉冲. 物理学报, 2022, 71(23): 233207. doi: 10.7498/aps.71.20221375
    [5] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展. 物理学报, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [6] 姜炜曼, 李玉同, 张喆, 朱保君, 张翌航, 袁大伟, 魏会冈, 梁贵云, 韩波, 刘畅, 原晓霞, 华能, 朱宝强, 朱健强, 方志恒, 王琛, 黄秀光, 张杰. 纳秒激光等离子体相互作用过程中激光强度对微波辐射影响的研究. 物理学报, 2019, 68(12): 125201. doi: 10.7498/aps.68.20190501
    [7] 辛建婷, 赵永强, 储根柏, 席涛, 税敏, 范伟, 何卫华, 谷渝秋. 强激光加载下锡材料微喷颗粒与气体混合回收实验研究及颗粒度分析. 物理学报, 2017, 66(18): 186201. doi: 10.7498/aps.66.186201
    [8] 李彦霏, 李玉同, 朱保君, 袁大伟, 李芳, 张喆, 仲佳勇, 魏会冈, 裴晓星, 刘畅, 原晓霞, 赵家瑞, 韩波, 廖国前, 鲁欣, 华能, 朱宝强, 朱健强, 方智恒, 安红海, 黄秀光, 赵刚, 张杰. 强激光产生的强磁场及其对弓激波的影响. 物理学报, 2017, 66(9): 095202. doi: 10.7498/aps.66.095202
    [9] 原晓霞, 仲佳勇. 双等离子体团相互作用的磁流体力学模拟. 物理学报, 2017, 66(7): 075202. doi: 10.7498/aps.66.075202
    [10] 罗香怡, 贲帅, 葛鑫磊, 王群, 郭静, 刘学深. 空间非均匀啁啾双色场驱动下氦离子的高次谐波以及孤立阿秒脉冲的产生. 物理学报, 2015, 64(19): 193201. doi: 10.7498/aps.64.193201
    [11] 郭福明, 宋阳, 陈基根, 曾思良, 杨玉军. 含时量子蒙特卡罗方法研究两电子原子在强激光作用下电子的动力学行为. 物理学报, 2012, 61(16): 163203. doi: 10.7498/aps.61.163203
    [12] 辛建婷, 谷渝秋, 李平, 罗炫, 蒋柏斌, 谭放, 韩丹, 巫殷忠, 赵宗清, 粟敬钦, 张保汉. 强激光加载下金属材料微喷回收诊断. 物理学报, 2012, 61(23): 236201. doi: 10.7498/aps.61.236201
    [13] 孟健, 陈高, 刘胜男. 多周期双色场方案下附加脉冲频率对阿秒脉冲产生的影响. 物理学报, 2012, 61(20): 203202. doi: 10.7498/aps.61.203202
    [14] 刘胜男, 陈高, 孟健. 60 fs长脉宽双色场作用下孤立阿秒脉冲的产生. 物理学报, 2012, 61(14): 143201. doi: 10.7498/aps.61.143201
    [15] 夏昌龙, 刘学深. 任意夹角的双色偏振激光作用下孤立阿秒脉冲的产生. 物理学报, 2012, 61(4): 043303. doi: 10.7498/aps.61.043303
    [16] 陈基根, 杨玉军, 陈漾. 附加谐波脉冲生成强的39阿秒孤立脉冲. 物理学报, 2011, 60(3): 033202. doi: 10.7498/aps.60.033202
    [17] 何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰. 强激光与稠密等离子体作用引起的冲击波加速离子的研究. 物理学报, 2009, 58(1): 363-372. doi: 10.7498/aps.58.363
    [18] 黄仕华, 吴锋民. 外加静电场的聚焦激光脉冲真空加速电子方案. 物理学报, 2008, 57(12): 7680-7684. doi: 10.7498/aps.57.7680
    [19] 曾贵华, 诸鸿文, 徐至展. 欠稠密等离子体中诱发的偶次相对论谐波. 物理学报, 2001, 50(10): 1946-1949. doi: 10.7498/aps.50.1946
    [20] 苍宇, 王薇, 张杰. 对超短脉冲激光与固体密度等离子体相互作用动力学过程的研究. 物理学报, 2001, 50(9): 1742-1746. doi: 10.7498/aps.50.1742
计量
  • 文章访问数:  4732
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-26
  • 修回日期:  2023-02-04
  • 上网日期:  2023-02-16
  • 刊出日期:  2023-03-05

/

返回文章
返回